
TYPE Opinion
PUBLISHED 18 November 2024
DOI 10.3389/fphys.2024.1492405

OPEN ACCESS

EDITED BY

Jeff Otis,
Georgia State University, United States

REVIEWED BY

Kate Kosmac,
Augusta University, United States

*CORRESPONDENCE

Cory W. Baumann,
baumann@ohio.edu

RECEIVED 06 September 2024
ACCEPTED 08 November 2024
PUBLISHED 18 November 2024

CITATION

Ganjayi MS, Krauss TA, Willis CRG and
Baumann CW (2024) Chronic alcohol-related
myopathy: a closer look at the role of lipids.
Front. Physiol. 15:1492405.
doi: 10.3389/fphys.2024.1492405

COPYRIGHT

© 2024 Ganjayi, Krauss, Willis and Baumann.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Chronic alcohol-related
myopathy: a closer look at the
role of lipids

Muni Swamy Ganjayi1,2, Thomas A. Krauss1, Craig R. G. Willis3

and Cory W. Baumann1,2*
1Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University,
Athens, OH, United States, 2Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens,
OH, United States, 3School of Chemistry and Biosciences, Faculty of Life Sciences, University of
Bradford, Bradford, United Kingdom

Chronic alcohol-related myopathy (CAM), characterized by muscle atrophy
and weakness, arises from prolonged excessive ethanol (EtOH) intake. The
precise mechanisms by which EtOH induces skeletal muscle atrophy are not
fully understood. This article posits that the pathophysiology of CAM may be
significantly influenced by how EtOH modifies lipid profiles and alters lipid
composition and content in skeletalmuscle.We review existing literature on lipid
alterations in CAM-afflicted individuals and analogous animal models, discuss
EtOH’s direct and indirect effects on skeletal muscle lipids, and present specific
instances where lipids contribute to muscle atrophy. This article advocates for a
novel viewpoint, suggesting that lipid dysregulation may be the principal factor
in EtOH-induced muscle wasting, offering a different angle to approach CAM
research and treatment strategies.
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Introduction

Chronic consumption of alcohol leads to various histological, biochemical, and
physiological changes in skeletal muscle (Lang et al., 2005). These changes can result
in chronic alcohol-related myopathy (CAM), a disorder marked by muscle wasting and
weakness, particularly in fast-twitch muscles (Preedy et al., 2001). The degree of skeletal
muscle atrophy correlates with the amount of alcohol consumed over a lifetime, potentially
eroding up to 20% of total muscle mass and significantly reducing strength under extreme
conditions (Ekbom et al., 1964; Rossouw et al., 1976; Martin et al., 1985; Estruch et al., 1998;
Aagaard et al., 2003). Affecting approximately 40%–60% of chronic alcoholics, CAM ismore
prevalent than alcohol-induced liver cirrhosis yet remains under-researched (Preedy et al.,
2003).The intricate pathophysiological mechanisms that contribute to the development and
progression of CAM are still to be fully elucidated.

Preclinical studies in rodents have enhanced our understanding of CAM. Rodent
studies, utilizing various methods of ethanol (EtOH) administration (such as liquid diet

Abbreviations: CAM, chronic alcohol-related myopathy; EtOH, ethanol; PC, phosphatidylcholines; PE,
phosphatidylethanolamine; ROS, reactive oxygen species.
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or drinking water), consistently demonstrate significant muscle
atrophy and weakness following prolonged EtOH exposure
(Lang et al., 1999; Crowell et al., 2019; Moser et al., 2022;
Moser et al., 2023; Ganjayi et al., 2023). These effects are observed
independently of caloric intake and other influential factors like
diet and lifestyle, suggesting an obvious link between EtOH and
CAM. Historically, research has concentrated on EtOH’s role
in diminishing muscle mass via impeding protein synthesis via
mTORC1 signaling (Preedy et al., 1991; Lang et al., 2001; Steiner
and Lang, 2015; Simon et al., 2023). However, these studies narrow
the focus on this single mechanism, potentially neglecting other
contributing or upstream factors. For this article, we suggest that the
onset and progression of CAM might also be attributed to EtOH’s
direct or indirect effects on skeletal muscle lipids.

