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Introduction: A single bout of aerobic exercise is known to induce a temporary
reduction in post-exercise blood pressure termed post-exercise hypotension
(PEH). Meanwhile, an ischemic preconditioning (IPC), a series of short ischemia-
reperfusion intervention, has also shown antihypertensive effects showing a
potential nonpharmacologic intervention for hypertension. While the acute BP
reduction effects of aerobic exercise and IPC are individually well-investigated,
it remains unclear if combining both interventions has an additive effect on PEH.

Methods: A total of twelve pre- or hypertensive men (six prehypertension,
six stage 1 hypertension) underwent either 30 min of aerobic exercise at 50%
VO2peak (CON) or IPC before exercise, in a counterbalanced order. IPC involved
inflating cuffs on both thighs to 200 mmHg for 5 min, alternating between right
and left thighs for three cycles, totaling 30 min. Brachial BPwasmeasured during
exercise and 1-h post-exercise recovery whereas muscle oxygen saturation
(SmO2) from the rectus femoris was monitored using NIRs during exercise and
recovery. Heart rate variability (HRV) and baroreflex sensitivity (BRS) together
with a head-up tilt test (at 0 and 50°) were measured at the pre-test, post-test,
and 24-h post-test. After the completion of each experiment, 24-h ambulatory
blood pressure (ABP) was monitored to assess post-exercise hypotension within
a 24-h window.

Results: BP and heart rate responses during exercise and 1-h recovery did not
differ between conditions while SmO2 was significantly elevated during exercise
in IPC (p = 0.004). There was no difference in HRV and supine BRS. However,
significantly reduced titled BRS after exercise was found in CON while IPC
preserved BRS similar to pre-exercise value, extending to 24-h post period (p
= 0.047). ABP monitoring revealed a significant reduction in systolic BP during
sleep in IPC compared to CON (p = 0.046).

Conclusion: The present findings suggest that IPC with a single session
of aerobic exercise results in a notable decrease in systolic ABP,
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particularly during sleep, compared to aerobic exercise alone. This
supplementary antihypertensive effect was associated with a sustained BRS,
persisting up to 24 h in contrast to the significant decrease observed in CON.
Future studies are warranted to investigate long-term adaptations to IPC.

KEYWORDS

ischemic preconditioning, hypertension, post-exercise hypotension, ambulatory blood
pressure, aerobic exercise

1 Introduction

Hypertension, defined as systolic blood pressure (SBP) ≥
130 mmHg and/or diastolic blood pressure (DBP) ≥ 80 mmHg
is a prevalent worldwide, fatal medical condition with a high
probability of leading to ischemic heart disease, stroke, and
end-stage renal disease (WHO, 2021). Therefore, continuous BP
monitoring is important not only for people with hypertension
but also for those in the phase of elevated BP (Flack and Adekola,
2020). In addition to traditional hypertension treatment such as
medication and exercise, ischemic preconditioning (IPC), a series
of short ischemia-reperfusion interventions in faraway tissue or
organ (Przyklenk et al., 1993), is emerging as a non-invasive,
universally applicable, and time-efficient alternative treatment
which operates through the improvement of endothelial function
(Kharbanda, Nielsen and Redington, 2009; Kim et al., 2020). For
instance, a single bout of IPC not only showed cardioprotective
effects such as improved left ventricular pressure and end-diastolic
pressure in spontaneously hypertensive young rats (Farkašová et al.,
2023), but also significantly decreased peripheral/central systolic BP
and mean arterial pressure (MAP) in patients with peripheral artery
disease 24 h after digital subtraction angiography (Kuusik et al.,
2019). Further, Madias (2011) and Zagidullin et al. (2016)
reported the acute effect of IPC on BP in normotensive
subjects and patients with angina pectoris, respectively. In this
manner, a single bout of IPC has demonstrated effectiveness in
alleviating BP in patients with various diseases, consistent with
the results of our previous study targeting obese young males
(Jang et al., 2023).

