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Background: Brain structure changes after long-term adaptation to the
high-altitude environment; however, related studies are few, results are in
consistent, and long-term effects on cognitive function and pathophysiological
mechanisms are unclear. Therefore, diffusion tensor imaging (DTI) was used to
investigate the damage to white matter fiber tracts and correlations between
brain structural abnormalities and cognitive function.

Methods: Forty healthy Han people living on the high-altitude and 40 healthy
Han people living on the plains were enrolled in this study and underwent
magnetic resonance imaging, emotional state assessment, and cognitive
function tests. The sex, age, education level, and social status of the two groups
were not different. The tract-based spatial statistics (TBSS) method was used
to analyze the DTI parameters of the white matter fiber tracts of the two
groups. Moreover, the partial correlationmethod (age and sex as covariates) was
used to analyze the correlations between the intergroup differences in the DTI
parameters and a series of clinical indicators of emotional state and cognitive
function. Two-sample t tests, Mann-Whitney U test, generalized linear model,
or chi-square tests were used for statistical analysis.

Results: Compared with those individuals in the plain group, the scores
on the PSQI, SDS, SAS, PHQ-9, and GAD-7 of individuals in the high-
altitude group were higher, while the scores on the DST-Backwards, MoCA,
and MMSE in the high-altitude group were lower. The fractional anisotropy
(FA) value of the body of the corpus callosum in the high-altitude group
was lower than that in the plain group. The FA value of the body of
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the corpus callosum in the plain groupwas negatively correlatedwith the Logical
Memory, while no significant correlation was found in the high-altitude group.

Conclusion: This study revealed that long-term exposure to a high-altitude
environment could lead to a series of changes in sleep, emotion, and cognitive
function and irreversible damage to the white matter microstructure of the body
of the corpus callosum, which is the related brain region responsible for logical
memory. The absence of logicalmemory impairment in the healthy HanChinese
population living on the high-altitude in this study may be due to the existence
of adaptive compensation after long-term high-altitude exposure.

KEYWORDS

DTI, TBSS, long-term adaptation, high-altitude, cognitive function

1 Introduction

Globally, the high-altitude terrain covers a wide area. In
China, more than 10 million people permanently live on the
Qinghai-Tibetan plateau (QTP) at an altitude of 2,200 m or
more (Wu and Kayser, 2006). In addition, thousands of people
migrate from the plains to high-altitude areas every year for
altitude training (Lundby and Robach, 2016), work or study.
The impact of the unique natural conditions of the high-
altitude (hypoxia, low pressure, low temperature, and strong
ultraviolet (UV) rays) on human health has attracted increasing
attention in the medical community. As the altitude increases,
the atmospheric pressure and partial pressure of oxygen decrease,
and the oxygen supply to tissues and organs decreases. Short-
term high-altitude exposure can cause adaptive changes in multiple
organs and multiple systems, especially the central nervous system,
which manifest as cognitive decline (Henig and Pierson, 2000;
Zhang Y. Q. et al., 2022), abnormal mood (Figueiredo et al.,
2022), and poor sleep quality (de Aquino Lemos et al., 2012;
Morrison et al., 2017). After long-term high-altitude exposure,
hypoxia can directly stimulate brain tissue, causing nonadaptive
chronic damage to the structure of the brain (Luo et al., 2023);
at the same time, physiological adaptations of other systems (such
as the circulatory and respiratory systems) can further cause the
accumulation of brain damage through feedback mechanisms,
which may eventually lead to long-term irreversible brain damage
(Nation et al., 2017), thus causing dysfunctions (Hayashi et al.,
2005; An et al., 2022) other than cognitive dysfunction (Dietz and
McKiel, 2000; Ma et al., 2019; Zhang Z. A. et al., 2022). Longer
exposure to low-pressure and hypoxic environments is associated
with more severe brain injury (Chen et al., 2023), accompanied by
structural changes (Terraneo and Samaja, 2017; Hoiland et al., 2018)
in the brain.

