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Melatonin, a pleiotropic hormone plays a vital role in enhancing livestock
performance not only by regulating circadian rhythms but also by exhibiting
antioxidant, immunomodulatory, and metabolic regulatory effects that
collectively improve resilience, fertility, and productivity. Melatonin’s synthesis
is predominantly influenced by light exposure, with increased production in
darkness; however, factors such as diet and health status further modulate its
levels. By helping animals adapt to environmental stressors, melatonin boosts
immune responses, mitigates chronic illnesses, and optimizes production
efficiency. Its regulatory influence extends to the hypothalamic-pituitary-
gonadal (HPG) axis, enhancing hormone secretion, synchronizing estrous
cycles, and improving embryo viability. This results in improved reproductive
outcomes through the protection of gametes, increased sperm motility, and
enhanced oocyte quality, all of which benefit the fertilization process.
Additionally, melatonin positively impacts productive performance, promoting
muscle growth, development, and optimizing milk yield and composition
through its interaction with metabolic and endocrine systems. As ongoing
research continues to uncover its broader physiological effects, melatonin
supplementation emerges as a promising approach to improving livestock
welfare, productivity, and sustainability in modern animal husbandry.
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1 Introduction

Melatonin, a versatile hormone mainly synthesized by the pineal gland, has a unique
lipophilic structure that enables it to cross biological membranes, including the blood-brain
barrier. This characteristic facilitates its widespread distribution throughout the body,
allowing melatonin to interact with both endocrine and non-endocrine tissues
(Kopustinskiene and Bernatoniene, 2021). However, melatonin synthesis is not confined
to the pineal gland; tissues like the retina, gastrointestinal tract (GIT), and immune cells also
produce extra-pineal melatonin, reinforcing its systemic influence (Markus et al., 2021). In
livestock, melatonin has gained prominence due to its extensive role in improving health,
reproductive efficiency, and productive performance (Al-Hamedawi and Hatif, 2020; Yang
et al., 2021; Abulaiti et al., 2023; Leyva-Corona et al., 2023). While traditionally recognized
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for regulating circadian rhythms, melatonin exerts broader
physiological effects by enhancing immune function, reducing
oxidative stress, and promoting overall wellbeing in livestock
species (Deng et al., 2020; Yin et al., 2020).

The antioxidant action of melatonin is key to its positive health
impacts on livestock (Jaworek et al., 2021). It neutralizes free
radicals, reduces lipid peroxidation (LPO), and activates
antioxidant enzymes like superoxide dismutase (SOD), catalase
(CAT) and glutathione peroxidase (GPx), mitigating oxidative
stress commonly encountered in high-production environments.
These effects help prevent cellular damage, and lower the incidence
of diseases such as mastitis and salmonellosis, thereby contributing
to increase longevity and productivity in livestock (Li et al., 2020;
Yao et al., 2020; Chen et al., 2022; Al-Jebory et al., 2024).

Melatonin’s impact on the immune system extends beyond its
antioxidant properties. Through receptor mediated (RM) and non-
receptor mediated (NRM) pathways, it influences inflammatory
responses by regulating the release of cytokines, including
interleukins (IL)-2, IL-6, and tumor necrosis factor (TNF)-α
(Ferreira et al., 2021; Muñoz-Jurado et al., 2022). This regulation
is particularly valuable in managing immune-related conditions in
livestock animals.

In reproductive physiology, melatonin is essential for managing
the HGP axis, improving the production of key reproductive
hormones like gonadotropin-releasing hormone (GnRH),
luteinizing hormone (LH), and progesterone (P4) (Wassem et al.,
2022). In seasonal breeders melatonin influences estrous cycles,
ovulation, and luteal activity, improving fertility outcomes (de
Carvalho et al., 2021; Abulaiti et al., 2023; Yesilkaya and Erdem,
2024). Further, melatonin’s protective effects on ovarian tissues,
through its antioxidant action, reduce oxidative stress and apoptosis,
supporting higher pregnancy rates (Sun et al., 2020; Hashem et al.,
2023). In male animals, melatonin modulates testicular function,
improving semen quality and bolstering artificial insemination (AI)
programs (Samir et al., 2020; Akar et al., 2024). Its impact on energy
metabolism and mitochondrial function further promotes
reproductive and productive efficiency, particularly under stress-
inducing environments.

The role of melatonin also extends to enhance the productive
performance of livestock by fostering growth, muscle development,
and feed efficiency (Viola et al., 2023). By modulating fat deposition
and muscle growth through key myogenic regulatory factors,
melatonin improves feed conversion ratios. This results in greater
weight gain and improved milk yield. Furthermore, its interaction
with the intestinal microflora enhances nutrient absorption and
immune responses, augmenting growth and overall performance in
poultry and ruminants (Al-Samrai et al., 2023; Kanyar and
Karadaş, 2023).

This study aims to deliver a thorough review of recent
research and new insights into the impact of melatonin on
livestock. By reviewing the latest scientific research, it aims to
present current knowledge on how melatonin impacts livestock
health, reproductive outcomes, and productive performance.
Potential strategies for optimizing melatonin supplementation
in livestock will also be discussed, alongside highlighting key
opportunities for further investigation, aiding to the ongoing
discussion on sustainable animal husbandry practices amid
modern agricultural challenges.

2 Factors influencing
melatonin synthesis

The synthesis of melatonin in livestock is influenced by a range
of environmental, physiological, and management factors, each
affecting production levels in unique ways. This complex
regulation of melatonin synthesis is essential for aligning various
physiological processes, such as reproductive cycles, immune
responses, and stress resilience, with the environment. The
factors detailed in Table 1 play significant roles in either
enhancing or inhibiting melatonin production, depending on
circumstances such as light exposure, seasonal changes, and
stress (Hyder et al., 2017; Misztal et al., 2018; Zhao et al., 2019;
Li H. et al., 2021).

3 Sources of melatonin

Melatonin occurs naturally in various edible plants and
plant-based products, making it an advantageous component
in livestock diets. These plants not only contain melatonin but
also its precursors, with varying concentrations significantly
depending on the specific plant tissue (Table 2) (Tan et al.,
2012). These edible sources of melatonin are prevalent across
common forage crops and grains used in livestock production.
Forages such as alfalfa, clover, and ryegrass, frequently consumed
by ruminants, naturally supply melatonin that aids in reducing
stress and fostering relaxation in animals, leading to improved
health and productivity.

4 Melatonin mechanism of action (RM
and NRM)

Melatonin exerts its multifaceted effects on livestock through a
combination of RM and NRM mechanisms, influencing various
physiological processes. Its primary mode of action is through
endocrine, autocrine, and paracrine pathways, largely facilitated
by its binding to plasma membrane receptors and interactions
with intracellular proteins (Samec et al., 2021). The distribution
of melatonin receptors across different tissues and organs in
livestock varies significantly. In mammals, including livestock
animals, melatonin primarily engages with G-protein coupled
receptors (GPCRs), such as melatonin receptor (MT) 1, MT2,
and MT3, which are crucial for regulating processes like
circadian rhythms, cardiovascular function, and immune
responses (Boiko et al., 2022; Cecon et al., 2023). MT1 and
MT2 receptors, in particular, play significant roles in livestock,
where they regulate circadian rhythms and cardiovascular activity
through inhibition of adenylate cyclase and modulation of
phospholipase C signaling (Li M. et al., 2021; Samanta, 2022).
MT3 receptors, which belong to the quinone reductase family,
contribute to detoxification processes and oxidative stress
reduction (Shabajee-Alibay et al., 2022).

