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Purpose: This study aimed to explore the effects of neural and muscular factors
on lower limb explosive strength in male college sprinters, and build models
based on those factors to identify the key neuromuscular factors that predict the
rate of force development (RFD) and 30 m sprint time.

Method: 15 male college sprinters were recruited in this study, with 100 m
personal best times under 10.93 s. The neuromuscular data were collected by
H-reflex and V-wave, isokinetic muscle strength, vertical jumps, and 30 m sprint
tests. Pearson correlation and multiple stepwise regression were used for data
analysis. The level of statistical significance was set at p ≤ 0.05 for all analyses.

Results: 30 m sprint time had a significant moderate positive correlation with
Achilles tendon stiffness (r = 0.50, p = 0.05, 95%CI: 0.01–0.81) and a significant
moderate negative correlation with the H-index (r = −0.54, p = 0.04, 95%CI:
0.82 to −0.03), V wave (V/MmaxA, r = −0.59, p = 0.02, 95%CI: 0.85 to −0.11) and
the eccentric strength of Hamstring (HECC, r = −0.53, p = 0.04, 95%CI:
0.82 to −0.03). The rate of force development (RFD) had a significant positive
correlation with H reflex (Hmax/Mmax, r = 0.57, p = 0.03.95%CI:0.08–0.84), and
the eccentric strength of Quadriceps (QECC, r = 0.53, p = 0.04, 95%CI:
0.02–0.82). V/MmaxA and HECC were identified as predictors of 30 m sprint
time, and the R2 explained 57.5% of the variance. Vertical stiffness and QECC
explained 82.7% of the variation in the RFD.

Conclusion: This study found that V/MmaxA and HECCwere predictive factors of
30 m sprint time, vertical stiffness and QECC were the predictive factors of RFD.
Neural factors such as the α-motoneurons excitability of the spinal and
supraspinal centers, have a greater influence on lower limb explosive strength
in male college sprinters. Therefore, training related to the neural function of
sprinters should be emphasized. In addition, H reflex and V wave can be used
widely to assess and monitor the neural function of sprinters in future research.
The impact of neural drive on muscles in different levels and sexes of sprinters,
and the neuromuscular modulation during muscle contractions can be further
explored.
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1 Introduction

Sprinting is one of the fastest events in the Olympic Games, the
world record for the 100 m sprint is 9.58 s created in 2009 (Haugen
et al., 2019; Kawama et al., 2024). The sprinters need to start rapidly
and accelerate to maximal velocity (Donaldson et al., 2022).
Acceleration is one of the main phases in the 100 m or 200 m
race, which is critical to increasing maximal horizontal velocity and
sprint performance (Healy et al., 2022; Nagahara et al., 2014). A 30-m
(30m) sprint test is a classical method of assessing acceleration, which
requires sprinters to accelerate rapidly from zero to a high horizontal
velocity, with a strong correlation with 100 m performances (Bezodis
et al., 2015; Bezodis et al., 2019; van den Tillaar et al., 2023). The best
sprinters have a higher level of acceleration and require a high level of
lower limb explosive strength (Slawinski et al., 2017).

Lower limb explosive strength refers to sprinters’ ability to
generate maximum force in a very short time, helping them
achieve good acceleration (Samozino et al., 2022; Watanabe, 2018).
Studies have demonstrated that elite sprinters have greater lower limb
explosive strength, with a higher rate of force development (RFD)
than sub-elite sprinters (Crotty et al., 2024; Slawinski et al., 2010).
Lower limb explosive strength is regulated by the central nervous
system, where neural impulses are transmitted through nerve fibers to
the anterior horn α-motor neurons of the spinal cord. This process
excites α-motor neurons, rapidly recruiting their associated muscle
fibers for explosive contraction. Therefore, it is speculated that lower
limb explosive strength is affected by neural factors and muscular
factors, such as rapid recruitment speed of α-motor neurons, high
motor unit discharge rates, and fast muscle fiber contractions
(Dideriksen et al., 2020; Del, 2023). A study found that RFD
increased after 4 weeks of strength training can be attributed to
the enhanced recruitment speed of α-motor neurons (Del et al., 2022).