Impact of chronic EtOH consumption on
skeletal muscle lipid profiles

Chronic EtOH consumption has a profound impact on lipid
composition and metabolism in skeletal muscle, as evidenced by a
series of studies spanning several decades. To our knowledge, the
earliest known investigation by Sunnasy et al. (1983) revealed that
chronic alcoholics (at least 100 g of EtOH daily for 3 years) with
myopathy had a 53% increase in total lipid content in the quadriceps
muscle, primarily due to triglycerides. This was characterized by
elevated levels of palmitate (16:0), oleate (18:1), and arachidate
(20:0), and lower levels of myristate (14:0), stearate (18:0), and
linoleate (18:3).

Further research in male Wistar rats demonstrated that
6 weeks of EtOH consumption (75 mmol/kg body weight)
altered fatty acid composition in soleus and plantaris muscles,
with linoleic (18:2) and oleic (18:1) fatty acids increasing and
decreasing, respectively (Salem et al., 2006).This was complemented
by others (Kulagina et al., 2018) who demonstrated a duration-
dependent response in the gastrocnemius muscle of male Wistar
rats that consumed a 10% aqueous EtOH solution plus a 30% EtOH
solution in agar blocks. After 12 weeks, myristic, vaccinic, dihomo-
γ-linolenic, ω-6-decosapentaenoic, palmitic, palmitoleic, oleic, and
linoleic fatty acids increased (or tended to increase), whereas at
24 weeks total fatty acid content was lower, with myristic (14:0),
oleic (C18:1, ω-9), linoleic (C18:2, ω-6), α and γ linolenic (c18:3,
ω-6, ω-3), eicosadienoic (C20:2), and polyunsaturated fatty acids all
decreasing.

A more recent study using the gastrocnemius muscle from
male C57BL/6 mice consuming EtOH that accounted for 27.5% of
total calories for 4 weeks provided additional insights (Zhao et al.,
2011). Zhao et al. (2011) found that while total lipids remained
unchanged, individual lipids containing 18:3, 18:2, 18:1, and/or
18:0 fatty acids increased 41%–152%, whereas levels of 16:0/20:4
phosphatidylcholines (PC) and 16:0/22:6 PC decreased 29%–35%.
Furthermore, Koh et al. (2020) reported that triglycerides
accumulated in skeletal muscle after 4 weeks of 5% EtOH intake
(specificmuscle and sex of themice were unspecified).These clinical
and preclinical findings collectively underscore the significant
regulatory effects of EtOH on the skeletal muscle lipid profile,
which has implications for understanding the pathophysiology of

alcohol-relatedmuscle disorders and the development of therapeutic
strategies.

Mechanisms by which EtOH may be
altering skeletal muscle lipids

Chronic EtOH consumption appears to affect muscle tissue
lipid profiles through direct and indirect pathways (Figure 1).
Directly, EtOH can alter lipid profiles via several interrelated
mechanisms: generation of reactive oxygen species (ROS), triggering
of a proinflammatory response, and disrupting mitochondrial
function. For instance, the activity of the glutathione peroxidase
system is known to decrease in chronic alcoholics and in
rodent models of excessive EtOH consumption (Guerri and
Grisolía, 1980; Fernández-Solà et al., 2002; Otis and Guidot,
2009). Concomitantly, ROS production in skeletal muscle is
increased after chronic EtOH intake, as evidenced by elevated
protein carbonylation and lipid peroxidation (Adachi et al.,
2003a; Otis et al., 2007; Kumar et al., 2019; Ganjayi et al.,
2023). Persistent EtOH-induced ROS production can lead to
membrane damage due to lipid modifications (Simon et al., 2023),
which in turn stimulates the production of proinflammatory
cytokines such as TNF-alpha (Patel and Patel, 2017) and IL-
6 (Steiner et al., 2015). These cytokines further increase free
radical production and levels of oxidative stress (Otis and Guidot,
2009). Prolonged exposure to ROS and proinflammatory cytokines
impairs mitochondrial function (Kumar et al., 2019), favoring
metabolic inflexibility. Short-term EtOH consumption has also
been shown to alter cholesterol metabolism in skeletal muscle,
leading to increased levels of oxysterols (Adachi et al., 2000),
which persist even after several months of intake (Adachi et al.,
2003b). Oxysterols and cholesterol-derived hydroperoxides found
in skeletal muscle following excessive EtOH intake have been
suggested to signify perturbations inmembrane lipids (Adachi et al.,
2000; Fujita et al., 2002), including the mitochondrial membranes.
Chronic EtOH exposure in muscle cells, specifically cardiac
cells, has been reported to decrease mitochondrial membrane
potential, reducing mitochondrial function, mitochondrial content,
and fatty acid oxidation (Hwang et al., 2023). Taken together,
these data demonstrate how EtOH can directly impact skeletal
muscle lipids (Figure 1), such as phospholipids, and influence
muscle lipid concentrations by reducing mitochondrial function
and content.