Besides its effects through receptor interactions, melatonin also
demonstrates important NRM effects, particularly in its role as a
potent antioxidant. Melatonin’s ability to directly scavenge free
radicals and activate antioxidant enzyme pathways underscores
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its protective capacity within cells. These actions help livestock
combat oxidative stress, a common challenge in high-stress
production environments (Purushothaman et al., 2020; Ikram
et al., 2021). Melatonin also binds to transition metals,
preventing the formation of harmful hydroxyl radicals, further
supporting its antioxidant function (Galano et al., 2021). In
livestock animals, melatonin is highly concentrated in
mitochondria, where it protects vital cellular
components—proteins, lipids, and DNA—from oxidative damage
induced by free radicals during cellular respiration (Esteban-Zubero
et al., 2023; Kennaway, 2023).

5 Health effects of melatonin
in livestock

5.1 Source of circulating amino acids

Melatonin, synthesized from tryptophan, has garnered
increasing interest due to its potential impact on circulating
amino acids. Melatonin alleviated the impact of nutrient
restriction on the levels of total amino acids and branched-chain
amino acids during gestation in both small and large ruminants
(Trotta et al., 2021; Swanson et al., 2022). Additionally, in these

TABLE 1 Factors affecting melatonin synthesis in livestock animals.

Factor Effect on melatonin synthesis Remarks

Photoperiod (Light
Exposure)

Increased melatonin synthesis during darkness; reduced during
light exposure

Melatonin is produced in the absence of light; artificial lighting can suppress
production

Seasonal Variation Longer nights (winter) increase melatonin synthesis; shorter nights
(summer) decrease it

Strongly affects reproductive cycles and other physiological processes

Age of the Animal Melatonin production decreases with age Younger animals produce more melatonin than older animals

Species Differences Varies by species; ruminants exhibit stronger seasonal effects Some species (e.g., sheep, Goats) are more affected by photoperiod changes

Nutritional Status Adequate tryptophan and antioxidants enhance melatonin
synthesis

Diets rich in tryptophan and antioxidants support melatonin production

Stress Levels High stress reduces melatonin synthesis Stress activates the HPA axis, increasing cortisol, which inhibits melatonin

Hormonal Influences Increased cortisol reduces melatonin synthesis Hormones like prolactin can also modulate melatonin in reproductive cycles

Temperature and
Climate

Cooler temperatures increase melatonin production; heat stress
decreases it

Environmental temperature fluctuations can influence melatonin levels

Circadian Rhythm
Disruption

Disruption of natural light cycles decreases melatonin synthesis Common during transport or changes in housing systems, leading to
misalignment with the internal clock

TABLE 2 Melatonin content in livestock feed sources.

Plant/Food Amount of melatonin Part/Organ of plant Reference

Alfalfa 20–80 pg/g Leaves and stems Reiter and Tan (2002)

Ryegrass 5–15 pg/g Leaves Wu et al. (2021)

Clover 10–20 pg/g Leaves Bajwa et al. (2014)

Corn 8–12 pg/g Kernels Badria et al. (2002)

Oats 25–45 pg/g Grain Hattori et al. (1995)

Barley 15–30 pg/g Grain Badria et al. (2002)

Rice 80–150 pg/g Bran Hattori et al. (1995)

Soybeans 10–50 pg/g Seeds Reiter and Tan (2002)

Lentils 15–25 pg/g Seeds Aguilera et al. (2015)

Chickpeas 20–40 pg/g Seeds Reiter and Tan (2002)

Sunflower 10–30 pg/g Seeds Reiter and Tan (2002)

Flaxseeds 30–60 pg/g Seeds Reiter and Tan (2002)

Corn Silage 5–15 pg/g Whole plant Li et al. (2021c)

Grass Silage 10–20 pg/g Whole plant Li et al. (2021c)

Walnuts 3,000–4,000 ng/g Nuts Reiter et al. (2005)
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animals, melatonin exhibited a rescuing effect on nutrient restriction
in various transport systems, including System A, System N, and
anion amino acids (Swanson et al., 2022). This dual action of
melatonin underscores its potential to modulate amino acid
availability and transport systems, highlighting its significance in
maintaining metabolic balance during gestation.

Research on melatonin as a therapeutic has expanded beyond
gestational issues. In mammary glands cancer, melatonin
diminished the impact of cancer on the levels of circulating
amino acids. Specifically, aspartate, leucine, lysine, proline, serine,
and valine concentrations were influenced by melatonin (Junior
et al., 2022). This exhibits that melatonin effectively regulates amino
acids in cancer, potentially inhibiting tumor growth by reducing the
fuel source for cancer cells.

5.2 Endocrine modulations

The secretion patterns of melatonin are intricately linked to the
metabolism of steroids and prostaglandins (PG) in livestock. In
particular, luteal cells exposed to melatonin demonstrate a
stimulatory effect on P4 hormone production (Bouroutzika et al.,
2020; Pool et al., 2020). Melatonin supplementation has been shown
to reduce PGF2 and estrogen (E2) levels in endometrial and
hypothalamic cells, accompanied by a simultaneous decrease in
the uterine contractile response to oxytocin (Wang et al., 2021a;
Duan et al., 2022; Kacar et al., 2023). The interaction between
melatonin and E2 receptors mirrors that of a selective E2 receptor
modulator, potentially inhibiting E2 synthesis in steroidogenic
tissues (Cos et al., 2014). Furthermore, melatonin has been linked
to reduced activity and expression of aromatase, the enzyme
involved in E2 production, as well as sulfatase, which affects E2
availability. This reduction might result in higher activity of E2
sulfotransferase, which produces E2 sulfate—a variant with
diminished biological activity but a longer duration in the body
(Jin et al., 2021).

Dietary supplementation of melatonin during the later stages of
gestation has been linked to a reduction in both estradiol-17β and P4
concentrations (McCarty et al., 2018). This effect is attributed to the
possible enhancement of cytochrome P450 1A enzymatic activity
(Hwang et al., 2020; Singh M. et al., 2020; Hwang et al., 2021). A
deficiency in estradiol production has been connected to traits
resembling pre-eclampsia, suggesting that changes in estradiol
metabolism due to melatonin exposure may influence utero-
placental development during pregnancy (Sljivancanin Jakovljevic
et al., 2020).