IPC has also been shown to significantly enhance exercise
performance in healthy subjects (De Groot et al., 2010; Caru et al.,
2016), athletes (Cruz et al., 2016), and patients with diseases
(Chotiyarnwong et al., 2020). Such ergogenic effects may be
associated with improved mitochondrial activation in local skeletal
muscle (Jeffries et al., 2018; Kido et al., 2015; Tanaka et al., 2016)
and acceleration of systemic oxygen extraction during exercise
(Kido et al., 2018). This resulted in immediate performance
improvements, such as improved power output and maximum
oxygen intake during exercise in healthy subjects (De Groot et al.,
2010), improved mean power output with increased skeletal
muscle activation in cyclists (Cruz et al., 2016), and an improved
6-min walking test results in patients with multiple sclerosis
(Chotiyarnwong et al., 2020). Moreover, IPC also demonstrated
notable effects during the post-exercise recovery period. For
example, it prevented the reduction in flow-mediated dilation after
high-intensity running (Bailey et al., 2012) and shortened the QT
interval in healthy subjects during exercise and recovery (Caru et al.,
2016) suggesting the shortened action potential duration via

the activation of protein kinase C. Interestingly, Beaven et al.
(2012) and Seeger et al. (2017) delineated that these performance
improvements could persist even 24 h after exercise.

The effectiveness of regular exercise and/or physical activity
on BP reduction is widely accepted. Further, a single bout
of exercise could lead to a temporary decrease in BP termed
post-exercise hypotension (PEH) (Fitzgerald, 1981). While some
controversies exist regarding the degree of PEH and its sustained
impact under free-living conditions, numerous previous findings
suggested that a single session of moderate-intensity exercise leads
to PEH in diverse populations with a greater degree observed
in hypertensive individuals. For example, a moderate-intensity
continuous cycling exercise reduced BP (SBP: 6.3 ± 1.3 mmHg,
DBP: 1.8 ± 1.0 mmHg) in healthy adults for 120 min (Keese et al.,
2011). Others reported significantly reduced 24-h ambulatory
blood pressure (ABP) in medicated hypertensives (Ciolac et al.,
2009) and in prehypertensive individuals with type 2 diabetes,
especially during sleeping (de Morais et al., 2015). In elderly people
with essential hypertension, moderate-intensity treadmill exercise
lowered both systolic and diastolic BP for 1 h after aerobic exercise
and significantly lessened DBP during the daytime (Ferrari et al.,
2017). Taken all together, a single bout of exercise leads to the
mitigation of high BP to some extent and is considered to be
an effective antihypertensive strategy that benefits from an acute
exercise bout.

There are various non-pharmacological interventions aimed
at mitigating high BP, and some have attempted to utilize these
auxiliary methods in conjunction with exercise to better induce the
lowering effects of BP. For example, a single session of endurance
exercise followed by sauna in prehypertensive men showed a greater
reduction in SBP than exercise alone, and this effect remained
at 24-h follow-up (Rissanen et al., 2020). Besides, low-intensity
aerobic exercise with blood flow restriction similar to IPC has
also been reported to be as effective as high-intensity exercise in
lowering BP (Barili et al., 2018). However, exercise with blood
flow restriction causes a rapid increase in MAP during exercise,
leading to cardiac overload (Thomas et al., 2018), which may be a
limitation for patients with underlying cardiovascular disease. IPC
as a means of addressing this impediment, when combined with
resistance exercise, brought about greater and longer BP reduction
in trained normotensive individuals compared to the resistance
exercise alone (Panza et al., 2020).On top of that, IPC combinedwith
aerobic exercise promoted recovery after exercise at intensities below
lactate threshold in endurance runners (Sabino-Carvalho et al.,
2019). However, this study was conducted with a focus on exercise
performance rather than health aspects.

Although the acute BP reduction effects of IPC and aerobic
exercise individually are well investigated, it is still unclear whether

Frontiers in Physiology 02 frontiersin.org

https://doi.org/10.3389/fphys.2024.1495648
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Jang et al. 10.3389/fphys.2024.1495648

combining both intervention modalities would have an additive
effect on PEH. Therefore, the purpose of the present study was to
investigate whether combining aerobic exercise and IPC brings out
a further enhancement in PEH. We hypothesized that: 1) a single
bout of aerobic exercise accompanied by IPC would induce PEH
to a greater extent and 2) the temporal enhancement of cardiovagal
baroreflex sensitivity would contribute to this exaggerated PEH.

2 Materials and methods

2.1 Ethical approval

The present study was conducted after the approval from the
Institutional Review Board at Kyung Hee University (KHGIRB-
21–531) and conformed to the standard set by the Declaration of
Helsinki. All participants provided written informed consent before
their study participation.

2.2 Participants

A total of 12male participants (6 elevated blood pressure, 6 stage
1 hypertension) who were previously diagnosed as prehypertensive
or stage 1 hypertension, but currently not taking antihypertensive
medication were recruited for the present study. All participants
completed a medical screening questionnaire and those who
reported a presence of cardiovascular disease or musculoskeletal
disorder were excluded from the study. Due to the hormonal
fluctuation thatmay potentially influence vascular outcomes, female
participants were excluded. At least 24 h before the scheduled visits,
they were instructed to abstain from alcohol/caffeine consumption
and strenuous physical activity.