Magnetic resonance imaging (MRI) is a widely used noninvasive
neuroimaging technique that can effectively reveal brain structure,
andMRI-based analysis of the effects of a high-altitude environment
on brain structure can reveal the compensatory process and damage
mechanism of the brain in a high-altitude environment. Previous
studies have revealed that brain structural changes caused by a
high-altitude environment manifest mainly as cortical atrophy and
periventricular white matter hyperintensity on MRI (Garrido et al.,
1996). At present, diffusion tensor imaging (DTI) technology has

been used in studies of white matter microstructure, and the tract-
based spatial statistics (TBSS) method has been used to measure the
fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity
(RD), and mean diffusivity (MD) of the white matter fibers, all
of which can be used to quantify white matter microstructure.
Related studies have shown that a high-altitude environment can
lead to decreased FA values in bilateral corticospinal tracts and
dorsal midbrain reticular formations (Zhang et al., 2012), bilateral
corona radiata and left internal capsule (Zhang Y. Q. et al., 2022),
the left middle cerebellar peduncle (Zhang et al., 2012), the left
superior longitudinal fascicle (Zhang et al., 2010; Zhang et al.,
2012; Chen et al., 2019), the left optic radiation area (Zhang et al.,
2010), right posterior cingulum fibers (Yan et al., 2010; Zhang et al.,
2012), the right prefrontal cortex (Yan et al., 2010), the right
anterior limb of the internal capsule (Chen et al., 2019), the
genu of the corpus callosum (Zhang Y. Q. et al., 2022), the body
of the corpus callosum (Zhang et al., 2012; Chen et al., 2019),
and the splenium of the corpus callosum (Zhang et al., 2012).
Studies have also shown that a high-altitude environment can
increase the FA value in some brain regions (including the corpus
callosum) (Zhang et al., 2010; Zhang et al., 2013; Chen et al.,
2019), and increased FA values are positively correlated with
visuospatial scores (McGuire et al., 2016). Chen et al. (2017) showed
that after high-altitude exposure, FA values increased and MD
values decreased in some brain nuclei (putamen, globus pallidus,
caudate nucleus, dentate nucleus, red nucleus, and substantia
nigra), but FA and MD values were linearly correlated with the
iron concentration only in the putamen. These studies focused
mainly on populations with short-term high-altitude exposure.
There are few studies on brain structural changes after long-term
adaptation to a high-altitude environment, the obtained results
are inconsistent, and the pathophysiological mechanisms remain
unclear.Therefore, this study focused on changes in the whitematter
microstructure of the brain after long-term adaptation to a high-
altitude environment.

Changes in brain structure caused by a high-altitude
environment are significantly correlated with cognitive function.
In most previous studies, a single indicator of cognitive function,
sleep or emotion was used for the correlation analysis. There
are few studies on the multidimensional correlations between
brain structural changes and cognitive function caused by long-
term adaptation to a high-altitude environment (2,616–4,200 m).
Therefore, the objective of this study was to use DTI to investigate
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FIGURE 1
Flow chart of participant inclusion in the analysis.

the damage to white matter fiber tracts in a population after
long-term adaptation to a high-altitude environment, to further
explore the correlations between brain structural abnormalities
and multiple clinical cognitive and physiological indicators,
and to elucidate the brain structural changes and cognitive
impairment characteristics after long-term adaptation to a high-
altitude environment in hopes of providing a clinical reference
for early intervention measures for the brain changes caused
by hypoxia.

2 Materials and methods

2.1 Participants

All participants were Han Chinese. Subjects in the high-
altitude group have lived on the high-altitude environment for at
least 10 years and are partially permanently lived in high-altitude,
and subjects in the plain group are permanently lived in the
plains. The inclusion criteria were as follows: (1) no neurological
diseases; (2) no contraindication for MRI examination; and (3)
no history of tumor or severe metabolic disease. The exclusion
criteria were as follows: (1) a known history of brain injury,
epilepsy, stroke, alcohol or other substance dependence, Parkinson’s
disease, mood disorder or other diseases that may affect cognitive
function, or major diseases (such as cancer); and (2) patients with
contraindications for MRI scanning. We ultimately recruited 40
healthy individuals living in a high-altitude habitat (female/male:
23/17; mean age: 48.15 ± 6.95) and 40 healthy individuals living
in a plain habitat (female/male: 21/19; mean age: 45.20 ± 6.50)
in the study (Figure 1). The baseline data of all participants were
collected, including demographic data, clinical information (weight,
height, blood pressure, and body mass index) and physiological and

biochemical indicators (lipid indicators, complete blood count, etc.).
The sex, age, education level, and social status of the two groups were
not different.

