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Skeletal muscle metabolic
characteristics and fresh meat
quality defects associated with
wooden breast

Linnea A. Rimmer and Morgan D. Zumbaugh*

Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States

Wooden breast (WB) is a myopathy that occurs in pectoralis major (PM) muscles,
predominately affecting large, fast-growing broilers. Severe myodegeneration,
increased hypoxia, reduced blood flow, and increased collagen deposition are
hallmark characteristics ofWB that culminate in unsatisfactory freshmeat quality
attributes, such as poor water-holding capacity, tenderness, and processing
characteristics. Therefore, WB meat is often downgraded resulting in economic
losses for the United States poultry industry. Although WB has been well
characterized, its etiology remains undefined. As the scientific community
continues to resolve mechanisms responsible for WB onset, understanding
biochemical changes associated with WB may facilitate solutions to negate
its poor meat quality attributes. Given changes in metabolism of living muscle
can alter biochemical processes during the conversion of muscle to meat, this
review aims to summarize and discuss the current knowledge of WBmuscle and
meat biochemistry. For example, it appears metabolic pathways that support
combating stress are upregulated in WB muscle at the expense of glycolytic
flux, which presumably contributes to the high ultimate pH of WBmeat. Further,
perturbed function of WB mitochondria, such as altered calcium handling,
impacts aspects of postmortem metabolism and proteolysis. Collectively,
metabolic dysfunction of WB muscle alters the biochemical processes that
occur during the conversion of muscle to meat, and thus contributes to the
poor WB meat quality.
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1 Introduction

Poultry is the fastest growing sector of the meat industry in the United States
(Interagency Agricultural Projections Committee, 2020), largely because of its affordable
price and positive nutritional benefits. Rising global demand for high-quality poultry
products has driven the U.S. poultry industry to nearly double production from 2001
to 2021 (Miller et al., 2022). To accomplish this feat, the industry has implemented
genetic selection and nutritional advancements to achieve superior broiler growth rates
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(Baker et al., 1999; Kidd et al., 2001; National Chicken Council,
2022). For example, broilers in 1970 were an average of 3.62
lbs at market after approximately 56 days, whereas broilers in
2023 took approximately 47 days to reach an average of 6.54 lbs
at market (National Chicken Council, 2022). While the industry
improved production efficiency and yields, an unexpected increase
in the prevalence of myopathies accompanied these advancements.
In fact, fast growth rate is associated with an increase in WB
prevalence, and affected broilers can begin presenting symptoms
of the pathology as early as 2 weeks of age (Sihvo et al., 2014;
Sihvo et al., 2017). Affected filets are characterized as being
palpably hard to the touch, pale in color, and having occasional
white striping that results in low acceptance by consumers due
to poor texture and usability of the meat (Kuttappan et al., 2012;
Mudalal et al., 2015; Xing et al., 2020). Although the etiology of
WB largely remains undefined, many factors have been identified
that contribute to the onset and progression of the myopathy. This
review aims to summarize the current knowledge of the underlying
muscle physiology and freshmeat quality defects associated with the
WB myopathy.

2 Skeletal muscle metabolic
characteristics associated with WB

Skeletal muscle is composed of a heterogeneous population
of muscle fibers that can be classified by metabolism (oxidative
or glycolytic) and contractile speed (slow or fast). While slow
fibers (type I) rely heavily on oxidative metabolism, presumably
to fuel long or continuous bouts of work, fast fibers (type
IIA, IIX, and IIB) vary in their metabolic capability and can
range from having a high oxidative capacity to a high glycolytic
capacity. Composition of muscle fibers varies within muscles and
determines overall muscle phenotype as well as susceptibility to
disease (Talbot and Maves, 2016). Pectoralis major muscles of
broilers are nearly 100% type IIB fibers, which are characterized
as highly glycolytic with a fast contraction speed (Smith and
Fletcher, 1988; Roy et al., 2006; Verdiglione and Cassandro,
2013a; Hosotani et al., 2021). Indeed, PM muscles of healthy
broilers exhibit low mitochondrial content, high glycolytic
capacity, and thus can function under anaerobic conditions
(Dransfield and Sosnicki, 1999; Verdiglione and Cassandro, 2013b;
Du et al., 2017; Huo et al., 2022). In WB muscle, insufficient
angiogenesis during periods of rapid growth results in diminished
vascularization and hypoxic conditions (Mutryn et al., 2015;
Thanatsang et al., 2020). In fact, an increase in gene expression
and protein abundance of hypoxia-inducible factor 1 (HIF-1α;
transcription factor that mediates cellular responds to low oxygen
levels) as well as an increase in associated proteins involved in
the hypoxic response supports the notion of a limited oxygen
environment in WB muscle (Greene et al., 2019; Greene et al.,
2020). Although highly glycolytic muscle fibers of PM muscles
should be able to accommodate a reduced oxygen environment
(Minchenko et al., 2002; Kierans and Taylor, 2021), WB muscle
exhibits metabolic dysfunction (Abasht et al., 2016; Kuttappan et al.,
2017a; Hosotani et al., 2020; Hasegawa et al., 2022; Carvalho et al.,
2023; Wang et al., 2023). Indeed, an increase in reactive oxygen
species (ROS) and markers of cellular stress are often reported