2.3 Experimental procedure

All participants visited the laboratory five times at one-
week intervals between familiarization and experimental sessions.
At the first visit, the participants underwent health screening,
demographic measurements, and experimental familiarization. The
experimental familiarization involved becoming accustomed to the
lab environment, study procedures, and measurement equipment
to ensure proper commencement of the experiment and to control
for emotional effects, such as anxiety, that could influence the
study outcomes. To confirm participant eligibility, brachial BP
was measured triplicate in the non-dominant arm in a sitting
position using a digital sphygmomanometer (BP742N, OMRON
Corporation, Kyoto, Japan). Further, participants underwent a
graded exercise test on a cycle ergometer (Corival CPET, Lode B.V.,
Groningen, Netherlands) with a constant pedal rate of 50 RPM.
The workload was initially set at 50 W and was gradually increased
by 25 W per minute until the participants reached volitional
exhaustion., A metabolic system (Quark CPET, COSMED, Rome,
Italy) was used to determine their peak oxygen uptake (VO2peak)
throughout the test and subsequently relative exercise intensity for
experimental intervention. The test was considered valid if it met
at least two of the following criteria: 1) a plateau in VO2 despite

an increase in workload, 2) a respiratory exchange ratio greater
than 1.10, and/or 3) the participant achieving 85%–90% of the
age-predicted maximum heart rate.

For the remaining four visits the participants visited the
laboratory two consecutive days for exercise intervention and 24-h
post-test measurements. For exercise intervention, the participants
underwent either a bout of cycling exercise (CON) or a bout of
cycling exercise accompanied by IPC intervention (IPC) which were
performed in a counterbalanced order interspersed by 1 week of
washout period. All experiments were conducted in the morning
between 07:00 and 12:00 in a laboratory comfortably maintained at
23°C with a relative humidity of around 50%.

Upon their arrival at the laboratory for experimental
participation, the participants wore T-shirts, shorts, and athletic
shoes. Then, they were instrumented with measurement sensors
followed by 15 min of rest in a supine position for pre-test
measurements after which experimental intervention commenced.
For IPC, a contoured inflation cuff, connected with a rapid cuff
inflation system (E20, D.E. Hokanson, Inc., Washington, United
States), was placed on both the right and left distal thighs while
participants rested on a cycle ergometer.The right thigh was initially
occluded at an intensity of 200 mmHg for 5 min and then deflated
immediately followed by alternating occlusion and reperfusion of
the left thigh for 5 min each. This complete IPC cycle was repeated
three times, resulting in a total procedure duration of 30 min.
For CON, the participants rested on the cycle ergometer with the
same cuffs placed remaining deflated on both thighs. After the
completion of either IPC or CON intervention, the participants
commenced cycling exercise at the pre-determined 50% maximal
exercise intensity constantly maintaining greater than 50 RPM for
30 min. The mean exercise intensity was 124 W. After completing
the exercise, the participants were taken out of the cycle and rested
in a chair for 60 min, followed by post-testmeasurements in a supine
position. Once all test procedures were completed, participants were
equipped with an ambulatory blood pressure monitor and then
returned home. After 24 h, they revisited the laboratory to return
the monitor and undergo the same pre/post-test measurements.
The schematic view of the study procedure is presented
in Figure 1.

2.4 Blood pressure

Baseline, during exercise (12–21–30th minutes), and 1-h
recovery (12–24–36–48–60th minutes) BP were measured on a
brachial artery of the non-dominant arm using an automated BP
monitor (Tango M2, SunTech Medical, Inc., North Carolina, United
States) in the seated position. BPmeasurements were duplicated and
expressed as mean SBP, DBP, and MAP.

2.5 Muscle oxygen saturation

Muscle oxygen saturation (SmO2) was measured to assess
microvascular oxygenation using near-infrared spectroscopy
(NIRS) (Moxy5, Fortiori Design LLC, Minnesota, United States).
The NIRS sensor was affixed to the rectus femoris at the upper
third of the right femur for continuous monitoring during
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FIGURE 1
The schematic view of the study procedure.

exercise and 1-h recovery period. One-minute average values
recorded immediately before BP measurements were analyzed
and expressed as % oxygenated hemoglobin (SmO2 = 100 ×
oxygenated hemoglobin ÷ (oxygenated hemoglobin + deoxygenated
hemoglobin)).