Previous studies have predominantly used reaction time to assess
the neural function of sprinters (Tonnessen et al., 2013). However, the
neural function of sprinters can be explored using more detailed
methods. H reflex and M wave were the effective and non-invasive
methods to reflect the spinal neural function, induced by electrically
stimulating the peripheral nerve (mixed nerve), founded by German
physiologist Paul Hoffmann in 1918 (Magladery andMcdougal, 1950).
The reflex arc of the H-reflex is similar to the muscle stretch reflex. H
reflex was evoked by the electrical stimulation of Ia afferent nerves
(bypassing the muscle spindle), which activates spinal motor neurons
and recruits motor units, resulting in muscle contraction (Wolpaw,
2010). M wave was the compound muscle action potential, indicating
the direct response of the muscle to electrical stimulation of the motor
nerve (bypassing the reflex pathway) in H reflex tests (McNeil et al.,
2013). The action potentials of the H reflex and M wave can be
recorded via surface electromyography (EMG). Therefore, H-reflex
and M wave were used to assess the excitability of the spinal α-motor
neurons and the synaptic transmission efficiency of the Ia afferent,
which also reflected the plasticity of the spinal cord (Aagaard et al.,
2002; Theodosiadou et al., 2023). In recent studies, the H reflex was
widely to assess spinal cord function across various populations, such
as patients with spinal cord injury, healthy people, and athletes (Guan
and Koceja, 2011; Raffalt et al., 2015; Sun et al., 2022; Vila-Chã
et al., 2012).

Animal experiments identified that the plasticity of the spinal
cord is primarily trained through the corticospinal tract (de Leon

et al., 1998). The spinal cord is the final common pathway of the
motor pathway, receiving sensory and motor signals from the
central and peripheral nervous systems. V wave is an
electrophysiological variant of the H-reflex, which reflects the
excitability of descending corticospinal pathways, and the
supraspinal input to the spinal motoneuron pool (Aagaard et al.,
2002). H reflex and M wave were evoked by submaximal electrical
stimulation of the peripheral nerves in rest, and V wave was evoked
by supramaximal electrical stimulation of the peripheral nerves
during maximal voluntary contractions (MVC) (McNeil et al.,
2013). V wave was the action potentials recorded after
orthodromic impulses from descending voluntary drive collided
with antidromic impulses evoked by supramaximal stimulation of
motor axons. Studies have shown that strength-trained athletes have
lower H-reflex excitability thresholds and higher V-wave responses
than untrained individuals (Grosprêtre et al., 2018; Tøien et al.,
2023; Vila-Chã et al., 2012). Changes in the H-reflex and V-wave
were observed after resistance training, accompanied by enhanced
sports performance (Aagaard, 2018; Holtermann et al., 2007;
Kinnunen et al., 2019a).

Muscle-tendon function is fundamental to the development of
lower limb explosive strength in sprinters (Cavedon et al., 2023). One
hundred-meter (100 m) sprinters with more lean body mass and
strength significantly have better sprint performance (Barbieri et al.,
2017). The biomechanics data from a full-body musculoskeletal
model for predicting sprint performance showed that sprint was
most sensitive to changes in muscle (Lin and Pandy, 2022). An
investigation revealed that the muscle group sprint coaches
considered to be the most important for enhancing lower limb
explosive strength are quadriceps, hamstrings and gastrocnemius
(Healy et al., 2021). Sprint mechanical parameters changed after
5 months of training in national-level sprinters, accompanied by
increments of muscle volumes in the lower limb (Nuell et al., 2020).
Tendon also plays an important role in sprint, the ankle and plantar
flexor muscle-tendon units rapidly apply force to the ground by
storing and releasing elastic energy, shortening the contact time to
maintain high velocity (Crotty et al., 2024; Yamazaki et al., 2022).
Sprinters are characterized by higher active tendon stiffness during
high-speed movements after training (Kubo et al., 2020).

Most studies have researched the effects of neural and muscular
factors on lower limb explosive strength in sprinters, but
determining which factor plays a more critical role still requires
further investigation. In addition, studies investigating neural
function in sprinters through H-reflex and V-wave analysis are
relatively limited. Thus, this study aimed to explore the key
neuromuscular factors predicting lower limb explosive strength,
focus on assessing the neural function from spinal and
supraspinal in sprinters through the H reflex and V-wave, and
hypothesized that neural factors have a greater influence on lower-
limb explosive strength.

2 Methods

2.1 Subjects

Fifteen male college sprinters (age, 19.73 ± 1.39; height, 181.40 ±
4.32 cm; weight, 70.98 ± 4.21 kg; lean body mass, 36.05 ± 1.13 kg)
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volunteered for the study and signed written informed consent. This
study has been approved by the university’s ethics committee
(No. 2024096H).