in WB muscle (Figure 1) (Hasegawa et al., 2022; Carvalho et al.,
2023; Wang et al., 2023). While WB muscle also upregulates
scavenging pathways to combat stress (Hasegawa et al., 2022;
Carvalho et al., 2023; Wang et al., 2023), WB muscle is not able
to counteract the onset of disease.

2.1 Overview of glycolysis and its ancillary
pathways

After glucose enters myofibers, hexokinase phosphorylates
glucose to generate glucose-6-phoshate (G-6-P), which can be
used for energy storage, energy production, supporting anabolic
pathways, or as a precursor for metabolic signaling depending
on cellular needs. For example, G-6-P is used to synthesize
glycogen during times of energy surplus or to fuel glycolysis
during times of energy scarcity (Rao et al., 2015; Matarneh et al.,
2018b). Alternatively, G-6-P can be shunted into the pentose
phosphate pathway (PPP) to generate NADPH for lipid synthesis
and scavenging ROS or to produce five-carbon precursors for
nucleotide synthesis (Stincone et al., 2015). In addition, G-6-P can
be converted to fructose-6-phosphate (F-6-P) and shunted into
the hexosamine biosynthetic pathway (HBP) to synthesize UDP-
GlcNAc, which is used by the enzyme O-GlcNAc transferase (OGT)
to catalyze theO-linked addition of β-N-acetyl glucosamine to target
proteins (Hart and Akimoto, 2009). One of the most abundant
post-translational modifications, O-GlcNAcylation regulates over
4,000 target proteins in response to cellular nutrient availability (Ma
and Hart, 2014). While the HBP only consumes 2%–5% of cellular
glucose utilization, O-GlcNAcylation has widespread implications
on skeletal muscle metabolism (Marshall et al., 1991; Bond and
Hanover, 2015). The multiple fates of glycolytic intermediates
contribute to the plastic nature and metabolic flexibility of healthy
skeletal muscle.

2.1.1 Glycolytic flux
Given the highly glycolytic nature of broiler PM muscles, it

is reasonable to assume WB muscles would adapt to hypoxic
conditions associated with the myopathy. However, WB muscles
exhibit reduced levels of glycogen, G-6-P, and F-6-P suggesting WB
decreases glycolytic flux (Abasht et al., 2016; Baldi et al., 2020).
This notion is supported by diminished levels of the glycolytic
end products pyruvate and lactate in WB muscle (Abasht et al.,
2016). Further, protein abundance of several enzymes in the latter
half of glycolysis are also decreased in WB muscle including
phosphoglycerate kinase, phosphoglycerate mutase, and pyruvate
kinase (Abasht et al., 2016; Soglia et al., 2016; Kuttappan et al.,
2017a; Carvalho et al., 2023). The final glycolytic intermediate,
pyruvate, can either be converted to lactate through lactate
dehydrogenase alpha (LDHα) or enter the tricarboxylic acid
(TCA) cycle through pyruvate dehydrogenase (PDH) or pyruvate
carboxylase (PC). Glycolytic type IIB fibers predominately divert
pyruvate through LDHα to produce lactate, which is then shuttled
out of muscle through monocarboxylate transporter 4 (MCT4)
into the bloodstream to be carried to the liver for gluconeogenesis
(Dimmer et al., 2000). Glucose is then stored in the liver as
glycogen or circulated as glucose, which can be consumed by skeletal
muscle in a process termed the Cori Cycle. Most reports agree
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FIGURE 1
Overview of WB tissue morphology. Greater myodegeneration and an increase in fibroblast, adipocyte, and immune cells suggests WB muscle
coordinates a response to repair the damaged tissue; however, non-muscle cells infiltrate the tissue. For example, an increase in macrophages and
neutrophils as well as thicker endomysium and perimysium connective tissue layers are found in WB muscle. In addition, WB muscles often exhibit an
increase in oxidative stress and decrease angiogenesis. Created in BioRender.