Exposure of bovine endometrial epithelial cells to estradiol
results in decreased expression of melatonin receptor 1, whereas
P4 treatment leads to an increase in this receptor’s expression
(Brockus et al., 2016a). These findings underscore the complex
relationship between the synthesis and metabolism of utero-
placental steroids and PG and their influence on nutrient
transport and uterine blood flow (Harman et al., 2023).
Additionally, E2 is known to suppress adrenergic tone in the
uterine arteries. Increased melatonin levels might lower E2 levels
or sensitivity, potentially influencing the regulation of uterine blood
flow, especially in problematic pregnancies (Edwards et al., 2020;
Gaur and Purohit, 2020; Piotrowska-Tomala et al., 2022).

5.3 Impact on microbiome

The intricate interplay between immune systemmodulation and
microbial fluctuations across the body has recently gained
considerable attention in various livestock species. Harnessing the
correlation between microbial presence and immune status has
become an exciting frontier in livestock research. Melatonin
exerts a profound influence on microbial populations of different
systems in the body of animals, highlighting the vast scope of its
biological impact. (Figure 1).

5.3.1 GIT microbiome
Melatonin has significant potential in alleviating microbial

dysbiosis (Gao et al., 2021). Its effects are mainly mediated
through toll-like receptor 4 (TLR4), which plays a crucial role in
pathogen-associated molecular pattern (PAMP) signaling, especially
in relation to lipopolysaccharides (LPS) found in Gram-negative
bacteria (Kim et al., 2020). Melatonin’s presence within the GIT is
remarkable, with concentrations exceeding those in the pineal gland
by up to 400-fold, reflecting the abundance of melatonin receptors
and the enzymes required for its production in the gut (Kennaway,
2023). Furthermore, gut microbes exhibit circadian rhythms that
mirror those of the host, significantly influencing their metabolic
functions (Zheng et al., 2024). Given melatonin’s critical role in
regulating the biological clock, it becomes evident that the circadian
rhythms of gut microbes and their functions are intricately tied
to melatonin.

The identification of rhythmic patterns in the ruminant gut
microbiome has prompted additional research, suggesting that
melatonin’s effects might stem from its presence in saliva.
Salivary melatonin, known for its role in regulating
inflammation, promoting antioxidant responses, and accelerating
the healing of oral wounds (Elsherbini and Ezzat, 2020), exhibits
circadian rhythms similar to those found in ruminal fluid and
muscularis (Ouyang et al., 2021). This implies that melatonin
present in saliva might affect microbial communities across the
GIT through circadian variations. Indeed, the rhythmic changes in
rumen microbial populations correspond with fluctuations in
melatonin levels, with elevated melatonin associated with a
higher relative abundance of the families Preovotellaceae and
Muribaculaceae, and a reduction in Succininivibrionaceae and
Veillonellaceae (Fu et al., 2023). These findings exhibit
melatonin’s capacity to impact Gram-negative bacteria through
cytokine production and metabolic regulation (Xue et al., 2023).
Fluctuations in melatonin levels within the GIT affect crucial
metabolic pathways, thereby impacting the predominant phyla in
the rumen, such as Firmicutes, Proteobacteria, and Bacteroidetes (Fu
et al., 2023).

5.3.2 Reproductive tract microbiome
Melatonin has recently emerged as a promising regulator of the

reproductive tract microbiome in livestock. The reproductive
microbiome plays a vital role in fertility and overall reproductive
efficiency (Hussain et al., 2021). In cows, melatonin
supplementation has been shown to modulate bacterial
populations within the uterus and vagina, fostering a more
favorable environment for reproduction. This effect is attributed
to melatonin’s potent anti-inflammatory and antioxidant properties,
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which may create optimal conditions for embryo development and
implantation (Messman et al., 2021).

Beyond its influence on microbial composition, melatonin also
impacts the immune response within the reproductive tract, which is
intricately linked to the microbiome (Wang et al., 2021b). By
enhancing immune function, melatonin indirectly supports a
balanced microbiome, further promoting reproductive success.
This dual role underscores the complex interplay between
melatonin, the microbiome, and immune health, all of which are
crucial for successful reproduction in livestock. Interestingly,
melatonin’s effects on the reproductive tract microbiome vary
across livestock species (Cosso et al., 2021). Factors such as
physiological state, age, and environmental conditions likely

contribute to these variations. Understanding these complexities
is essential for developing tailored melatonin supplementation
strategies that maximize reproductive health benefits across
diverse livestock populations.

5.4 Immunomodulation

Melatonin, recognized for its immune-boosting and anti-
apoptotic effects, is crucial in regulating immune responses,
especially by boosting the T helper 1 immune pathway
(Esquifino et al., 2004). While its primary function lies in
regulating circadian rhythms, melatonin also exerts significant

FIGURE 1
Melatonin effects on the microbiomes in the animal’s body, influencing gastrointestinal, immune, and reproductive functions.
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secondary effects on the immune system, including upregulating
cytokine production, promoting T cell propagation, stimulating
natural killer (NK) cell activity, amplifying antigen presentation,
and maintaining a balanced cluster of differentiation 4 (CD4) to
CD8 immune cell ratio (Maestroni, 2001; Baltaci et al., 2018;
Castellano and Molinier-Frenkel, 2020; Tune et al., 2020).
Although studies on the use of melatonin supplements for
livestock are still in the preliminary phase, it has shown promise
in enhancing reproductive performance and mitigating stress or
trauma-induced immunosuppression (Bouroutzika et al., 2021;
Paulino et al., 2022).

Disruption of melatonin synthesis, whether through constant
light exposure or the use of β-adrenergic blockers, results in a
weakened immune response to antigens (Hanoun et al., 2015;
Horodincu and Solcan, 2023). This immune suppression is
characterized by an impaired primary antibody response, reduced
immune cell populations in the thymus and spleen, and diminished
lymphocyte proliferation. However, the administration of melatonin
has been shown to reverse these immunosuppressive effects (Chang
et al., 2020). Additionally, melatonin has been found to enhance
vaccine efficacy, with animals receiving melatonin exhibiting a
stronger antibody response post-vaccination, indicative of a more
robust immune defense (Regodón et al., 2012; Cardinali et al., 2021;
Wang S. et al., 2021). Further research into melatonin’s immune-
stimulatory roles has revealed its complex interactions with cellular
and cytokine profiles in both humoral and innate immune responses
(Hosseini et al., 2021).

5.5 Impact on disease treatment

Melatonin treatment in Trypanosoma cruzi infections enhances
the population of CD4+ CD28-negative T cells while simultaneously
reducing CD28-negative cells within both the CD4+ and CD8+

subsets. This immunomodulatory effect is further reflected in the
thymus, where melatonin decreases thyrotropin receptor antibody
(TRAb) levels, aiding in the restoration of thymus size and
thymocyte populations, essential for maintaining immune
function (Brazao et al., 2020). Beyond its immune-boosting
effects, melatonin’s potent anti-inflammatory properties offer
significant protection against mastitis in dairy animals, helping to
prevent the inflammatory damage commonly associated with this
condition (Yao et al., 2020; Li and Sun, 2022).