All subjects had more than 5 years of training experience.
Inclusion criteria required: (1) the subjects should be national
level-1 athletes (100 m personal best times under 10.93 s in
national or provincial competitions); (2) maintain routine
technical and strength training sessions, no training interruption;
(3) no neurological disorders or musculoskeletal injuries in the past
6 months before testing; (4) no medication to enhance sports
performance was taken during the tests.

All subjects have a familiarization session before tests. The
subjects conducted H reflex and V wave tests, followed by
muscle and tendon function tests, 30 m and CMJ tests, with the
interval between each test at least 48 h.

2.2 H reflex and V wave

H-reflex and V-wave were elicited by a constant current
electrical stimulator (DS7A, Digitimer, England). The subjects
were positioned prone on the bed, previous studies found that
the prone position is the best position to evoke the H-reflex
(Cecen et al., 2018; Jeon et al., 2007). During the phase of
electrical stimulation, the subjects need to keep their heads fixed
to avoid vestibular effects on motor neurons and keep their body
relaxed (Kennedy and Inglis, 2002). A handheld electrode was
placed in the popliteal fossa of the right lower limb to test the
optimal stimulation site, and then a disposable self-adhesive
electrode was applied as the cathode. Previous studies found no
interlimb differences in short-distance athletes (Ozmerdivenli et al.,
2002; Sun et al., 2022). A 5 × 8 cm disposable self-adhesive electrode
was placed over the patella as the anode.

Action potentials evoked by electrical stimulation were recorded
by surface electromyography (EMG) electrodes (Trigno Wireless
EMG System, Delsys, United States) sampled at 2000 Hz. The
electrodes were placed in the middle of the muscle belly of the
right lateral gastrocnemius (LG) muscle and the tibialis anterior
(TA), with the hair removed and the skin surface cleaned. The
longitudinal plane of the electrodes was aligned with the muscle

fibers (Tagore et al., 2023). In our preliminary experiments, we
found that sprinters more easily evoke the H-reflex in the LGmuscle
in a prone position.

Electrical stimulation was used to obtain the H-reflex and
M-wave recruitment curves (Figure 1). The square pulse was set
to 1,000 μs (Theodosiadou et al., 2023). The stimulation started at
4 mA, with increments of 2 mA per stimulation until the maximum
H-reflex (Hmax) was evoked. Subsequently, each stimulation was
increased by 5 mA until the maximum M-wave (Mmax) was
observed (Vila-Chã and et al., 2012). The interval of each
stimulation is 10 s (Kipp et al., 2011). V-wave was elicited by
electrical stimulation with 150% Mmax (MmaxA) during
maximum voluntary contraction (MVC) contraction (Figure 2)
(Aagaard, 2003).

2.3 Muscle and tendon function

The lower limb muscle strength of the knee joint was assessed
by an isokinetic dynamometer (IsoMed 2000; D. and R. Ferstl
GmbH, Hemau, Germany), and high reliability has been
demonstrated in previous studies (Zhou et al., 2022; Zoger
et al., 2023). The parameters examined included peak torque
(PT) of the hamstring (H), quadriceps (Q), gastrocnemius
muscle (GM), and the H/Q ratio of the dominant leg during
concentric (CON) and eccentric (ECC) contractions at slow
(60°/s) and fast (180°/s) speeds. Only a slow speed is conducted
under ECC to prevent muscle strains in sprinters (Brigido-
Fernandez et al., 2022). A 10-minute warm-up was performed
before the test. The subjects sat on a dynamometer, and the
shoulder, pelvis and thigh were secured comfortably with
padded straps to minimize compensatory movements. The knee
joint was aligned with the dynamometer axis of rotation, and
gravity compensation was turned on (Brown et al., 2014). Each test
includes 2 sets; each set has 5 repetitions, with a 1-min break
between each test. The PT results were normalized to body
weight (Nm/kg).