gene expression and protein abundance of LDHα decreases in WB
muscle (Kuttappan et al., 2017a;Malila et al., 2019;Thanatsang et al.,
2020; Zhao et al., 2020; Wang et al., 2023), which corresponds
to the decrease in lactate. Contradicting reports indicate no
difference (Zhao et al., 2020) or an increase in protein abundance
in WB muscles (Soglia et al., 2016); however, the latter report did
not indicate the LDH subunit evaluated. Lactate dehydrogenase
beta (LDHβ) converts lactate to pyruvate (Cahn et al., 1962;
Dawson et al., 1964; Pesce et al., 1964), and LDHβ gene expression
as well as protein abundance increased 8.4- and 13.6- fold in
WB muscles compared to unaffected PM muscles, respectively
(Zhao et al., 2020; Wang et al., 2023). Interestingly, Zhao et al., 2020
reported no differences in protein abundance of monocarboxylate
transporter 1 (MCT1; facilitates lactate uptake into cells), while
protein abundance of MCT4 (facilitates lactate export) increased
3.4-fold in WB muscles compared to unaffected PM muscles. In
osteosarcoma cells,MCT4 is upregulated during hypoxic conditions,
which is partially attributed to a HIF-1α mediated mechanism and
may be employed by cells to compensate for an increase in lactate
production (Sheng et al., 2023). Although an increase in MCT4
would normally suggest an increase in lactate production and efflux
from myofibers feeding into the Cori Cycle, this does not appear
to be the case in WB muscle. Collectively, these reports suggest
WB muscles still employ mechanisms to accommodate anaerobic
conditions; however, glycolytic flux and lactate production are
obstructed (Figure 2).

2.1.2 Pentose phosphate pathway
Interestingly, there is little evidence that indicates impaired

glucose uptake is responsible for the diminished glycolytic flux,
which questions if all metabolic pathways associated with glycolysis
are also impaired in WB muscle. For example, G-6-P may be
diverted into the PPP to support NADP+ reduction to replenish

NADPH pools, which is necessary for fatty acid synthesis and
reduction of glutathione to scavenge ROS (Stincone et al., 2015).
In addition to hypoxia, oxidative stress is also a hallmark of
WB. The notion that WB muscles divert glucose into the PPP to
replenish NADPH pools is supported by an increase in hexokinase-
1 protein abundance in WB muscles (Kuttappan et al., 2017a),
which indicates an increase in glucose phosphorylation to G-6-P.
Although G-6-P levels are lower in WB muscles, it is possible G-
6-P is being diverted into the PPP to restore a diminishing NADPH
pool. Indeed, levels of the PPP intermediates 6-phosphogluconate
and sedoheptulose 7-phosphate are 2.84 - and 3.73- fold higher
in WB muscles compared to unaffected PM muscles, respectively
(Abasht et al., 2016). Further, cytidine, thymidine, adenine, and
guanosine levels increase in WB (Abasht et al., 2016), which
are synthesized using ribose-5-phosphate from the PPP. There
is also evidence of increased nucleotide catabolism in WB
(Abasht et al., 2016), which is associated with a mitochondrial
response to oxidative stress (Kristal et al., 1999). Therefore, it
is possible the WB pathology forces muscle to shunt glucose
into the PPP to combat oxidative stress at the expense of
glycolytic capacity (Figure 2).

2.1.3 Serine biosynthesis pathway
In addition to an increase in PPP diverting glucose from

ATP production, the serine biosynthesis pathway (SBP) may also
shunt glycolytic intermediates to support additional glutathione
synthesis to combat oxidative stress.Glutamate, cysteine, and glycine
are amino acid precursors for glutathione synthesis. Glycine as
well as cysteine are synthesized from serine, which is produced
from the glycolytic intermediate 3-phopshoglycerate. In fact,
gene expression of the enzyme that catalyzes the first step of
serine biosynthesis, phosphoglycerate dehydrogenase (PHGDH),
is upregulated 11.6-fold in WB muscle compared to unaffected
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FIGURE 2
Overview of glycolysis and its ancillary pathways in WB muscle. Schematic of enzymatic and intermediate changes in glycolysis, the pentose phosphate
pathway, hexosamine biosynthetic pathway, and serine biosynthesis pathway observed in WB muscle. Red text indicates a decrease in gene expression
and/or protein abundance of the enzyme or intermediate. Green text indicates an increase in gene expression and/or protein abundance of the
enzyme or intermediate. Black text was not evaluated or no changes were reported. Abbreviations: G6PDH, glucose-6-phosphate dehydrogenase;
6PGL, 6-phosphogluconolactonase; 6PGD, 6-phosphogluconate dehydrogenase; GFAT, glutamine fructose-6-phosphate aminotransferase; PHGDH,
phosphoglycerate dehydrogenase; LDHα, lactate dehydrogenase alpha; LDHβ lactate dehydrogenase beta. Created in BioRender.