2.6 Heart rate variability

Heart rate variability (HRV) was measured to assess the
autonomic nervous system function during the pre-test, post-
test, and 24-h post-test measurements. While the participants
resting in a supine position, electrocardiogram standard limb
leads (SE-1515, Edan Instruments Inc., Shenzhen, China) were
placed on the torso, and RR intervals were measured for 15 min in
a supine position. Subsequently, power spectral analysis of
HRV was conducted using the Fast Fourier Transform and
expressed as the ratio of the low frequency (0.04–0.15 Hz) to
high frequency (0.15–0.4 Hz) (LF/HF ratio) to determine an
overall balance between the sympathetic and parasympathetic
activities.

2.7 Baroreflex sensitivity

Baroreflex sensitivity (BRS) was measured using a finger
photoplethysmography (Finometer Pro, Finapres Medical Systems
B.V., Amsterdam, Netherlands) and the head-up tilt test (HUTT)
during the pre-test, post-test, and 24-h post-test measurements.
The participants were first rested in a supine position on a
motorized tilt table (Multi Motorized Inversion Machine, Topspo,
Gwangju, Republic of Korea) for 15 min followed by a head-
up tilt to 50° for 15 min. During the test, beat-to-beat BP and
pulse intervals were continuously measured, and the data from
the 14th - 15th minute in each position were extracted for data
analysis. BRSwas calculated using Beatscope Easy (FinapresMedical
Systems B.V., Amsterdam, Netherlands) through a time-domain
cross-correlation method. This technique involved interpolating
heartbeats using splines at a 1-s interval. A sliding correlation
window, spanning 12 beats with 5 beats of overlap, was employed
to compute the cross-correlation between BP and pulse interval.
Various delays (0–5 s) were tested, and the delay with the highest
correlation was selected. A BRS estimate was considered valid if
the coefficient of determination (r2) was significant (p < 0.05)
(Westerhof et al., 2004).

TABLE 1 Summary of participant characteristics (n = 12).

Variables Subjects (n = 12)

Age (years) 24 ± 2.6

Height (cm) 178.9 ± 5.5

Weight (kg) 79.4 ± 9.0

Body mass index (kg/m2) 24.7 ± 2.1

Systolic blood pressure (mmHg) 131.2 ± 5.9

Diastolic blood pressure (mmHg) 77.3 ± 4.8

Resting heart rate (bpm) 77.3 ± 15.0

Peak oxygen uptake (mL/kg/min) 35.1 ± 5.9

Peak exercise intensity (watts) 124.2 ± 13.9

Note. Values are mean ± standard deviation.

2.8 24-h ambulatory blood pressure

Ambulatory blood pressure (ABP) was measured to assess PEH
in a 24-h window. After the completion of each experimental
participation, the participants were equipped with an ABP monitor
(ABPM50, Contec Medical System Co., Ltd., Qinhuangdao, China)
for 24 h.Themonitoring timewindow extended from approximately
12 p.m. on the experimental day to 12 p.m. the following day. ABP
was measured at 30-min intervals during waking hours and at 60-
min intervals during sleep hours. During the monitoring period,
the participants were instructed to fall asleep no later than 23:00,
in consideration of the experiment time (07:00–12:00), and to
maintain a lifestyle similar to their daily routine, while refraining
from alcohol consumption and strenuous physical activity. They
were also instructed to record a daily activity log such as the time
spent at work/home and hours of sleep. ABP data were analyzed to
derive mean awake and sleep BP values.

2.9 Statistical analyses

All data in this study were analyzed using SPSS (Ver. 26,
IBM Corp., New York, United States) and presented as mean
and standard deviation. Two-way repeated measures ANOVA
was used to compare dependent variables between CON and
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IPC. When a significant F-value, adjusted for sphericity using
Greenhouse-Geisser correction, was identified, one-way repeated
measures ANOVA followed by post hoc pairwise comparison with
Bonferroni correction was conducted to compare variables across
the time course and conditions at each time point, respectively. The
significance level of all statistical analyses was set at α = 0.05.

3 Results

All participants met the eligibility criteria, with six participants
having elevated SBP (120–129 mmHg), and six participants
categorized as having stage 1 hypertension (5 with SBP ≥
130 mmHg, 1 with DBP ≥ 80 mmHg) (Table 1). All participants
completed the study protocols without any adverse effects.