Tendon stiffness was used to evaluate tendon function and
elastic properties in athletes, correlated with the ability to increase
force production during explosive contractions (Bojsen-Moller

FIGURE 1
(A) The process of evoking the H-reflex and M-wave. (B) H-reflex and M-wave normalized recruitment curves.
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et al., 2005; Radovanovic et al., 2022; Sukanen et al., 2024). Tendon
stiffness was measured in the ankle joint using MVC and
ultrasound, calculated as the ratio of PT and the displacement
of the Achilles tendon (Arampatzis et al., 2007). The subjects
were prone on IsoMed 2000, with the right foot fixed on the pedal,
and the PT of their plantar flexor muscle in isometric contraction
was tested. The MVC test required the subjects to develop a
gradual increase in torque from zero (at rest) to maximum

effort (MVC) for 5 s (Kubo et al., 2000). The displacement of
the Achilles tendon was visualized and measured by a B-mode
ultrasound (MuscleSound LOGIQe, GE, United States). A 60 mm
linear array probe (12 MHz scanning frequency) was positioned at
the GM muscle-tendon junction to record displacement, which
was subsequently analyzed using embedded software. Pressure
between the probe and the skin was maintained at a
minimum level.

FIGURE 2
Responses to electrical stimulation evoking Hmax and Mmax (A), and Vmax (B).
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2.4 30 m and CMJ tests

Parameters of kinetics and kinematics in the countermovement
jump (CMJ) were measured using an eight-camera 3D motion
capture system (Arqus A12, Qualisys, Sweden, 200 Hz) and a
force plate (9286ba, Kistler, Switzerland, 2000 Hz). To track the
motion of the subjects, 36 retro-reflective markers (14 mm in
diameter) were affixed to the subjects’ whole body, following the
Helen- Hayes model (Thompson et al., 2024; Zamporri and
Aguinaldo, 2018).

After warming up, the subjects performed CMJ 2–3 times with
submaximal effort, the interval of each jump was 1 min (Douligeris
et al., 2023). Subsequently, the subjects performed standard CMJ
with maximal effort on the force plate at least 3 times, with their
hands on their hips (Fristrup et al., 2024). There was a 3-minute rest
between each jump. The vertical ground reaction force (vGRF) was
recorded (McLellan et al., 2011). Kinematic data were tested by the
Qualisys Track Manager system, and processed by Visual 3D
software (C-Motion, United States) to establish a virtual center of
mass point, obtaining the vertical displacement of the center of mass
(ΔCOM) during CMJ. Vertical stiffness was calculated by the ratio of
vGRF (the difference between the peak value and the minimum
value) to ΔCOM during the eccentric phase of CMJ, reflecting the
storage and release of potential elastic energy via the
musculotendinous unit in the stretch-shortening cycle (SCC)
(Meyer et al., 2023; Satkunskiene et al., 2021).

Previous studies showed that 30 m and RFD were regarded as
reliable indicators reflecting lower limb explosive strength and
acceleration performance in sprinters (Loturco et al., 2021; Morin
et al., 2022; Pantoja et al., 2016). The subjects performed the 30 m
test twice, with a 5 min rest interval, which was tested by a timing
system (Smart speed PT, Fusion Sport, Australia). The 30 m sprint
time was recorded as the time duration taken by the subjects to pass
through two automated light gates. The RFD derived from the force-
time curves obtained during the minimum to the maximum phase of
eccentric force in the CMJ, which assesses the lower limb explosive
strength and neuromuscular function (Maffiuletti et al., 2016;
Yamauchi and Koyama, 2020). The RFD was normalized by
body weight.

2.5 Data and statistical analyses

EMG signals were calculated using Delsys software, with
embedded band-pass filters of 20–450 Hz and the magnitudes of
H-reflex, M-wave, and V-wave were calculated with the peak-to-
peak amplitude of the corresponding signals (Sun et al., 2022). The
results of H-reflex and V-wave are generally presented as amplitude
values, normalized to Mmax and MmaxA respectively (H/M, V/
MmaxA). The recruitment curves of H-reflex, M-wave, and V-wave
are shown in Figure 1.

The thresholds of H-reflex and M-wave were recorded and
calculated in the Hth/Mth. The latencies of the H-reflex (Hlat)
and M-wave (Mlat) were measured from the stimulus artifact to the
onset of the potential and used to calculate the H-index, which
reflects the nerve conduction velocity (NCV) (Melo et al., 2023).
H-index is calculated as the equation: [BodyHeight

Hlat−Mlat ]2p2 (Kim
et al., 2022).

SPSS software (26.0, IBM, United States) was used for the
statistical analysis and calculations. Shapiro–Wilk tests were used
to examine the normality of the variables. Pearson’s correlation
coefficient was used to analyze the relationship between lower limb
explosive strength and neuromuscular factors. The r value was
interpreted as little (r < 0.25), small (0.25 ≤ r < 0.50), moderate
(0.50 ≤ r < 0.75), and strong (r ≥ 0.75) (Portney, 2009).