PM muscles (Mutryn et al., 2015). Further, gene expression of
the enzyme that catalyzes the first step of glutathione synthesis
is also upregulated in WB muscle (Zhang et al., 2023). This
notion is supported by an increase in cysteine, glutathione,
and oxidized glutathione levels in WB muscles (Abasht et al.,
2016; Thanatsang et al., 2020) as well as an increase in gene
expression and protein abundance of several enzymes involved
in glutathione-mediated scavenging in WB muscles (Figure 2)
(Carvalho et al., 2023; Zhang et al., 2023). These findings support
the notion that glycolytic intermediates are being diverted into
metabolic pathways to combat stress.

2.1.4 Hexosamine biosynthetic pathway
While it is apparent WB muscle employs metabolic pathways

to counteract oxidative stress, it appears this occurs at the expense
of ATP production to meet cellular energy demands. Indeed, ATP
levels are decreased in WB muscle compared to unaffected PM
muscles (Baldi et al., 2020). Given PM muscles are inherently
glycolytic and commercial broilers are fed high energy diets, a potent
underlying mechanism must be obstructing glycolytic capacity in
WB. Interestingly, feeding low energy or low protein diets decreases
the prevalence of myopathies in growing broilers (Trocino et al.,

2015; Meloche et al., 2018b; Meloche et al., 2018a; Simoes et al.,
2020; Vieira et al., 2021). While this may be attributed to a diet-
induced slower growth rate, high energy diets may force muscle into
a state of metabolic disease. In fact, UPD-GlcNAc levels are higher
in WB muscles compared to unaffected PM muscles (Abasht et al.,
2016), which is the precursor for the nutrient sensitive post-
translational modification O-GlcNAcylation, and confirms WB
muscle still responds to the high energy diet. This is a possible
mechanism employed byWBmuscle to divert glycolytic metabolites
into the PPP or other pathways branching from glycolysis (Figure 2).
This notion is supported by reports of O-GlcNAcylation increasing
hexokinase-1 activity as well as glucose-6-phosphate dehydrogenase
(Rao et al., 2015; Baldini et al., 2016; Liu et al., 2022), which
catalyzes the first step of the PPP. Therefore, it is possible the high
nutritional plane combinedwith an expedited growth rate culminate
in metabolic conditions that signal a state of excess nutrients to
“override” stress responses during the onset and progression of
disease. However, such a mechanism has yet to be identified but
further investigation into the regulation of glycolysis and its ancillary
pathways will shed light on the unique metabolic fingerprint
of WB muscle.
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2.2 Mitochondrial metabolism in WB
muscle

Alternative to its use in the Cori Cycle, pyruvate can be
shuttled into mitochondria to enter the TCA cycle through PDH
or PC. In addition, the TCA cycle can metabolize amino acids
as well as acetyl-CoA from fatty acid beta-oxidation as alternative
metabolite sources to carbohydrates. In highly glycolytic type IIB
fibers, ATP production largely occurs through glycolysis, and thus
mitochondrial metabolism is a minor contributor to cellular ATP
production (Kunz, 2001). Indeed, mitochondrial content is low in
type IIB fibers of PM muscles compared to more oxidative fiber
types of broiler gastrocnemius muscles (Hosotani et al., 2021).
Mitochondria in type IIB fibers of PM muscles are small, dispersed,
and ellipsoid-shaped compared to elongated and interconnected
mitochondrial networks found in oxidative fibers of gastrocnemius
muscles (Hosotani et al., 2021). Although mitochondrial content in
healthy PM muscles is low compared to more oxidative fiber types,
PM mitochondria undergo fusion and fission events to preserve
mitochondrial function, albeit in a more tempered manner than
oxidative fibers (Hosotani et al., 2021). Mitochondrial dynamics
are perturbed in WB muscle contributing to swollen mitochondria
morphology, an increase in ROS production, and overall metabolic
dysregulation (Hosotani et al., 2020; Hasegawa et al., 2022;
Carvalho et al., 2023; Wang et al., 2023).

2.2.1 Metabolite utilization in the TCA cycle
Although the TCA cycle is often illustrated as a continuous

cycle of enzymatic reactions, there are several entry and exit points
within the cycle that enable mitochondria to accommodate cellular
energy demands. The TCA cycle is not a carbon sink, and therefore
an equilibrium exists between metabolites feeding into the TCA
cycle and its intermediates exiting the cycle. These processes are
termed anaplerosis and cataplerosis, where the former are a series
of enzymatic reactions replenishing the pool of TCA intermediates
and the latter remove TCA intermediates from the cycle. While
anaplerosis (metabolites entering the TCA cycle) is often the
center of discussion, cataplerosis (intermediates exiting the cycle) is
often overlooked. Cataplerotic reactions are essential for regulating
glucose, amino acid, and fatty acid metabolism. For example, in
the glycolytic type IIB fibers of PM muscles, carbohydrate-derived
metabolites are the predominate fuel source used in glycolysis,
but pyruvate can also feed into the TCA cycle and then exit at
several points to support amino acid synthesis. These cataplerotic
reactions are necessary to support rapid protein accretion to enable
the fast rate of muscle hypertrophy observed in commercial broilers.
However, mitochondrial dysfunction in WB is presumably a rate
limiting factor in successfully accommodating the high demands of
amino acid metabolism in these fast-growing broilers.