In metabolic disorders like diabetes, melatonin demonstrates its
antioxidant capabilities by normalizing malondialdehyde (MDA)
andmyeloperoxidase (MPO) levels while reducing cleaved caspase-3
expression, which signals its role in mitigating cellular damage
(Abdulwahab et al., 2021). These protective effects extend to
trauma-induced pulmonary issues, where melatonin improves
total antioxidant capacity (TAC) and reduces organ damage,
showcasing its broad therapeutic potential (Ates et al., 2022).

Melatonin’s influence is equally significant in the context of liver
diseases, such as ischemia-reperfusion injury (IRI), non-alcoholic
fatty liver disease (NAFLD), and cirrhosis, where it modulates the
nitrogen oxide (NOx) and nuclear factor kappa B (NF-κB) pathways
to alleviate oxidative damage and promote tissue recovery (Zhang C.
et al., 2021; Esteban-Zubero et al., 2023). Similarly, in acute
pancreatitis, melatonin effectively prevents LPO, while in kidney

injury, it prevents cytotoxic impairment, highlighting its organ-
protective role (Ahsen et al., 2014; Karabulut-Bulan et al., 2015).
Moreover, its neuroprotective effects are evident in cases of brain
damage, stroke, and ischemia, where melatonin mitigates
inflammation, reduces edema, and promotes cell survival, further
emphasizing its wide-ranging therapeutic applications across
various systems (Mihardja et al., 2020; Wongchitrat et al., 2021).

5.6 Antioxidant properties

5.6.1 Mechanisms of oxidative stress reduction
Melatonin is a potent antioxidant with the unique ability to

dissolve in both water and fats, enabling it to function in various
environments, such as within cell interiors, body fluids, membranes,
and organelles (Zarezadeh et al., 2022). It outperforms conventional
antioxidants like vitamins E and C in mitigating oxidative stress.
Unlike typical antioxidants, which neutralize only one or a few
reactive oxygen species (ROS), melatonin can neutralize up to
10 ROS molecules (Marchena et al., 2020). This remarkable
capacity is attributed to its ability to stimulate key antioxidant
enzymes, including SOD, CAT, GPx, and GSH, particularly when
given in doses between 0.1 and 20 mg/kg per day (Table 3) (Baydas
et al., 2002; Cruz et al., 2009; Nayki et al., 2016; Taghizadieh et al.,
2016; Olayaki et al., 2018; Aranarochana et al., 2021; Bashandy et al.,
2021; Colares et al., 2022; Abdel-Razek et al., 2023; Essawy
et al., 2023).

Melatonin not only increases the mRNA levels of these
antioxidant enzymes but also inhibits pro-oxidant enzymes such
as nitric oxide synthase (Monteiro et al., 2024). By altering
membrane fluidity, melatonin safeguards cell membranes from
oxidative harm and eliminates free radicals before they damage
lipids and proteins, all without promoting pro-oxidant effects
(Kopustinskiene and Bernatoniene, 2021). It acts as an effective
scavenger of free radicals and an electron donor, neutralizing various
reactive species like hydroxyl radicals, hydrogen peroxide, and nitric
oxide (Ahmadi and Ashrafizadeh, 2020). When melatonin interacts
with hydroxyl radicals, it produces 3-hydroxymelatonin, which is
later excreted through urine. Its metabolites, such as AMK and
AFMK, display even greater antioxidant potency (Galano and
Reiter, 2018; Zarezadeh et al., 2022).

5.6.2 Initiation of antioxidant response
components

Recent discoveries highlight melatonin’s pivotal role in
activating the antioxidant response element (ARE) system, which
triggers the transcription of numerous antioxidant proteins and
enzymes to neutralize ROS and support essential protein transport
(Vriend and Reiter, 2015). Central to this process is the Nuclear
Factor Erythroid 2–Related Factor 2 (Nrf2)-ARE signaling pathway,
which significantly enhances the activity of key antioxidant
enzymes. This pathway provides a protective mechanism that
shields livestock from various diseases, helping to preserve their
productive potential (Zhang W. et al., 2018; Dong et al., 2020).

Under oxidative stress, melatonin elevates cellular Nrf2 levels,
which is crucial for its antioxidant function. Melatonin facilitates the
nuclear translocation of the Nrf2 transcription factor and promotes
its interaction with ARE, thereby amplifying the expression of
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antioxidant enzymes (Figure 2) (Deng et al., 2016). Further,
melatonin has been demonstrated to reduce stress-related
damage by safeguarding the hippocampus through the
regulation of the Nrf2/Heme Oxygenase-1 (HO-1) pathway.
Although research is still expanding, melatonin is also thought
to increase the concentration of inhibitor of nuclear factor kappa
B (IκB) alpha, an inhibitor of NF-κB, suggesting an additional

mechanism by which it regulates inflammatory responses (Rajput
et al., 2017).

Moreover, melatonin reduces the levels of nitrites, inducible
nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and
microsomal PG E synthase-1 (mPGES-1), while also preventing
the translocation of NF-κB in peritoneal macrophages. By lowering
pro-inflammatory mediators and enhancing HO-1 expression

TABLE 3 Impact of melatonin on various antioxidant defense mechanisms.

Dose Administration Route Antioxidant component Response References

10 mg/kg/day Intraperitoneal MDA Significant Decrease (+) Abdel-Razek et al. (2023)

SOD Significant Increase (+)

GPx Slight Increase (++)

20 mg/kg/day Oral MDA Significant Decrease (++) Colares et al. (2022)

SOD Significant Increase (++)

10 mg/kg/day Intraperitoneal SOD Significant Increase (++) Essawy et al. (2023)

GPx Significant Increase (++)

CAT Significant Increase (++)

8 mg/kg/day Intraperitoneal GPx Significant Increase (++) Aranarochana et al. (2021)

CAT Significant Increase (++)

MDA No Significant Difference

2.5–5 mg/kg/day Intraperitoneal SOD Significant Increase (++) Bashandy et al. (2021)

MDA Significant Decrease (++)

CAT Significant Increase (++)

GSH Significant Increase (++)

4–10 mg/kg/day Oral SOD Significant Increase (++) Olayaki et al. (2018)

GPx Significant Increase (++)

GSH Significant Increase (++)

MDA Significant Decrease (++)

20 mg/kg/day Intraperitoneal SOD Significant Increase (++) Nayki et al. (2016)

CAT Slight Increase (+)

TOS Significant Decrease (++)

TAS Significant Increase (++)

20 mg/kg/day Intraperitoneal GPx Significant Increase (++) Taghizadieh et al. (2016)

SOD Significant Increase (++)

MDA Significant Decrease (++)

0.5 mg/kg/day Intraperitoneal GSH Significant Increase (++) Cruz et al. (2009)

SOD Significant Increase (++)

MDA Significant Decrease (++)

CAT Significant Increase (++)

GPx Significant Increase (++)

0.1 mg/kg/day Intraperitoneal GPx Significant Increase (++) Baydas et al. (2002)

MDA: malondialdehyde; SOD: superoxide dismutase; GPx: Glutathione Peroxidase; GSH: reduced.

Glutathione CAT: catalase; TOS: total oxidative status; TAS: total antioxidant status.