Indirectly, chronic EtOH exposure dysregulates the lipid profile
of other bodily tissues and organs, which in turn can impact
skeletal muscle (Figure 1). EtOH specifically has been shown to
cause lipolysis in adipose tissue through EtOH-induced secretion
of adipokines and activation of adipose triglyceride, hormone
sensitive, andmonoglyceride lipases (Kang et al., 2007b; Zhong et al.,
2012). This tissue-specific lipolysis causes a surge of excess free
fatty acids into the bloodstream, which is seen as dyslipidemia
in chronic alcoholics and pre-clinical rodent models of excessive
EtOH intake (Kang et al., 2007a; Kema et al., 2015). Free fatty
acids and other circulating lipids can then enter skeletal muscle
causing lipid accumulation, lipid modifications, and influence
cellular metabolism (Rubin et al., 1976; Jensen, 2002; Schwenk et al.,
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FIGURE 1
This diagram illustrates the detrimental effects of chronic and
persistent alcohol (ethanol, EtOH) consumption on skeletal muscle,
leading to atrophy and weakness. It highlights the direct impact of
EtOH on skeletal muscle lipids through the generation of reactive
oxygen species (ROS), triggering inflammation, and mitochondrial
dysfunction, which are likely interconnected processes. Furthermore,
the figure depicts the indirect effects of EtOH on skeletal muscle
lipids, mediated by its action on other tissues, such as adipose tissue.
Here, EtOH induces lipolysis in adipocytes, elevating the levels of free
fatty acids that may subsequently infiltrate skeletal muscle. Figure was
created using BioRender.

2010; Watt and Hoy, 2012; van Hall, 2015; Lipina and Hundal,
2017). Indeed, high fat feeding plus chronic EtOH intake increased
lipid peroxidation in mouse skeletal muscle beyond that of EtOH
alone (Ismaeel et al., 2022). Here, we provide an example of
an indirect pathway that specifically involves adipose-skeletal
muscle crosstalk but also acknowledge, that due to EtOH’s
widespread effect, other tissue interactions also exist (e.g., liver-
skeletal muscle) (Welch et al., 2020).

Lipids can cause skeletal muscle
atrophy

The relationship between EtOH-induced changes in skeletal
muscle lipid andmuscle atrophy is complex and incompletely defined.
It has been reported that downregulation of cardiolipin synthase
(crucial for cardiolipin production) reduces myofiber cross-sectional
area, muscle mass, and force in the tibialis anterior muscle of young
mice (Yoo et al., 2024). Furthermore, others have demonstrated
that reductions in lysophospholipids content (particularly lyso-PC)
in young mice made the extensor digitorum longus muscle 20%
weaker (Ferrara et al., 2021). Additionally, treating muscle cells with

palmitate,whichleadstoceramideaccumulation, increasedexpression
of pro-atrophic genes expression and reduced protein synthesis rates
(Woodworth-Hobbs et al., 2014). Similarly, in drosophila, muscle-
specific knockdown of phosphatidylserine synthase increased rates of
apoptosis and autophagy, reduced muscle mass, and impaired motor
function(Kimetal.,2024).Thoughmorecorrelative,severalpreclinical
studies using denervation, immobilization, and high fat feeding
demonstrated that intramyocellular lipids (including triglycerides and
diglycerides) increased in skeletal muscle and were associated with
changes inmusclemass (Kumar andSharma, 2009;Vigelsø et al., 2016;
Fan and Xiao, 2020; Kimura et al., 2021). In humans, unfavorable
changes in muscle PC and phosphatidylethanolamine (PE) content
alsocorrelatewithreducedinsulinsensitivity(Newsometal.,2016)and
age-related declines inmuscle size and strength (Hinkley et al., 2020).