3.1 Hemodynamic responses during
exercise and recovery

Hemodynamic responses during exercise and recovery are
shown in Table 2 and Figure 2. Although no significant interaction
was detected, a significant main effect (F = 71.562, p = 0.001)
was observed for SBP throughout the recovery in both conditions,
indicating a noticeable PEH up to 60 min in IPC compared to CON,
where SBP returned to baseline values beyond 36 min of recovery.
Otherwise, no significant difference was found for DBP, MAP, and
HR during exercise and 1-h recovery between the conditions.

A significant interaction was observed for SmO2 between
the conditions (F = 6.399, p = 0.004). The difference was
noted as a significantly elevated SmO2 throughout the exercise
in IPC compared to CON. The enhanced oxygenation trend in
IPC persisted above CON during the recovery, despite statistical
significance not being achieved.

3.2 Heart rate variability and baroreflex
sensitivity

Table 3 demonstrates HRV and BRS responses to the head-
up tilt test between IPC and CON. No significant interaction was
found for HRV between the conditions. Regarding BRS, there was
also no significant difference in supine BRS, despite the improved
responsiveness with IPC. However, a significant interaction was
found in tilted BRS between the conditions. This difference was
characterized by significantly reduced BRS after exercise (p = 0.015)
extending to 24h-post measurements (p = 0.018) in CON while IPC
preserved BRS similar to pre-exercise values.

3.3 24-h ambulatory blood pressure

Table 4 and Figure 3 demonstrate 24-h ABP responses between
IPC and CON. A significant interaction effect between condition
and time was observed for SBP indicating a notable reduction in
mean sleep SBP (p = 0.003) in IPC compared to CON. However,
this reduction was not significant for awake SBP (p = 0.095). No
significant interaction was found for either awake or sleep DBP and
MAP between the two conditions.
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FIGURE 2
Rectus femoris muscle oxygen saturation during exercise and 1-h recovery. Values are presented as a group mean (n = 12). ∗Significantly different from
control (p < 0.05).

TABLE 3 Summary of heart rate variability and baroreflex sensitivity during head-up tilt test.

CON IPC F p

Pre Post 24h-post Pre Post 24h-post

LF/HF ratio 1.8 ± 1.5 1.4 ± 0.4 2.0 ± 0.7 1.7 ± 1.9 1.3 ± 0.9 1.7 ± 1.1 0.225 C: 0.612
T: 0.218
C×T:
0.8

BRS (ms/mmHg)

Supine (0°) 16.8 ± 8.7 20.6 ± 15.0 14.1 ± 6.3 18.8 ± 11.3 33.2 ± 18.3 25.5 ± 13.6 1.767 C: 0.097
T: 0.033
C×T:
0.209

Standing (50°) 10.8 ± 4.7 8.7 ± 4.4 7.1 ± 2.4 9.9 ± 2.4 12.3 ± 3.9∗ 11.2 ± 4.6∗ 4.024 C: 0.002
T: 0.351
C×T:
0.047

Values are mean ± standard deviation (n = 12). LF, low frequency; HF, high frequency; BRS, baroreflex sensitivity; C, main effect of condition; T, main effect of time; C×T,
interaction. ∗Significantly different from control (p < 0.05).

4 Discussion

To the best of our knowledge, this is the first study to investigate
the efficacy of IPC combined with aerobic exercise on PEH in
pre- or hypertensive men, especially being monitored for 24-h
period. The present results indicate that IPC applied before an
acute bout of aerobic exercise leads to a significant reduction of
ambulatory SBP especially during sleep compared to the aerobic
exercise alone. Such an observed SBP reduction was marked by
a maintained BRS, persisting up to 24 h post-measurements in
contrast to a sustained decrease in standing BRS after exercise

in CON. These findings align with our hypothesis that IPC is
likely to elicit a more pronounced PEH supplementary to aerobic
exercise, with enhanced BRS being a contributing factor to this
intensified PEH.

A single bout of aerobic exercise has been demonstrated to
induce temporal BP reduction, and this response appears in both
healthy individuals and patients with cardiovascular risks such as
hypertension and diabetes (Keese et al., 2011; Ciolac et al., 2009;
de Morais et al., 2015; Ferrari et al., 2017). Previous findings also
showed that the greater the exercise intensity, the greater the BP
reduction effect especially in hypertensive individuals (Quinn, 2000;
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TABLE 4 Summary of 24-h ambulatory mean awake and sleep blood pressure.