Note: “Slight Increase (+)” indicates a minor effect, while “Significant Increase (++)” indicates a stronger impact.
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FIGURE 2
Antioxidant activity of melatonin across various tissues. It plays a role in receptor-independent pathways that result in the formation of metabolites
like cyclic 3-hydroxymelatonin (C3OHM), N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), andN1-acetyl-5-methoxykynuramine (AMK). In addition
to its antioxidant effects, melatoninmodulates inflammatory responses by targeting key regulators, including activator protein 1 (AP-1), hypoxia-inducible
factor 1α (HIF-1α), Nrf2, and NF-κB. It also impacts apoptotic pathways by interacting with proteins such as B-cell lymphoma 2 (Bcl-2) and
contributes to maintaining redox homeostasis by reducing the generation of ROS. This leads to an upregulation of antioxidant enzymes like SOD, GPx,
and CAT, while decreasing MDA levels, an indicator of LPO. Due to its amphiphilic nature, melatonin can easily cross tissue barriers, enabling it to exert
protective effects on organs such as the liver, kidneys, cardiovascular system, as well as the reproductive organs like the testicles and ovaries.
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through NF-κB, p38 mitogen-activated protein kinase (MAPK), and
Nrf2 signaling, melatonin shows significant potential as a
therapeutic agent for conditions involving macrophage over-
activation (Deng et al., 2020).

5.6.3 Protection from harmful impacts of chemical
agents inducing oxidative stress

Melatonin acts as a safeguard against the detrimental effects
of various chemical compounds that induce oxidative stress. For
instance, dizocilpine maleate (MK-801), a compound known to
induce oxidative damage in the prefrontal cortex, leads to
psychotic symptoms, but melatonin can counteract these
effects. Similarly, cadmium negatively impacts male
reproductive health; however, melatonin alleviates this toxicity
by lowering MDA levels, boosting SOD activity, increasing GSH,
and elevating pro-inflammatory cytokines like TNF-alpha and
IL-1 beta (Venditti et al., 2021).

Melatonin also protects the cerebellum from damage caused by
acrylamide by reducing LPO, boosting antioxidant enzyme
activities, and lessening DNA damage (Ozturk et al., 2023). The
cerebellum, which is highly susceptible to chemical insults, often
undergoes neuron loss and organ shrinkage during development.
Lead (Pb) is another toxicant that causes oxidative stress and
neurotoxicity; however, melatonin (at 10 mg/kg) has been shown
to reduce LPO and protect the cerebellum from Pb-induced toxicity
(Bazrgar et al., 2015). Additionally, melatonin exhibits
neuroprotective properties against ethanol toxicity in the
cerebellum and lowers plasma homocysteine (Hcy) levels, further
strengthening its role as a neuroprotective agent (Bagheri
et al., 2024).

5.6.4 Shielding against radiation-induced damage
Animals are exposed to various forms of radiation, against

which melatonin provides protection. For instance, tropical
animals frequently encounter ultraviolet (UV) radiation. When
these animals were treated with melatonin after UV exposure,
there was a marked increase in the activity of antioxidant
enzymes such as SOD, CAT, and GPx. This enhanced enzyme
activity neutralized free radicals, reducing the damage caused by
UV radiation. Although UV radiation can indirectly harm spleen
tissue, melatonin treatment aided in restoring balance and
preventing splenocyte apoptosis, thus maintaining organ function
(Goswami and Haldar, 2014). Melatonin also functions as an
antioxidant in testicles exposed to microwaves, helping to
alleviate oxidative stress and reduce DNA fragmentation (Özgen
et al., 2023).

5.7 Effects on physiological stress markers

Livestock animals are routinely exposed to a range of
environmental, physiological, and psychological stressors, which
can negatively impact their health, productivity, and overall
welfare (Johnson, 2018; Chauhan et al., 2021). Elements like
handling practices, environmental changes, shifts in herd
dynamics, and illness can impair immune function, resulting in
chronic diseases, weight loss, and reduced production, all of which
have considerable economic impacts. In this regard, melatonin,

known for its immune-stimulatory properties, plays a vital role
in reducing stress by regulating both physiological and psychological
responses in livestock (Figure 3).

Melatonin primarily alleviates stress by modulating the
hypothalamic-pituitary-adrenal (HPA) axis, an essential part of
the body’s stress response system. It reduces the secretion of
corticotropin-releasing hormone (CRH) and adrenocorticotropic
hormone (ACTH), leading to lower cortisol production, which is
a major marker of physiological stress (Kumar and Singh, 2021).
Further, melatonin affects the autonomic nervous system by
encouraging vasodilation, lowering heart rate and blood pressure,
and contributing to stable cardiovascular function (Imenshahidi
et al., 2020; Zuo and Jiang, 2020).

Melatonin interacts with neurotransmitter systems, including
gamma-aminobutyric acid (GABA) and serotonin, to produce
anxiolytic effects, reducing restlessness and aggression, especially
during stressful events like transport and weaning (Xu et al.,
2023). This reduction in anxiety enhances social behavior and
improves interactions within the herd. Melatonin is also vital in
managing the sleep-wake cycle and enhancing sleep quality,
which is important for effective stress recovery. Better sleep
enhances resilience against environmental stressors such as
changes in housing and climate variations (Domple et al.,
2017). Beyond its role in stress mitigation, melatonin
contributes to metabolic regulation by interacting with insulin
and other metabolic hormones, thereby stabilizing glucose and
lipid metabolism and preventing stress-induced metabolic
disorders (Samir et al., 2023). It also modulates gene
expression in immune cells, boosting immune function,
controlling inflammation, and supporting cell proliferation, all
of which enhance the resilience of livestock animals (Wang et al.,
2022). Levels of stress-related neuropeptides and hormones that
are associated with abnormal behaviors such as pacing and
excessive grooming are also reduced by melatonin in stressed
animals (Zhang H. et al., 2021). By mitigating stress across
multiple physiological systems, melatonin ultimately improves
both welfare and productivity in livestock.

6 Reproductive performance

6.1 Mediation of reproduction

Melatonin regulates reproductive function by acting at both the
hypothalamic and pituitary levels through highly expressed
receptors (Wassem et al., 2022). Melatonin may affect
reproduction by interacting with the hypothalamus through RM
mechanisms and uptake. It reduces GnRH activity in the pituitary
and lowers hypothalamic secretion by 45% by activating protein
kinase (PK) A, PKC, and MAPK pathways. This suppression of
gonadotropin release can help control the timing of puberty, as a
drop in melatonin levels below a specific threshold prompts the
hypothalamus to trigger reproductive changes (Rijal et al., 2020;
Ding et al., 2021; Charif et al., 2022).

The pathway connecting the supra-chiasmatic nucleus (SCN)
and the pituitary is crucial for reproduction in seasonally breeding
mammals (Tolla and Stevenson, 2020). Information about light and
dark cycles is relayed from the SCN to the pineal gland through a
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complex network of synapses, resulting in varying patterns of
melatonin secretion that translate light cues into hormonal
rhythms. Animals with SCN lesions or those that have had their
pineal glands removed are unable to produce these photoperiodic
responses, leading to disruptions in reproductive function
(Carcangiu et al., 2014). Variations in day length serve as a
“calendar” for many species, timing reproductive activity to
coincide with periods of favorable energy availability and climatic
conditions that enhance offspring survival. This conversion of
environmental signals into the neuroendocrine system is
facilitated by variations in nocturnal melatonin secretion
(Giannetto et al., 2020).