A decrease in gene expression and protein abundance of most
TCA cycle enzymes is observed in WB muscle (Kuttappan et al.,
2017a; Papah et al., 2018; Carvalho et al., 2023; Wang et al., 2023).
Interestingly, levels of α-ketoglutarate, fumarate, andmalate increase
in WB muscle but there is little evidence of changes in other TCA
intermediates (Figure 3) (Abasht et al., 2016; Greene et al., 2020).
These three intermediates are all involved in amino acidmetabolism
and may be an attempt for WB muscle to accommodate protein
synthesis rate. For example, glutamate dehydrogenase catalyzes

the reversible conversion of α-ketoglutarate to glutamate, which
facilitates use of glutamate as a fuel source during times of energy
scarcity or synthesis of glutamate during times of energy surplus
(Plaitakis et al., 2017). As levels of glutamate are elevated in WB
muscle (Greene et al., 2020; Wang et al., 2023) and it is a precursor
for glutathione synthesis, this may be another point of diversion
for metabolites to combat oxidative stress in WB muscle. However,
a decrease in gene expression and protein abundance of isocitrate
dehydrogenase 3 (Kuttappan et al., 2017a; Wang et al., 2023), the
enzyme that catalyzes the oxidative decarboxylation of isocitrate
to α-ketoglutarate, as well as a decrease in citrate synthase activity
(Figure 3) (Li et al., 2022; Li et al., 2024) suggests the increase
in glutamate is not attributed to carbohydrate metabolism but
rather another metabolite source. An increase in histamine and
arginine levels increase in WB muscle may be supporting glutamate
synthesis but it remains ambiguous (Figure 3) (Abasht et al., 2016).
These reports indicate mitochondria also divert metabolites to
combat oxidative stress, although the intricacies of skeletal muscle
metabolismmake it difficult to elucidate themechanisms of nutrient
utilization in WB.

In addition, fumarate and malate levels are elevated in WB
muscle (Abasht et al., 2016; Greene et al., 2020), although the
biological implications of an increase in these intermediates is also
unclear. For example, a decrease in abundance of fumarate hydratase
(catalyzes the reversible conversion of malate to oxaloacetate) and
malate dehydrogenase 2 (catalyzes the reversible conversion of
malate to oxaloacetate) (Kuttappan et al., 2017a; Carvalho et al.,
2023; Wang et al., 2023) but increase in fumarate and malate is
counterintuitive (Figure 3). Further, cataplerotic enzymes that divert
fumarate and malate out of the TCA cycle are also decreased
in WB muscle. In healthy muscle, malate can be converted to
oxaloacetate and used by glutamic-oxaloacetic transaminase 1 or 2
(GOT1 or GOT2) to generate aspartate or glutamate. However, a
decrease protein abundance of GOT1 and GOT2 but an increase in
aspartate levels in WB muscle is perplexing (Figure 3) (Abasht et al.,
2016; Kuttappan et al., 2017a; Greene et al., 2020; Wang et al.,
2023). Therefore, it is unclear if these intermediates are playing
an important role in an unidentified metabolic process or if TCA
intermediates “bottleneck” as fumarate and malate. Regardless,
it is clear mitochondrial metabolic pathways are dysregulated
in WB muscle.