CON IPC F p

Awake Sleep Awake Sleep

SBP (mmHg) 127.4 ± 7.2 114.8 ± 9.3 122.9 ± 8.0 103.1 ± 4.2∗ 5.574 C: 0.006
T: 0.001
C×T:
0.046

DBP (mmHg) 72.8 ± 5.2 62.3 ± 10.1 69.7 ± 7.4 57.1 ± 6.9 0.458 C: 0.140
T: 0.001

C×T: 0.517

MAP (mmHg) 90.5 ± 5.7 78.1 ± 12.3 88.1 ± 6.9 70.5 ± 4.1 2.042 C: 0.103
T: 0.001

C×T: 0.191

Values are mean ± standard deviation (n = 12). C, main effect of condition; T, main effect of time; C×T, interaction. ∗Significantly different from control (p < 0.05).

FIGURE 3
24-hour ambulatory blood pressure responses. (A) Systolic blood pressure responses in 24-hour trend and in daytime, sleep, and morning, (B) Diastolic
blood pressure responses in 24-hour trend and in daytime, sleep, and morning, and (C) Mean arterial pressure responses in 24-hour trend and in
daytime, sleep, and morning. Values are presented as a group mean for the 24-hour trend and mean with standard deviation for the breakdown of
values in daytime, sleep, and morning (n = 12). ∗Significantly different from control (p < 0.05).

Hagberg et al., 1987; Jones et al., 2008). The rapid BP rise response
during exercise not only acts as a predictor of hypertension, but
also can spark acute myocardial infarction (Giri et al., 1999), low-
to-moderate intensity exercise is usually recommended to prevent

an exaggerated increase in BP during exercise. Interestingly, this
level of intensity for targeting hypertensive was maintained PEH for
90 min in hypertensives individuals, as opposed to the normotensive
individuals who did not show PEH at all (Cléroux et al., 1992).
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Although the exercise protocol in the present study was similar
to that of a previous study (50% VOpeak), the CON condition
only maintained a significant SBP reduction up to 36 min post-
exercise (Table 2). This may be due to the non-severe high BP
levels of out subjects. On the other hand, there has been evidence
that BP lowering effect of acute IPC could appear in both
hypertensive rats and patients including peripheral artery disease,
angina pectoris, and obese (Farkašová et al., 2023; Kuusik et al.,
2019; Zagidullin et al., 2016; Jang et al., 2023). Additionally, the
combination of IPC and resistance exercise significantly decreased
SBP, DBP, and MBP for up to 60 min post-exercise compared to
resistance exercise alone in normotensives (Panza et al., 2020).
Although the type of exercise was different, our results presented
a similar pattern of PEH reduction pattern. The combination of
IPC and aerobic exercise maintained a significant SBP reduction
compared to resting values from post-60 min onward in the
laboratory setting (Table 2).

The observed exaggeration of IPC-induced PEH is deemed
to enhance physiological cascades responsible for inducing PEH.
In addition to the activation of arterial baroreceptor in response
to increased systemic arterial pressure leading to a decrease in
sympathetic outflow and an increase in vagal cardioinhibitory
outflow (de Paula et al., 2019), these mechanisms may also involve
reduced peripheral vascular resistance, cardiac contractility, and
venous return (La Rovere, Pinna and Raczak, 2008). Additionally,
vasodilators released by acute exercise (Pescatello et al., 2004) as
well as by the humoral and neural pathways of IPC (Hausenloy and
Yellon, 2008) can contribute to these mechanisms. For instance, the
increase in blood flow following exercise or release of occlusion
occurs through the stimulation of endothelium by shear stress.
This stimulation leads to the activation of endothelial nitric oxide
(NO) synthesis mediated by protein kinase C and calmodulin.
Subsequently, increased NO diffuses to vascular smooth muscle
cells and activates cyclic guanosine monophosphate-dependent
protein kinase G. It provokes the phosphorylation of myosin
light chain kinase, thereby causing vasodilation. In fact, Crisafulli
(2006) suggested the possibility that exercise and IPC can be
alternatives to each other for cardioprotection since they share
common pathway such as increased NO production via shear stress
and activation of protein kinase C. Meanwhile, aerobic exercise
with blood flow restriction intervention was effective in amplifying
the PEH, but BP during exercise was higher than that of aerobic
exercise alone (Barili et al., 2018). On the contrary, our finding
confirmed that aerobic exercise following IPC showed no significant
difference in BP during exercise compared to aerobic exercise alone,
along with PEH reinforcement. This implies that IPC may be a safer
option than blood flow restriction.