Alterations in melatonin secretion resulting from changes in day
length are consistent across different species but have varying
impacts on reproductive function depending on the seasonal
reproductive patterns. For short-day breeders like sheep and
goats, elevated nocturnal melatonin levels stimulate the
reproductive system, whereas in long-day breeders, these elevated
levels suppress reproductive activity. Melatonin exerts its influence
on reproduction both centrally, through its actions on the
hypothalamus and pituitary, and directly in the gonads, which
are not only targets of melatonin but also sites of its production
(Singh P. et al., 2020; Tölü et al., 2022).

6.2 Influence of melatonin on
ovarian activity

6.2.1 Granulosa cells (GC)
Follicular atresia significantly affects bovine reproductive

performance, as it heavily depends on the health of GCs for
ovarian follicle development. Disturbances in these cells, whether
through apoptosis, autophagy, cell cycle arrest, or accumulation of
ROS, can lead to follicular atresia (Wang H. et al., 2018; Ma et al.,
2019; Wang Y.-X. et al., 2021). Additionally, alterations in steroid
hormone synthesis further influence GC function. Melatonin,
known for its ROS-scavenging properties and cellular regulatory
abilities, plays a critical role in mitigating follicular atresia by
reducing ROS levels and inhibiting apoptosis in GCs through
various pathways (Xie et al., 2022).

In the initial phases of follicular atresia, apoptosis
predominantly targets the inner layer of GCs, while the cumulus-
oocyte complex and outer GCs remain largely unaffected,
highlighting the selective nature of this process (Rajin et al.,
2022). GCs are crucial for supporting and maintaining follicle
growth, and their physiological condition greatly influences the
fate of the follicle (Yuan et al., 2019). Mitochondria, as a primary
source of ROS, contribute to mitochondrial swelling and apoptosis

FIGURE 3
Mechanistic pathways of melatonin in reducing stress and enhancing physiological functions in livestock animals.
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when ROS levels become excessive. Melatonin helps maintain
antioxidant enzyme activity and neutralizes reactive oxygen by
regulating ER oxidoreductin 1 (ERO1) and enhancing the
activities of antioxidant enzymes (Fernández et al., 2015; Tamura
et al., 2020).

Melatonin has been found to mitigate oxidative stress and
apoptosis in bovine ovarian GCs caused by β-zearalenol (Yang
et al., 2019). The protective effects of melatonin are modulated
by its receptors, MT1 and MT2, as inhibition of these receptors can
diminish melatonin’s benefits and interfere with cell cycle regulation
(Gobbi and Comai, 2019). Melatonin’s influence also varies with
environmental conditions such as temperature and oxygen
concentration. For example, at 37.5°C and 5% O2, low
concentrations of melatonin promote cell proliferation, while at
40°C, higher concentrations have the same effect (Zeebaree et al.,
2018). This temperature-dependent response highlights melatonin’s
potential in mitigating heat stress. Nonetheless, differences in
physiological conditions and natural melatonin production make
the reliable and effective use of supplemental melatonin challenging,
highlighting the need for comprehensive data to guide evidence-
based practices.

6.2.2 Follicles
Melatonin supports the development of bovine secondary

follicles through membrane-bound receptors, whereas its
antagonist, luzindole, inhibits these effects and decreases the
expression of antioxidant enzymes in cultured follicles (Paulino
et al., 2022). Additionally, melatonin stimulates follicular
angiogenesis by increasing VEGF expression, which is crucial for
follicular development (Tao et al., 2021). In theca cells, which
exclusively express the MT2 receptor, melatonin inhibits
androgen biosynthesis and slows ovarian atresia and aging by
reducing apoptosis and regulating cell proliferation through the
PI3K/Akt pathway (Wang S. et al., 2018; Ma et al., 2023). Abnormal
melatonin levels in theca interna cells have also been linked to the
development of follicular cysts in sows (Qin et al., 2022).

Beyond these roles, melatonin’s antioxidant properties support
oocyte quality and enhance subsequent embryonic development,
underscoring its potential in assisted reproduction. Studies have
identified MT1 and MT2 mRNA in porcine cumulus-oocyte
complexes, revealing that melatonin modulates GC function through
MT2, which enhances cumulus expansion and embryonic development
(He et al., 2016; Lee et al., 2018).Melatonin is critical for preventing age-
related defects in germline-soma communication and aids in the
transfer of antioxidant molecules from cumulus cells, preserving
oocyte quality (Zhang H. et al., 2022).

Melatonin also shows promise as a pharmacological agent
against endocrine disruptors such as Bisphenol A (BPA) and
Bisphenol S (BPS), which impair follicular growth and
steroidogenesis. It mitigates these harmful effects by increasing
estradiol production, promoting GC proliferation, and protecting
against mitochondrial apoptosis during oocyte maturation (Park
et al., 2018; Wu et al., 2018; Berni et al., 2019). Its protective effects
extend to other toxic substances, such as Aflatoxin B1 (AFB1), which
induces follicular atresia and oxidative stress. Melatonin’s
antioxidant properties and ability to inhibit apoptosis provide
effective protection against AFB1-induced toxicity (Cheng
et al., 2019).

Furthermore, melatonin enhances results in ovarian tissue
cryopreservation and is vital for reproductive processes and
blastocyst implantation in various mammalian species. It achieves
this by regulating apoptotic mechanisms, enhancing adhesion
protein expression, and protecting against oxidative stress that
compromises embryo quality and pregnancy success (Najafi
et al., 2023). The detection of melatonin in follicular fluid, along
with reduced levels in cases of polycystic ovary syndrome (PCOS),
further emphasizes its essential role in ovarian function and oocyte
maturation (Shi et al., 2009).

6.2.3 Oocyte cells
The quality of oocytes is essential for reproductive success in

female animals and is a key factor in ruminant embryo transfer.
Fresh embryos generally lead to significantly higher live birth rates
compared to those that have been cryopreserved (Insogna et al.,
2021). Cryopreservation of oocytes has long been challenging due to
issues with survival, fertilization, and developmental rates (Chen
et al., 2003). To overcome these challenges, enhancing the quality of
oocytes cultured in vitro before cryopreservation is crucial, and
melatonin has proven to be a promising approach.

Studies show that melatonin can notably improve the
developmental potential of oocytes, both in vitro and in vivo
(Sananmuang et al., 2020). In cattle, melatonin improves oocyte
developmental competence and embryonic growth by reducing ROS
levels (Figure 4) (Gutiérrez-Añez et al., 2021). It also mitigates ROS
in heat-stressed oocytes, increases maturation rates, boosts the
proportion of embryos developing into blastocysts, and
upregulates genes related to mitochondrial function (Yaacobi-
Artzi et al., 2020). Melatonin also safeguards bovine oocytes from
damage inflicted by harmful agents like paraquat, thus preserving
their developmental potential (Pang et al., 2019).