2.2.2 Mitochondrial calcium handling
The obscurity of metabolite utilization makes it difficult to

define the underlying cause of metabolic dysregulation in WB
muscle. The metabolic fingerprint of WB muscle appears to
be a unique combination of combating oxidative stress and
responding to a state of excess nutrients as well as hypertrophic
stimuli. Although the exact mechanism is undefined, an increase
in cytoplasmic calcium (Ca2+) and mitochondrial Ca2+ uptake
provokes muscle hypertrophy (Klont et al., 1994; Scheffler et al.,
2014; Mammucari et al., 2015; Gherardi et al., 2019); however,
Ca2+ overload induces apoptosis and disease (Gommans et al.,
2002). Cytoplasmic Ca2+ levels are 2- fold higher and sarcoplasmic
reticulum (SR) Ca2+ levels are 4- fold lower in WB muscle
compared to unaffected PM muscles suggesting either a leaky SR
or impaired SR Ca2+ uptake (Zhang et al., 2023). Abundance of
the sarcoendoplasmic reticulum calcium ATPase (SERCA) pump
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FIGURE 3
Overview of mitochondrial metabolism in WB muscle. Schematic of enzymatic and intermediate changes in the TCA cycle and associated cataplerotic
/ anaplerotic reactions. In addition, changes in calcium handling are also depicted. Red text or arrows indicates a decrease in either gene expression or
protein abundance of the enzyme orintermediate. Green text or arrows indicates an increase in either gene expression or protein abundance of the
enzyme or intermediate. Black text was either not evaluated or no changes were reported. Abbreviations: CS, citrate synthase; IDH3, isocitrate
dehydrogenase 3; α-KG, alpha-ketoglutarate; OGDH, oxoglutarate dehydrogenase; SUCLG1, succinyl-CoA ligase; SDHα, succinate dehydrogenase
alpha; FH, fumarate hydratase; MDH2, malate dehydrogenase 2; GOT1, glutamic-oxaloacetic transaminase 1; GOT2, glutamic-oxaloacetic
transaminase 2; ROS, reactive oxygen species; MCU, mitochondrial calcium uniporter; SERCA, sarcoendoplasmic reticulum calcium ATPase; RyR1,
ryanodine receptor 1.

is markedly higher in WB muscle compared to unaffected PM
muscles (Soglia et al., 2016; Zhang et al., 2023), which points
to a defect in Ca2+ release. Indeed, gene expression of the Ca2+

release channel ryanodine receptor 1 (RyR1) is higher inWBmuscle
(Zhang et al., 2023) as well as protein abundance of the chloride
intracellular channel protein (Carvalho et al., 2023), which is a
negative regulator of RyR1-mediated Ca2+ release. These reports
suggest leaky Ca2+ release from the SR and an attempt to curb RyR1-
mediated Ca2+ release (Figure 3). In aging human models, excessive
and prolonged exposure to ROS results in irreversible damage of
RyR1 (Fulle et al., 2004). Asmitochondrial ROS generation is higher
in WB muscle compared to unaffected PM muscles (Zhang et al.,
2023), these reports question if impaired Ca2+ handling observed
in WB muscle is attributed to selection for exacerbated muscle
hypertrophy or ROS inducing SR damage. Regardless, it is clear
the increase in cytoplasmic Ca2+ results in greater mitochondrial
Ca2+ uptake (Zhang et al., 2023).

An increase inmitochondrial calciumuniporter gene expression
andprotein abundance confirmsWBmitochondria attempt to buffer
high cytoplasmic Ca2+ levels (Zhang et al., 2023). Mitochondrial
metabolism is stimulated by Ca2+ uptake, which is thought to
be a mechanism to match energy supply and energy demand in
a process termed parallel activation (McCormack and Denton,
1981). Of note, Ca2+ stimulates ATP synthase to increase oxidative

phosphorylation and ATP production (Jouaville et al., 1999). An
increase in myoglobin gene expression and protein abundance
supports the notion of WB muscle attempting to increase oxidative
capacity (Mutryn et al., 2015; Carvalho et al., 2023). However,
recent evidence also suggests Ca2+ binds to F-ATP synthase β
subunit (ATP5β), which provokes conformational changes to induce
opening of the mitochondrial permeability transition pore (mPTP)
and eventually apoptosis (Giorgio et al., 2017). An increase inATP5β
abundance (Carvalho et al., 2023; Zhang et al., 2023) but decrease
in mitochondrial respiratory capacity in WB muscle (Zhang et al.,
2023) suggests a Ca2+ mediated mechanism is partially responsible
for mitochondrial dysfunction in WB.

3 Postmortem metabolism and fresh
meat quality attributes in WB meat

The poor quality of WB meat continues to cost the U.S.
poultry industry millions of dollars annually (Kuttappan et al.,
2016; Huang and Ahn, 2018). For example, WB meat has a
poor visual appearance, high drip loss, low marinade uptake,
high cook loss, and inferior tenderness when compared to
non-affected filets (Mudalal et al., 2015; Soglia et al., 2016;
Soglia et al., 2017). In fact, over 50% of consumers indicated
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they would not buy moderately or severely affected WB filets
(Kuttappan et al., 2012), which forces processors to downgrade WB
products (Kuttappan et al., 2012; Petracci et al., 2013). While the
development of freshmeat quality is a multifactorial process, several
defects incurred from the myopathy contribute to the poor eating
experience associated with WB meat.