A stepwise multiple linear regression model was built to
determine the strongest predictor of the lower limb explosive
strength of sprinters. The variables showed a strong correlation
with the 30 m was selected as the independent variable and included
in the multiple regression model to find the key factors that could
predict lower limb explosive strength. VIF < 5 was considered
indicative of the absence of multicollinearity. The 95% confidence
interval (CI) was reported. The level of statistical significance was set
at p ≤ 0.05 for all analyses.

3 Results

The descriptive values of the H-reflex and V-wave, skeletal
muscle function, and lower limb explosive strength are shown
in Table 1.

Table 2 shows the correlation between the H-reflex and V-wave,
skeletal muscle function, and lower limb explosive strength. 30 m
sprint time significantly positively correlated with Achilles tendon
stiffness (r = 0.50, p = 0.05, 95%CI: 0.01–0.81). H-index (r = −0.54,
p = 0.04, 95%CI: 0.82 to −0.03), V/MmaxA (r = −0.59, p = 0.02, 95%
CI: 0.85 to −0.11), and HECC60 (r = −0.53, p = 0.04, 95%CI:
0.82 to −0.03) showed significant negative correlations with 30 m
sprint time, indicating that higher values of these indicators are
associated with shorter 30 m sprint time. There was no significant
correlation between the 30 m sprint time and concentric isokinetic
knee flexion and extension (p > 0.05). RFD had a significant positive
correlation with Hmax/Mmax (r = 0.57, p = 0.03, 95%CI:0.08–0.84)
and QECC60 (r = 0.53, p = 0.04, 95%CI: 0.02–0.82).

Table 3 shows the results of the stepwise multiple regression
analysis of predictors determining 30 m sprint time. V/MmaxA and
HECC60 were identified as predictors of 30m sprint time, and the R2

explained 57.5% of the variance. The multivariate formula was: 30 m
sprint time = 4.713–0.448*V/MmaxA −0.264*HECC60. Vertical
stiffness and QECC60 explained 82.7% of the variation in RFD.

4 Discussion

The primary findings of this study indicated that V/MmaxA and
HECC were predictive factors of 30 m sprint time and vertical
stiffness and QECC was the predictive factor of RFD. Consistent
with this study’s hypothesis, neural factors have a greater impact on
lower limb explosive strength, V/MmaxA, Hmax/Mmax, and NCV
were significantly correlated with 30 m sprint time and RFD.

Sprinters need to react rapidly and accelerate to a high
horizontal speed from a stationary position after receiving an
external order, which requires a high-level neuromuscular
function ability (Bezodis et al., 2019). 30 m test is commonly
used to assess acceleration and lower limb explosive strength,
and this study found that neural and muscular factors were both
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associated with 30 m sprint time (Healy et al., 2022; Samozino et al.,
2022). Recent studies have revealed that lower limb explosive
strength is determined by the ability of the neural drive to the
muscle, especially driven by the cortex (Del et al., 2019; Grospretre
et al., 2018). Rapid contractions of muscles depend on motor units
that are highly synchronized to activate and a high initial discharge
rate at the onset of activation (Maffiuletti et al., 2016; Del, 2023).
V-wave was considered an indicator evaluating the neural drive in
descending corticospinal pathways, reflecting the change of
motoneuron excitability and neural adaptation to training
(Aagaard et al., 2002; Nevanpera et al., 2023; Tomazin et al.,
2022). This study found that the V-wave was a key determinant
of 30 m, demonstrating that a large magnitude of descending central
drive from supraspinal centers may enhance sprint performance.
Similar results have also been observed in female ice hockey players:
V-wave amplitude increased significantly, accompanied by an
increase in plantarflexion MVC force and RFD after around
2 weeks of HIIT training (Kinnunen et al., 2019b). Meanwhile,
the results showed no significant correlation between the H-reflex
and 30 m in sprinters. Compared to endurance athletes, a lower
H-reflex was observed in sprinters (Maffiuletti et al., 2001;
Ozmerdivenli et al., 2002; Tøien et al., 2023). After short-term
endurance and strength training, V/MmaxA significantly
increased in the strength group, with no changes in the
endurance group, and H/M displayed reverse trends (Vila-Chã

et al., 2012). This indicates that changes following training in the
strength group depend on the increased descending neural drive
instead of spinal α-motoneuron excitability, leading to increased
MVC. Strength-trained athletes demonstrated a larger V-wave than
healthy adults (Tøien et al., 2023). Therefore, V waves increased
after training may be beneficial for improving lower limb
explosive strength.