Based on the lipid species reported to change due to chronic
alcohol consumption, we posit that alcohol-induced alterations
in lipid metabolism and transport (e.g., skeletal muscle lipid
uptake, storage, and oxidation) result in lipotoxicity, leading
to apoptosis. Briefly, changes in lipid metabolism can alter
membrane compositions, protein distribution and function, and
gene expression. Free fatty acids play vital roles, including energy
generation and reserve, components of the cell membrane, and
ligands for nuclear receptors (de Vries et al., 1997; Turner et al.,
2014; Al Saedi et al., 2022). However, disturbances in fatty acid
homeostasis, such as inefficient metabolism or intensified release
from storage sites, may result in increased free fatty acid levels,
leading to an unfavorable accumulation of intracellular lipids
(Figure 1). Cells can adjust to free fatty acid intake to a limited
extent, yet prolonged exposure to free fatty acids can become
deleterious, impairingmitochondrial function, generating ROS, and
producing proinflammatory cytokines. Indeed, overloading cells
with palmitate, palmitic acid, or ceramides can cause lipotoxicity
and apoptosis in otherwise healthy cells (de Vries et al., 1997;
Lin et al., 2012; Shan et al., 2013; Yuan et al., 2013; Zorov et al.,
2014; Zhang et al., 2017; Li et al., 2019; Mansuri et al., 2021). In the
presence of alcohol, apoptosis has been implicated as a mechanism
leading to cellular damage in cardiomyocytes, hepatocytes,
endothelial cells, thymocytes, lymphocytes, and neural cells (Ewald
and Shao, 1993; Beckemeier and Bora, 1998; Baker et al., 1999;
Spyridopoulos et al., 2001; Yin and Ding, 2003; Hwang et al., 2005;
Pasala et al., 2015; Jan and Chaudhry, 2019). We are aware of only
a few studies that assessed apoptosis in chronic alcohol myopathy
(CAM) (Fernández-Solà et al., 2002; FernÁndez-SolÀ et al., 2003;
Nakahara et al., 2003). The most well-designed and in-depth
was conducted in skeletal muscle biopsies of 30 male high-dose
well-nourished chronic alcohol consumers and 12 nonalcoholic
controls, with apoptosis being assessed by TUNEL, BAX, and BCL-
2 immunohistochemical assays (FernÁndez-SolÀ et al., 2003).
Chronic alcoholics had significantly higher apoptotic indices in
TUNEL, BAX, and BCL-2 muscle assays, and apoptotic indices
were higher in alcoholics with skeletal myopathy compared to those
without skeletal myopathy (FernÁndez-SolÀ et al., 2003). It can
therefore be speculated that alcohol-induced lipoapoptosis could
be occurring in skeletal muscle, causing atrophy and weakness in
individuals and animals that consume alcohol chronically. These
findings collectively underscore the complex relationship between
lipid composition and muscle health and offer valuable insights
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into underlying mechanisms by which lipids may contribute to
alcohol-induced tissue dysfunction.

Future directions

The current article highlights the significance of lipids as a
primary factor influencing CAM. While the existing descriptive
data provides valuable insights, it lacks a definitive causal link. To
advance our understanding, comprehensive omics studies that focus
on the skeletal muscle lipidome are essential. Identifying specific
lipids altered by chronic EtOH consumption will pave the way for
targeted isolation of lipids that affect muscle size.This approach will
enable more focused mechanistic studies to investigate the precise
impact of lipids on protein anabolic and catabolic pathways. Such
data is crucial for the field, as it extends the literature base beyond
what is typically studied in CAM, by aiming to clarify the role of
lipids in modulating specific gene and protein alterations.

Conclusion

We suggest that the development and progression of CAM
may be due, in part, to the direct or indirect influence of EtOH
on skeletal muscle lipids (Figure 1). Chronic EtOH consumption
significantly alters lipid composition andmetabolismwithin skeletal
muscle, a fact supported by numerous studies published over
several decades. These lipid alterations can significantly impact
muscle size and function. Recent research has shown that specific
changes in lipids can modulate anabolic and catabolic signaling
pathways in conditions such as aging, diabetes, and cancer cachexia
(Das et al., 2011; Gilbert, 2021; Al Saedi et al., 2022). In summary,
this article posits that lipids play a key role in the pathogenesis
of CAM, with further research necessary to substantiate
this hypothesis.
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