Severe myodegeneration with partial myofibrillar regeneration
in WB muscle culminates in abnormal tissue structure and
composition (Sihvo et al., 2014). In fact, an increase in protein
degradation as well as diminished sarcomere organization and
longer sarcomeres are routinely observed inWBmuscle (Soglia et al.,
2016; Kuttappan et al., 2017b; Papah et al., 2017; Baldi et al.,
2020; Greene et al., 2020; Puolanne et al., 2021; Carvalho et al.,
2023; Wang et al., 2023), which are features associated with
diminished tenderness and water-holding capacity. Further, regions
of damaged muscle that are not repaired fully exhibit an increase
in immune cells, fibroblasts, and adipocytes indicating WB muscle
coordinate an attempt to repair the tissue, but non-muscle
cells infiltrate the damaged tissue (Figure 1) (Sihvo et al., 2014;
Sihvo et al., 2017; Ferreira et al., 2020; Andretta et al., 2021;
Ziemkiewicz et al., 2021). Indeed, thickening of the endo- and
perimysium connective tissue layers as well as an increase in total
collagen content, heat-insoluble collagen, and adiposity occurs in
WB muscle (Soglia et al., 2016; Geronimo et al., 2022; Li et al.,
2023). These structural and compositional changes contribute to
an increase in tensile strength and the hard palpable areas found
in WB filets (Sihvo et al., 2014; Sihvo et al., 2017; Ferreira et al.,
2020; Andretta et al., 2021; Ziemkiewicz et al., 2021). While
these physiochemical characteristics contribute to an inferior meat
product, the underlying biochemical changes also play a role
in altered water holding capacity, textural characteristics, and
processing abilities (Petracci et al., 2013; Kuttappan et al., 2017b;
Sihvo et al., 2017; Bowker et al., 2018; Dalgaard et al., 2018).

3.1 Postmortem metabolism

The metabolic dysregulation observed in living WB muscle
translates to altered postmortem metabolism during the conversion
of muscle to meat. For example, high ultimate pH is one of
the hallmark characteristics of WB meat (Sihvo et al., 2014;
Mutryn et al., 2015; Soglia et al., 2016; Kuttappan et al., 2017b;
Sihvo et al., 2017; Soglia et al., 2017; Baldi et al., 2019; Tasoniero et al.,
2019; Baldi et al., 2020; Li et al., 2023; Li et al., 2024). Under
normal conditions, high ultimate pH is typically associated with
an increase in water-holding capacity; however, water-holding
capacity is diminished in WB meat. This may be attributed to the
structural changes observed in WB muscle, such as an increase
in sarcomere length (Baldi et al., 2020; Puolanne et al., 2021),
disorganized sarcomere structure (Papah et al., 2017), and an
increase in protein degradation. Further, greater adiposity and
collagen content in WB also contributes to poor water-holding
capacity because muscle plays a major role in binding water
during storage and processing. Therefore, defects in postmortem
metabolism are not the sole contributor to poor meat quality in
WB; however, biochemical changes in muscle play a role in fresh
meat quality and understanding these changesmay contribute to the
development of intervention strategies to salvage WB meat.

In WB muscle, glycogen stores and enzymes involved in
glycogen metabolism are reduced compared to unaffected PM
muscles (Abasht et al., 2016; Kuttappan et al., 2017a; Baldi et al.,
2020; Carvalho et al., 2023). As glycogen availability is amajor factor
dictating pH decline (Henckel et al., 2000; Immonen et al., 2000a;
Immonen and Puolanne, 2000; Immonen et al., 2000b; Chauhan
and England, 2018; Chauhan et al., 2019; Spires et al., 2023), this
seemed to be the culprit for an abbreviated pH decline. However,
Baldi et al., 2020 reported residual glycogen was present at 24 h,
which suggests depleted glycogen stores are not responsible for
arresting glycolysis prematurely in WB meat. In the presence of
residual glycogen, activity of phosphofructokinase (PFK) is a key
player in determining ultimate pH (Matarneh et al., 2018b), but
PFK activity early postmortem is not different in WB suggesting
PFK is not responsible for the high ultimate pH (Baldi et al.,
2020). However, glycolytic capacity of WB meat is diminished
(Baldi et al., 2020; Li et al., 2024), which questions if the biochemical
changes observed in WB muscle impact postmortem metabolism.
For example, WB muscle appears to divert glycolytic intermediates
through ancillary pathways to combat oxidative stress through
downregulation of many glycolytic enzymes, which may culminate
in reduced glycolytic capacity and high ultimate pH in WB meat.
This notion is supported by reduced levels of glucose and nearly
undetectable levels of G-6-P at 24 h postmortem in WB meat
(Baldi et al., 2020). Further, WB muscle downregulates LDHα and
WB meat exhibits a decrease in lactate accumulation (Abasht et al.,
2016; Kuttappan et al., 2017a; Malila et al., 2019; Baldi et al., 2020;
Thanatsang et al., 2020; Zhao et al., 2020; Wang et al., 2023; Li et al.,
2024). Although these metabolic changes have not been entirely
defined, it is clear that changes in WB muscle impact postmortem
metabolism in WB meat.