Substantial evidence underscores melatonin’s role in advancing
oocyte development in bovines. It boosts the production of antioxidant
enzymes via specific membrane and nuclear receptors, aiding in the
removal of ROS. In cumulus-oocyte complexes, acetylserotonin
O-methyltransferase (ASMT) may play a role in melatonin synthesis
(El-Raey et al., 2011). By reducing oxidative stress via the
MT1 membrane receptor, melatonin preserves spindle body
function, a critical factor for oocyte development.

In cattle, administering melatonin from days 190–262 of
gestation enhanced uterine blood flow, probably due to its
impact on steroid metabolism (Brockus et al., 2016b). Melatonin
also positively influenced estradiol metabolism, improving utero-
placental development (Lemley and Vonnahme, 2017). During
estrus synchronization and AI in cattle, external melatonin
significantly elevated P4 levels, boosted antioxidant enzyme
activity, and reduced MDA concentrations in the blood, resulting
in a marked improvement in pregnancy rates (Guo et al., 2021).

6.2.4 Corpus luteum (CL)
A functional melatonergic system is essential for luteal function

in mammals (Wang et al., 2021a). ROS, primarily generated from
normal metabolic processes, are involved in both luteogenesis and
luteolysis (Mierzejewski et al., 2023). During cholesterol transport
for P4 synthesis and in the regression phase, LPO can damage the
luteal plasma membrane, leading to impaired luteal function
(Taketani et al., 2011; Cruz et al., 2014; Xu et al., 2021; Al-
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Shahat et al., 2022). Melatonin safeguards luteinizing GCs in the
ovulatory follicle from ROS, boosts P4 production after ovulation,
and helps prevent premature luteolysis in the newly developed CL.
Elevated indolamine levels during the luteal phase underscore
melatonin’s direct involvement in these processes. High
concentrations of melatonin synthesis enzymes and receptor
expression suggest that this site may serve as a key area for
hormone synthesis and regulation (Xiao et al., 2018).

Melatonin deficiency in small ruminants disrupts follicular and
luteal dynamics, resulting in decreased P4 synthesis (Kárpáti et al.,
2023). In these animals, melatonin enhances P4 secretion by
regulating autophagy through the AMPK/mTOR pathway (Duan
et al., 2024). In equine corpus lutea, both MT1 receptor mRNA and
protein are present. Melatonin reduces P4 production and P450scc
expression in a dose-dependent manner. This inhibition can be
reversed by luzindole, a non-selective melatonin receptor antagonist,
indicating that functional melatonin receptors are present in luteal
cells (Pedreros et al., 2011).

Melatonin’s role in luteal function has been evaluated during early
pregnancy, given the endocrine organ’s importance in the initial stages
of gestation (Verteramo et al., 2022). In heat-stressed cows, melatonin
improves luteal hemodynamics (Abdelnaby and Abo El-Maaty, 2021).

Local melatonin synthesis in the luteal cells of pregnant animals
suggests a paracrine or autocrine role (Zhang et al., 2022b). In these
animals, luteal cells during pregnancy show hormone receptor
expression and increased P4 levels that correlate with melatonin
concentration, mediated by upregulated P450scc and steroidogenic
acute regulatory (StAR) protein (Zhang Y. et al., 2018). Moreover,
melatonin stimulates GnRH and LH production in the luteal cells of
pregnant animals, indicating a regulatory role through these hormones
(Zhang et al., 2022c). Administering melatonin boosts the expression of
genes related to pregnenolone synthesis, supports the development of
the CL, aids in embryonic implantation, and enhances uterine
receptivity during early pregnancy.

7 Melatonin influence on testicular
function, spermatogenesis, and semen
cryopreservation in livestock

Cryopreservation is vital for the long-term preservation of
gametes in ruminants such as cattle and sheep, which is essential
for genetic improvement and the conservation of endangered
species. Although ROS are necessary for sperm capacitation,

FIGURE 4
Role of Melatonin in Ovarian Function and Folliculogenesis in Livestock. Melatonin from circulation is taken up by the theca and granulosa cells of
the follicle, where it interacts with its receptors, MT1R and MT2R, within the ovarian follicular fluid. This interaction stimulates the expression of LH and
FSH mRNA, promoting hormone maturation and enhancing steroidogenic enzyme activities, such as those catalyzed by P450 aromatase, P450scc, and
CYP17, which are responsible for synthesizing P4 and E2. During the process of follicular rupture, ROS are generated as a result of inflammatory
reactions, leading to ovulation and further steroidogenesis, particularly the synthesis of P4 in the CL throughmonooxygenase reactions. Melatonin acts as
a free radical scavenger, mitigating ROS-induced oxidative stress by boosting antioxidant enzymes like SOD, GPx, and CAT. This reduces LPO and DNA
damage, while balancing ROS levels and antioxidative activity. By regulating mitochondrial function and minimizing oxidative damage, melatonin
supports healthy follicle development, ovulation, and improved ovarian function, preventing detrimental effects such as apoptosis and follicular atresia.
Ultimately, melatonin promotes the maturation of a healthy ovum, enhancing reproductive efficiency.
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excessive ROS levels can cause damage to sperm morphology and
DNA integrity through oxidative stress (Medrano et al., 2017; Ofosu
et al., 2021). Melatonin by alleviating oxidative stress during sperm
freezing, improves the quality of sperm after thawing (Appiah et al.,
2019; Shahat et al., 2022).

Incorporating 1 mM melatonin into semen extenders improves
sperm quality and mitigates the effects of heat stress. Additionally,
melatonin implants significantly reduce the prevalence of
morphologically abnormal sperm, increase motility, and boost
total protein and cholesterol levels in seminal plasma (Inyawilert
et al., 2021; Shahat et al., 2023). Optimal melatonin concentrations
vary depending on the application: 10⁻³ M is recommended for
semen cryopreservation, while 10⁻⁷ M is effective for enhancing
oocyte maturation rates and increasing blastocyst numbers in
in vitro fertilization (IVF). Medium concentrations of melatonin
(0.25 mg/mL) yield the best results in terms of sperm motility and
antioxidant indicators (Ramadan et al., 2019; Su et al., 2021).

Aside from influencing semen quality, melatonin is essential for
spermatogenesis, as it regulates testicular function via the HPG axis.
It delays puberty by decreasing levels of LH and prolactin, inhibiting
GnRH-induced LH release, and lowering testosterone
production—effects that can be reversed by the melatonin
receptor MT1 blocker, luzindole (Frungieri et al., 2017).
Throughout testicular growth and development, melatonin

shields the testes from local inflammation and ROS, affecting
hormone production and testicular cell growth via its receptors.
Secreted by the pineal gland and absorbed by the testes, melatonin
regulates testicular function, including testosterone secretion,
apoptosis, and autophagy (El-Shalofy et al., 2021).