This study also showed a significant moderate negative
correlation between H-index and 30 m sprint time. NCV reflects
the velocity transmitted along a motoneuron of the impulse, while
rapid NCV may accelerate muscle contraction, leading to a higher
speed in 30 m (Domkundwar et al., 2017; Vonbank et al., 2023).
Research investigating NCV in sprint performance is limited. A
study of the posterior tibial NCV of athletes indicated that male
sprinters have higher NCV than marathoners and lower NCV than
distance runners and weight lifters (Kamen et al., 1984). In addition,
one study found that the reaction time strongly correlated with
100 m running time, finalists’ reaction time were shorter
significantly than semifinalists in athletic world championships
(Tonnessen et al., 2013). Higher NCV may shorten the reaction
time, potentially helping sprinters shorten the 100 m running time
(Crotty et al., 2022). The central neurotransmissions in auditory and
sensorimotor systems were found to correlate with 100 m
performance, and existing significant differences between elite
and sub-elite adolescent sprinters (Hsieh et al., 2024). Thus, the

TABLE 1 Descriptive statistics of H reflex, V wave, and skeletal muscle function (mean ± SD).

Variable Value 95%CI

H-reflex and V-wave Hmax/Mmax (%) 18.33 ± 11.98 (11.70, 24.97)

Hth/Mth (%) 85.13 ± 8.63 (80.35, 89.91)

H-index (cm2/ms2) 168.79 ± 23.50 (155.77, 181.80)

V/MmaxA (%) 24.47 ± 18.61 (14.16, 34.77)

Muscle Strength Hamstring (Nm/kg) CON60°/s 1.77 ± 0.04 (1.68, 1.86)

CON180°/s 1.52 ± 0.05 (1.40, 1.63)

ECC60°/s 1.70 ± 0.07 (1.55, 1.85)

Quadriceps (Nm/kg) CON 60°/s 2.63 ± 0.11 (2.40, 2.86)

CON180°/s 2.23 ± 0.13 (1.95, 2.52)

ECC60°/s 2.80 ± 0.16 (2.47, 3.14)

Gastrocnemius (Nm/kg) CON 60°/s 1.68 ± 0.08 (1.51, 1.85)

CON180°/s 1.26 ± 0.04 (1.17, 1.34)

ECC60°/s 2.62 ± 0.12 (2.37, 2.87)

H/Q (%) CON 60°/s 68.60 ± 11.84 (62.04, 75.16)

CON180°/s 70.46 ± 14.63 (62.36, 78.56)

ECC60°/s 60.73 ± 11.71 (54.25, 67.22)

Stiffness Achilles tendon stiffness (Nm/cm) 55.05 ± 13.28 (47.70, 62.41)

Vertical stiffness (N/m/kg) 36.84 ± 10.03 (31.28, 42.40)

Lower limb explosive strength 30 m sprint time(s) 4.15 ± 0.15 (4.07, 4.24)

RFD (N/s/kg) 50.00 ± 23.04 (37.85, 56.71)

Note: CON, concentric; ECC, eccentric.
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TABLE 2 Correlation between the H-reflex and V-wave, skeletal muscle function, and lower limb explosiveness.

30 m sprint time(s) RFD (N/s/kg)

r 95%CI r 95%CI

Hmax/Mmax −0.30 (−0.70, 0.25) 0.57* (0.08, 0.84)

Hth/Mth 0.40 (−0.14, 0.76) 0.18 (−0.36, 0.64)

H-index −0.54* (−0.82, −0.03) −0.13 (−0.60, 0.41)

V/MmaxA −0.59* (−0.85, −0.11) 0.28 (−0.27, 0.69)

HCON60 −0.28 (−0.69.0.27) −0.19 (−0.64, 0.35)

QCON60 −0.17 (-0.63, 0.38) 0.27 (-0.28, 0.69)

H/QCON60 −0.05 (−0.55.0.48) −0.32 (−0.71, 0.23)

HCON180 −0.19 (−0.64.0.35) −0.21 (-0.65, 0.34)

QCON180 −0.25 (−0.68.0.30) 0.12 (−0.42, 0.59)

H/QCON180 0.10 (−0.44.0.58) −0.27 (−0.69, 0.27)

HECC60 −0.53* (−0.82, −0.03) 0.16 (−0.39, 0.62)