BP fluctuates between waking and sleeping according to
the circadian rhythm, typically decreasing by over 10% during
sleep compared to waking. Particularly, sleep BP can only be
accurately assessed through ABP monitoring, and elevated sleep
BP is significantly associated with an unfavorable prognosis
(Verdecchia et al., 1994). The present results (Table 4; Figure 3)
demonstrate a notable interaction in ambulatory SBP, whiles
awake SBP, comparing daytime and morning BP, exhibited a non-
significant trend (p = 0.095). These findings are consistent with
Cartner’s study, which showed a significant BP reduction during
sleep, but not in awake BP in pre-hypertensive individuals (Cartner,

2011). We intended to conduct the experiment in the morning
(07:00–12:00), and thereafter instructed the subjects to continue
with their usual daily activities. Somers et al. (1991) suggested
that PEH is likely to dissipate due to these everyday activities,
which could have potentially masked the PEH effect observed in a
laboratory setting. Therefore, the lack of significant differences in
awake BP between the conditions are likely due to the influence
of daily activities, potentially masking the PEH effect observed in
a controlled setting, which may however, be more evident during
sleep. This speculation is supported by our findings on sleep SBP.
According to sleep BP classification, expressed as sleep-to-awake
BP ratio (Krzych and Bochenek, 2013), our subjects in the CON
were categorized as non-dippers (0.9), whereas those in the IPC
were classified as the dippers (0.83), suggesting a potentially lower
cardiovascular risk. A reduction in sleep SBP, a potent risk factor
for cardiovascular disease, is significantly linked to a decreased
likelihood of cardiovascular disease-relatedmorbidity andmortality
(Hermida et al., 2018). Despite prior research suggesting that
morning exercise reduces sleep SBP more effectively than afternoon
exercise (Fairbrother et al., 2014; Cartner, 2011), the CON condition
in our study presented non-significant effects, possibly due to lower
exercise intensity compared to previous studies. IPC has been shown
to improve sleep quality (Wu et al., 2023) and contribute to ABP
reduction (Tong et al., 2019; Guo et al., 2023). In summary, unlike
aerobic exercise alone, the addition of IPC to aerobic exercise
decreased sleep SBP, and a declining trend was observed in awake
systolic BP. Considering that the PEH reduction with IPC was
maintained throughout the laboratory measurements, it can be
assumed that sleep SBP reduction was originated from an extension
of PEH.However, due to the absence of baselineABPmeasurements,
we could not determine the comparative effectiveness of aerobic
exercise alone on baseline sleep SBP.

Patients with hypertension may experience increased
vasoconstriction in active muscles due to impaired functional
sympatholysis during exercise. This can lead to a decrease in SmO2
in exercising muscles or necessitate an excessive increase in BP to
compensate (Dipla et al., 2017). However, the present results showed
that IPC improved SmO2 during exercise without compensatory BP
rise compared to the CON condition, suggesting improved oxygen
utilization in response to the same metabolic demand (Figure 2).
Furthermore, the higher SmO2 level at 0 min in comparison to CON
indicates that the elevated SmO2 level during exercise has been
maintained since before the exercise session began. This finding
is consistent with our previous results and another study, which
showed that IPC remains relatively high in reactive hyperemia
and persists for several minutes even during rest in both obese
individuals (Jang et al., 2023) and those with lower limb occlusive
arterial disease (Fudickar et al., 2014). High SmO2 during exercise
may result from either active vasodilation of the exercising muscles
(Saltin and Mortensen, 2012) or suppressed vasoconstriction
induced by sympathetic overactivation (Thomas and Segal, 2004),
or a combination of both factors. In fact, we have previously
confirmed that IPC inhibits sympathetic hyperactivation (Jang et al.,
2023), and others also reported IPC-mediated improvement in
NO bioavailability, which leads to vasodilation of exercising
muscles (Lambert et al., 2016). Unfortunately, our subjects did
not present a significant inhibition of sympathetic activation when
monitored by HRV in this study. However, increased muscle blood
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flow, and consequently increased SmO2, is one of the possible
contributors to PEH. Jeffries et al. (2018) and Jones et al. (2014)
described that ameliorated microcirculation by repeated IPC kept
up beyond 72 h together with a significant BP drop during the
rest. This additional IPC-induced vasodilation effect mediated by
endothelium dependent and/or independent factors might intensify
the reduction in the total peripheral resistance (afterload) while
increasing systemic blood flow shown as improved SmO2 in the
present results.