In vitro treatment of bovine sertoli cells with melatonin has been
shown to increase the expression of spermatogenesis-related genes, such
as Cyclin D1, Cyclin E, Platelet-derived growth factor subunit A
(PDGFA), desert hedgehog (Dhh), Occludin, and Claudin (Xu et al.,
2020). In healthy animals, 6 months of melatonin administration has
been linked to alterations in semen characteristics, possibly due to
melatonin’s inhibition of aromatase. Furthermore, in a model of
testicular ischemia-reperfusion, melatonin notably decreased the
incidence of morphologically abnormal sperm (Heidarizadi et al.,
2022). The effects of melatonin on reproductive system functions
across various livestock species are further detailed in Table 4.

8 Productive performance

8.1 Growth and development

Melatonin significantly influences muscle development, fat
deposition, and meat quality in livestock animals, with recent

TABLE 4 Effects of melatonin in modulating reproductive system functions in animals.

Animal
species

Effects of melatonin Dose/
Concentration

References

Pig Modulates lipid metabolism in oocytes 10⁻⁹ M Jin et al. (2017)

Reduces ROS generation in oocytes and promotes mitochondrial function along with embryo
development

500 nm/L Niu et al. (2020)

Enhances embryo quality 1 nM Martinez et al. (2022)

Increases acrosome integrity and semen viability 1 μM Pezo et al. (2021)

Regulates ATP metabolism and boosts antioxidant enzyme activity in sperm 1 μM Lu et al. (2022)

Cattle/Buffalo Promotes follicle enlargement and secondary oocyte growth 10⁻⁷ M Lavrentiadou et al.
(2023)

Alters vaginal microbiome diversity (β diversity) 20 mg Messman et al. (2021)

Enhances the proliferation of theca cells while reducing steroid synthesis 1 μM Feng et al. (2018)

Facilitates oocyte maturation and growth 10⁻⁷ M Tian et al. (2014)

Protects granulosa cells by reducing oxidative stress and preventing cell death 100 M Wang et al. (2023)

Increases conception rates 0.24 mg/kg Guo et al. (2021)

Decreases ROS production in sperm, improves sperm viability, plasma membrane stability,
mitochondrial, and acrosome integrity

10⁻³ M Su et al. (2021)

Influences Sertoli cell development and function 320 pg/mL Yang et al. (2014)

Sheep/Goats Reduces inflammation triggered by LPS in epididymal epithelial cells 10⁻⁷ M Ge et al. (2019)

Activates primordial follicles in ovaries 100 pg/mL Barberino et al. (2022)

Promotes the progression of transgenic embryos, enhancing transgenic success rates 10⁻⁷ M Yao et al. (2022)

Regulates ROS levels in testicular interstitial cells, boosts testosterone production 10 ng/mL Ma et al. (2021)

Enhances the activity of digestive enzymes like glucose amylase, isomaltase, and maltase 5 mg/day Trotta et al. (2021)

Improves sperm quality, maintains DNA integrity, and increases fertilization success 1 mM Fang et al. (2020)
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research emphasizing its diverse effects. Supplementing with
melatonin improves growth performance and feed efficiency
across various species. For example, it enhances body weight and
average daily gain in broiler chickens (Fathi et al., 2023; Al-Jebory
et al., 2024), and similarly boosts growth rates and muscle
development in pigs (Xia et al., 2022; Chen et al., 2023) and
cattle (Abulaiti et al., 2023).

Melatonin achieves these benefits by accelerating myoblast
proliferation, enhancing the transcription of myogenic regulatory
factors, and modulating levels of myogenin and embryonic myosin
heavy chain (Han et al., 2017; Chen et al., 2019; Lu et al., 2020).
These mechanisms improve muscle physiology, resulting in
increased carcass weight and dressing percentage. Melatonin also
affects fat deposition patterns, often leading to reduced fat
accumulation and leaner meat, which is advantageous from a
health perspective.

Melatonin impacts various meat quality attributes. It may improve
tenderness by aiding muscle maturation and reducing stress-related
muscle proteins. However, its effect onmeat color is less consistent, with
some studies noting minimal changes while others report potential
alterations (Wang et al., 2007; Duan et al., 2019). Furthermore,
melatonin can enhance water-holding capacity, contributing to
juicier and higher-quality meat (Carcangiu et al., 2018).

Consumer acceptance of melatonin-treated meat largely
depends on perceived health benefits, such as leaner meat and
improved tenderness. Despite these benefits, some consumers
may be cautious about hormonal treatments. Transparent
labeling and clear communication regarding melatonin’s benefits
and safety are crucial for building consumer trust (Owino
et al., 2019).

The market value of melatonin-treatedmeat could increase if the
treatment results in significant quality improvements, such as
enhanced tenderness and leanness, justifying higher prices and
appealing to premium market segments. Regulatory approvals
and adherence to food safety standards are essential for the
market viability of melatonin-treated meat. Overall, melatonin’s
effects on growth, muscle development, and meat quality
highlight its potential to enhance livestock productivity while
meeting consumer and market demands.

8.2 Milk production

Melatonin has significant potential for enhancing milk
production in livestock through various mechanistic pathways. In
dairy cattle, melatonin administration affects milk yield by
synchronizing circadian rhythms, optimizing the timing and
efficiency of lactation processes (Garcia-Ispierto et al., 2013;
Şahin et al., 2021). This hormone regulates the pineal gland to
align the cows’ internal clocks with external environmental cues,
which is crucial for maintaining consistent milk production.

Melatonin also mitigates the adverse effects of seasonal
variations in daylight and temperature. By influencing cows’
photoperiodic responses, melatonin helps maintain stable milk
yields throughout different seasons (Boztepe et al., 2022; Elhadi
et al., 2022). Additionally, melatonin reduces stress levels in dairy
cattle, a key factor since stress is known to inhibit milk production.
The hormone’s stress-reducing properties enhance overall wellbeing

and, consequently, improve lactation performance (Yao et al., 2020;
Cosso et al., 2021).

Through its regulation of circadian rhythms, stabilization of
seasonal variations, and stress reduction, melatonin contributes to
more consistent and increased milk production, thereby enhancing
dairy farm productivity. The intricate interplay between melatonin’s
physiological effects and milk production highlights its potential as a
valuable tool in optimizing livestock management practices.

9 Conclusion

Melatonin plays a critical and multifaceted role in enhancing
livestock health, reproductive efficiency, and productive potential
through both RM and receptor-independent actions, such as its
potent antioxidant and free radical scavenging properties. As
research continues to clarify its mechanisms, melatonin is poised
to become an essential tool in promoting health across domestic
animals. It’s ability to directly influence ovarian physiology,
including steroid hormone synthesis, oocyte maturation,
ovulation, and CL formation, while simultaneously mitigating
oxidative stress, positions it as a valuable therapeutic agent for
enhancing livestock fertility and advancing artificial reproductive
technologies. Additionally, its capacity to alter systemic metabolites,
such as amino acids, offers novel insights into enhancing livestock
growth and productive performance. Although its application in
animal science is still emerging, melatonin holds significant
potential to transform livestock management by promoting
resilience to environmental stressors and supporting sustainable
animal husbandry practices.
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