QECC60 −0.03 (−0.62, 0.39) 0.53* (0.02, 0.82)

H/QECC60 −0.31 (−0.71, 0.24) −0.28 (−0.69, 0.27)

GMCON60 0.48 (−0.04, 0.80) −0.37 (−0.74, 0.18)

GMCON180 0.21 (−0.34, 0.65) −0.48 (−0.80, 0.04)

GMECC60 0.29 (−0.27, 0.70) −0.29 (−0.70.0.26)

Achilles Tendon stiffness 0.50* (0.01, 0.81) −0.32 (−0.72, 0.23)

Vertical stiffness 0.03 (−0.49, 0.54) 0.83** (0.55, 0.94)

Note: *p ≤ 0.05; **p ≤ 0.01; H, hamstring; Q, quadriceps; GM, gastrocnemius; CON, concentric; ECC, eccentric; 60, 60°/s; 180, 180°/s.

TABLE 3 Stepwise multiple regression analysis of predictors that influenced 30 m sprint time and RFD.

Dependent variable Predictors Unstandardized
coefficients

Standardized coefficients t Sig 95% CIfor B

B Std. error Beta

30 m sprint time (Constant) 4.713 0.181 - 26.034 <0.001

V/MmaxA −0.448 0.156 −0.542 −2.862 0.014 −0.788,-0.107

HECC60 −0.264 0.105 −0.476 −2.515 0.027 −0.493,-0.035

R2 0.575

Adjusted R2 0.504

F F (2.12) = 8.112, p = 0.006

D-W value 2.648

RFD (Constant) −29.819 11.283 - −2.643 0.021

Vertical Stiffness 1.282 0.208 0.756 6.164 <0.001 0.829.1.735

QECC60 10.647 3.454 0.378 3.083 0.009 3.122.18.172

R2 0.827

Adjusted R2 0.798

F F (2.12) = 28.585, p < 0.001

D-W value 1.500
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excitability of motor neurons and nerve conduction in the cerebral
cortex has a significant impact on improving sprint performance.

High levels of eccentric strength of the hamstring were found to
strongly correlate with 30 m performance in this study, also as a
predictor of 30 m sprint time, consistent with previous research.
Hamstrings contract eccentrically as knee flexors to decelerate the
momentum of the tibia and prevent knee hyperextension during the
terminal swing phase, which may contribute to increasing step length
and energy efficiency (Guex and Millet, 2013; Guruhan et al., 2021).
Previous studies also found a large correlation between maximum
velocity (Vmax) and isoinertial eccentric force (r = 0.56) in sprinters.
The eccentric force can help sprinters adjust lower limb stiffness to
exhibit high levels of reactive strength and maintain higher speeds
(Douglas et al., 2020). Brady et al. (2020) reported that peak force,
RFD and impulse of Isometric mid-thigh pull and Isometric squat
significantly correlate with 0–5 m performance in sprinters. Only the
peak force of IMTP correlated with 0–30 m (r = −0.595). Greater
sprinters were observed to have larger muscle volumes of hamstrings,
which strongly correlated with 40 m sprint time (r = −0.670, p < 0.01)
(Nuell et al., 2021). Meanwhile, eccentric strength deficits in the
hamstrings are common factors causing injury to sprinters, and
enhancing eccentric strength training of the hamstrings may
reduce the incidence of injury (Alt et al., 2021; Rudisill et al.,
2023). A rehabilitation protocol consisting of eccentric exercises is
more effective for elite sprinters with acute hamstring injuries, helping
them return to training or competition quickly (Askling et al., 2014;
Hickey et al., 2022).