After exsanguination, and thus removal of oxygen supply,
mitochondria retain functionality using oxygen stores provided by
myoglobin postmortem (England et al., 2018). Although glycolysis
unarguably drives postmortem metabolism, mitochondria are
not obsolete during this process and contribute to pH decline
(Scheffler et al., 2015; England et al., 2018; Matarneh et al., 2018a;
Matarneh et al., 2018b). In fact, addition of mitochondria to an
in vitro system that mimics postmortem metabolism alters the
utilization of the glycolytic end product pyruvate (Matarneh et al.,
2021). Further, addition of mitochondria increases ATP hydrolysis
and thus glycolytic flux in this in vitro system; however, inhibition
of ATP5β negates the mitochondrial enhancement of glycolytic
flux (Matarneh et al., 2018a). In WB muscle, protein abundance
of ATP5β is greater than unaffected PM muscle (Carvalho et al.,
2023; Zhang et al., 2023), which would suggest an increase
in ATP hydrolysis and glycolytic flux. However, mitochondrial
metabolic dysregulation and decreased respiratory capacity
(Kuttappan et al., 2017a; Papah et al., 2018; Carvalho et al., 2023;
Wang et al., 2023; Zhang et al., 2023) may negate the contribution
of WB mitochondria to postmortem metabolism.

3.2 Postmortem proteolysis

Tenderness is determined by many factors including connective
tissue characteristics, myofibrillar structure, sarcomere length,
protein degradation, and intramuscular fat. An increase in
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shear force and tensile strength is often observed in WB meat
(Chatterjee et al., 2016; Soglia et al., 2017; Hasegawa et al., 2020;
Jarvis et al., 2020), which supports the notion that tenderness
deteriorates in WB meat. In normal tissue, high free Ca2+

is associated with an increase in postmortem proteolysis and
tenderness through calpain activation (Wheeler et al., 1992;
Boleman et al., 1995; Dang et al., 2020). Although free Ca2+

is elevated in WB (Soglia et al., 2016; Tasoniero et al., 2019;
Welter et al., 2022; Wang et al., 2023), calpain activation as
well as proteolytic degradation of desmin and troponin T has
been reported as either not different or increased in WB meat
compared to unaffected filets (Soglia et al., 2017; Soglia et al.,
2018; Hasegawa et al., 2020; Welter et al., 2022). Although there
is not a consensus on whether calpain activation is unchanged
or increased in WB meat, these reports agree that defects in
postmortem proteolysis are not at fault in WB meat. However,
changes in sarcomere length and structure (Papah et al., 2017;
Baldi et al., 2020; Puolanne et al., 2021), altered protein composition
(Baker et al., 1999; Soglia et al., 2016; Kuttappan et al., 2017a;
Greene et al., 2020; Carvalho et al., 2023; Wang et al., 2023),
and higher total collagen content as well as increased heat-
insoluble collagen (Soglia et al., 2016; Geronimo et al., 2022;
Li et al., 2023) in WB myofibers are presumably large drivers
of poor tenderness in WB meat. In fact, Hasegawa et al.,
2020 reported tensile strength remained high with minimal
changes to connective tissue in WB meat between harvest and
5 days postmortem. While the exact mechanism responsible for
diminishing tenderness of WB meat remains vague, these reports
suggest defects in postmortem proteolytic process are not driving
tenderness deterioration in WB meat.

4 Conclusion

Wooden breast is a complex myopathy that not only affects
the structural and metabolic characteristics of muscle, but also
culminates in poor fresh meat quality attributes. For example,
WB muscle appears to shunt glycolytic intermediates into
ancillary pathways of glycolysis to combat oxidative stress through
downregulation of many glycolytic enzymes, which presumably

contributes to diminished glycolytic capacity and high ultimate pH
of WB meat. Further, mitochondrial dysfunction may contribute
to altered postmortem metabolism, but its exact impact on
metabolism remains vague. Interestingly, postmortem proteolytic
processes do not appear to be obstructed in WB meat, but high
amounts of connective tissue, altered protein composition, and
changes in sarcomere structure presumably drive tenderness
deterioration in WB meat. In summary, metabolic dysregulation
plays a role in the WB myopathy, but it remains unclear if changes
in metabolism contribute to the onset of the disease or are simply a
secondary symptom.
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