The arterial baroreflex, a crucial factor in the neural regulation
of cardiovascular system (La Rovere et al., 2008) was shown
to be impaired in hypertension compared to normotension in
both animals and humans (Ricksten and Thoren, 1981; Miyajima,
1986). In patients with autonomic dysfunction, both aerobic and
strength exercises were effective for improving cardiovagal BRS with
the former having a greater effect post-exercise (de Paula et al.,
2019). In a similar context, IPC is recognized as a method to
prevent the deterioration of BRS associatedwith prolonged ischemia
(Babai et al., 2002). Notably, evidence suggests that IPC enhances
post-exercise cardiac vagal reactivation (Sabino-Carvalho et al.,
2019). Consistent with this, the present results shows that the
combination of IPC and aerobic exercise significantly improved
cardiovagal BRS in the standing position (Table 3). Therefore,
it is plausible that the improvement in BRS induced by IPC
contributed to the greater and more prolonged PEH observed
compared to aerobic exercise alone. However, unlike BRS, no
significant interaction was found in the LF/HF ratio (Table 3).
We measured the LF/HF ratio only in the supine position,
aligning with the supine BRS results, which also showed no
significant effect. Considering that postural changes, particularly
standing, can affect the LF/HF ratio in individuals with borderline
hypertension (Duprez et al., 1995), the measurement of the LF/HF
ratio only in the supine position could be a limitation of our study.
Alternatively, it is possible that in our hypertensive subjects, another
mechanism identified by the previous study where vasodilation-
mediated PEH occurs alongside sympathetic activation (Hara and
Floras, 1995), may have played a more dominant role in reducing
blood pressure. This mechanism, independent of the inhibition of
sympathetic activation as indicated by the LF/HF ratio, suggests
there may be additional factors influencing PEH in pre- or
hypertensive men.

Our study has several limitations. The sample size, while
sufficient to detect meaningful within-group differences and
treatment effects, limits the generalizability of the findings to
broader populations. We selected 12 participants to ensure
manageable data collection and adherence to the study protocol,
which was also based on previous studies examining vascular
function and blood pressure outcomes in similar populations
(Tong et al., 2019; Kim et al., 2018; 2022). However, larger sample
sizes are needed for future studies to confirm our results acrossmore
diverse populations.

Additionally, due to potential hormonal fluctuations affecting
vascular function, we excluded female participants. This decision
was in line with prior research indicating that estrogen, especially
during the follicular phase of the menstrual cycle, enhances
vasodilation and endothelial function through increased nitric oxide
availability (Koh, 2002). However, excluding women reduces the
applicability of our findings to the general population. Including

both genders in future research would enhance the generalizability
of these results.

Another limitation is that the study design is the use of only one
familiarization session for participants. The previous research on
PEH and related vascular outcomes has highlighted the importance
of multiple familiarization sessions to ensure participants are
fully adapted to the testing protocol, thus minimizing variability
in physiological responses (De Brito et al., 2019). A single
familiarization session might not be enough for participants
to become fully acclimated, potentially introducing variability
in exercise and IPC interventions. While more familiarization
sessions could have provided consistency of responses and accurate
interpretation of outcomes, we aimed to reduce the burden on
subjects, who were already required to attend five visits for
the present experiment. This decision was made to enhance
participants’ compliance and minimize fatigue associated with
multiple sessions.

Furthermore, the study would have benefited from the inclusion
of an IPC-only trial or true time control without exercise to
better determine the magnitude of the effect on blood pressure.
By not including an IPC-only group, it becomes difficult to
fully discern whether the observed antihypertensive effects were
due to the combined intervention or primarily driven by IPC
alone. Including this comparison could have helped quantify the
relative contribution of IPC versus aerobic exercise in reducing
blood pressure, especially considering prior studies have shown
IPC to have significant effects on blood pressure independent of
exercise (Madias, 2011; Zagidullin et al., 2016; Kuusik et al., 2019;
Jang et al., 2023).

5 Conclusion

In conclusion, combining IPC with aerobic exercise extended
the PEH effects of aerobic exercise over an extended period in pre-
or hypertensive men. Although this reduction in blood pressure
was briefly masked during waking hours by daily activities, it
contributed to a significant decrease in SBP during sleep. The
sustained or intensified blood pressure reduction may be linked
to the significant improvement in BRS observed up to 24 h post-
exercise or the enhanced peripheral vasodilation evidenced by
SmO2, which increased significantly during exercise compared
to the control condition. Therefore, applying IPC before aerobic
exercise could be a valuable approach, offering additional benefits
over aerobic exercise alone, such asmore efficient oxygen delivery to
theworkingmuscles and prolonged PEH. Further research is needed
to explore the long-term effects together with invasive methods to
investigate the underlying mechanisms.
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