The current results also showed a positive correlation between
active tendon stiffness in the ankle joint and 30 m sprint time,
inferring that relatively compliant tendons are beneficial for utilizing
elastic energy. Tendon stiffness of plantar flexors was considered
important enough to probably affect the storage and release of elastic
energy, contributing significantly to propulsive and upward
impulses (Aeles et al., 2018; Crotty et al., 2024). No significant
differences in the active tendon stiffness of the plantar flexors were
observed between sprinters and untrained individuals (Kubo et al.,
2011; Kubo et al., 2017). Previous studies have found the Achilles
tendon stiffness of sprinters during ballistic contractions is lower
than during ramp contractions, which means the Achilles tendon
stiffness of sprinters is more compliant when sprinting and jumping,
similar to the results of this study (Kubo et al., 2020). The data
predicted by a full-body musculoskeletal model showed that tendon
compliance has minimal effort in sprint performance, a 10%
increase in tendon compliance results in a 0.3% increase in
maximum sprinting speed (Lin and Pandy, 2022). This study also
indicates that tendon stiffness may not be a predictor of sprint
performance. However, plantar flexor passive stiffness was
negatively correlated with 100 m performance (r = −0.334, p =
0.018) in well-trained male sprinters (Takahashi et al., 2018). In
addition, studies reported the correlation between other muscle-
tendon parameters and sprint performance. The cross-sectional area
and length of the Achilles tendon positively correlated with the
running velocity and power of a 20 m sprint (Monte and Zamparo,
2019). The length of the Achilles tendon also has no correlation with
100 m performance (Tomita et al., 2021). The muscle volume of
plantar flexors showed no differences between elite and sub-elite
sprinters, but elite sprinters have higher muscle volume of hip
extensors (Miller et al., 2022; Miller et al., 2021).

Sprinters need to apply vertical and horizontal forces to the
ground rapidly to generate explosive contractions from a stationary
position at the start; therefore, sprinters exhibit higher RFD and
impulses (Slawinski et al., 2010). Previous studies found that vertical
jump performance of top sprinters is correlated with top-speed
phases, and the mean propulsive power in vertical jumps of elite
sprinters is also correlated with sprint time (Loturco et al., 2018;
Loturco et al., 2019). In this study, RFD correlated with Hmax/Mmax,
eccentric strength of the quadriceps and vertical stiffness. Hmax/
Mmax is an indicator of the α-motoneurons excitability from the Ia
afferent and also reflects the stretch reflex, influencing the
performance of the SSC (Leukel et al., 2008; Sun et al., 2022). CMJ
requires the subject’s lower limb to start with an eccentric contraction,
excited Ia afferent and increased spinal α-motoneurons excitability,
leading to a large eccentric strength of the quadriceps. Eccentric
contractions generate greater strength of the lower limb, making the
subsequent concentric contraction faster and resulting in a higher
RFD. Previous studies have shown that faster sprinters with higher
vertical force achieve greater acceleration during the maximal speed
phase (Nagahara et al., 2024; Nagahara et al., 2018). Sprinters reduce
ground contact time by greater vertical stiffness, and their lower limbs
are regularly subject to high-ground reaction forces (Maloney and
Fletcher, 2021). A large difference between sprinters and untrained
individuals in leg stiffness may be because the sprinter has a shorter
ground contact time (Douglas et al., 2018). Greater vertical stiffness
reflects improved neuromuscular control, helping sprinters move
rapidly. Although the vertical stiffness significantly correlated with
RFD in this study, RFD and vertical stiffness were both calculated by
the peak force of the eccentric phase of the CMJ test. In the eccentric
phase, shorter time leads to smaller ΔCOM, which may result in a
spurious correlation and can be explored and validated further.

This study had several limitations. First, the sample size of this
study is small because of limited access to elite male college sprinters,
which limits statistical power and generalizability. Thus, these
findings should be approached with caution. Further research is
needed to increase the sample size and groups to explore the
neuromuscular function of different-level sprinters. Second, the
H reflex and M wave test in this study were in rest, the H-reflex
and M-wave during muscle contraction could also be further
explored, which better reflects neural modulation of actual
movement. Third, this study only tested a 30 m sprint, without a
100 m test. Finally, the subjects were only male sprinters.

In summary, sprinters require strong neuromuscular control
ability, and neural factors from the cortex are the primary
determinants of lower limb explosiveness. H reflex and V-wave
were sensitive to changes in neural function, which can be used to
monitor changes in α-motoneurons excitability and assess the
fatigue of the central and peripheral nervous system in a training
period. In addition, NCV was found to correlate with a 30 m sprint
performance, future research could explore the relationship between
NCV and sports performance in higher-level sprinters.

5 Conclusion

This study found that V/MmaxA and HECC were predictive
factors of 30 m sprint time, vertical stiffness and QECC were the
predictive factors of RFD. Neural factors such as the α-motoneurons
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excitability of the spinal and supraspinal centers, have a greater
influence on lower limb explosive strength in male college sprinters.
Therefore, training related to the neural function of sprinters should
be emphasized. In addition, H reflex and V wave can be used widely
to assess and monitor the neural function of sprinters in future
research. The impact of neural drive on muscles in different levels
and sexes of sprinters, and the neuromuscular modulation during
muscle contractions can be further explored.
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