2.2 Neuropsychological assessments

Ten neuropsychological scales, including the Pittsburgh Sleep
Quality Index (PSQI), Self-rating Anxiety Scale (SAS), Self-
Rating Depression Scale (SDS), Patient Health Questionnaire-
9 (PHQ-9), Generalized Anxiety Disorder-7 (GAD-7), Mini-
Mental State Examination (MMSE), Montreal Cognitive
Assessment (MoCA), Digital Span Test (DST) Forwards/Backwards,
Logical Memory Immediately/Delay, and Visual Memory
Immediately/Delay, were used to assess cerebral function in all
participants.

2.3 Image acquisition

T1-weighted structural MRI and DTI scans were obtained on
a 3.0 T MRI scanner (Philips Achieva, Chengdu, China) equipped
with an 8-channel head coil. A T1-weighted structural MRI scan
was acquired via the following scan parameters: repetition time
(TR) = 8.1 ms; echo time (TE) = 3.7 ms; voxel size = 1 × 1
× 1 mm³; field of view (FOV) = 256 × 256 mm; slice thickness
= 1 mm; and flip angle = 12°. As a result of 33 noncollinear
directions with a 1,000 s/mm2 b-factor and 1 repetition with no
diffusion weight, diffusion-weighted images were acquired via the
following scan parameters: TR = 7,150 m; TE = 105 m; voxel
size = 2.2 × 2.2 × 2.2 mm³; FOV = 212 × 212 mm; and slice
thickness = 2.2 mm.
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2.4 Statistical analysis

The analyses of the diffusion data are based on a
voxel-wise statistical method using TBSS (Smith et al.,
2006) in FSL (Smith et al., 2004). To generate a mean FA tract
skeleton for each participant, TBSS applies voxel-wise cross-subject
statistics to all the FA data. This method focuses on the centers of
all-fiber bundles that are common to all participants, and each FA
image is aligned and affined in a 1 × 1 × 1 mmMNI152 space. All the
FA images are subsequently averaged to create amean FA image.The
mean FA is entered into the generated tract skeleton that contains
the centers of the tracts, which are required to generate the tract
skeletons for all groups. By filling in the skeleton with maximal FA
values obtained from the nearest tract center, a skeletonized FA map
is generated from the aligned FA images for every subject.The target
images are aligned via affine MNI152 space. Two-group difference
analysis (adjusted for covariates) was used to assess differences
between the high-altitude group and the plain group with voxel-
wise cross-grouping in all voxels with an FA of ≥0.25. The t statistics
maps are generated via the Monte Carlo permutation test (5,000
permutations). T statistical maps between the groups are calculated
using thresholds for statistical images with a p < 0.05 and family-
wise error correction for multiple voxel comparisons. Finally, we
obtained cluster and peak information by randomizing for each of
the previous comparisons and extracting significant p value areas in
the MNI152 standard space. We also performed the same analysis
on other DTI parameters (MD, RD and AD). Additionally, to
investigate the relationship between structural brain alterations and
cognitive function, we performed a partial correlation analysis of the
extracted significant cluster with the neuropsychological scale scores
(covariates: age and sex). When the clinical indicators, emotional
state assessments, and other indicators were compared between the
groups, the quantitative data were analyzed via a two-sample t-test
or Mann-Whitney U test, while the chi-square test was used to
compare qualitative data. The generalized linear model (PSQI, SAS,
SDS, PHQ-9, andGAD-7 as covariates) was applied for the between-
group comparison of cognitive function scores. Differences were
considered statistically significant when the two-sided p was <0.05.

3 Results

The characteristics of the healthy individuals living in a high-
altitude habitat and healthy individuals living in a plain habitat
are shown (Table 1).

We found that healthy individuals living in a high-altitude
habitat had lower FA values in the body of the corpus callosum
than healthy individuals living in a plain habitat (p < 0.05), but no
significant between-group differences were observed in the other
diffusion parameters (Figure 2). The coordinates of all the extracted
areas as well as the p-values are reported (Table 2). Furthermore, in
healthy individuals living in a plain habitat, FA values in the body
of the corpus callosum were negatively correlated with both the
Logical Memory-Immediately score (p = 0.034, r = −0.344) and the
Logical Memory-Delay score (p = 0.030, r = −0.352). However, no
significant correlation was found in healthy individuals living in a
high-altitude habitat (Figure 3).

4 Discussion

This study investigated the DTI-based brain white matter fiber
bundle of healthy Han people living on the high-altitude (high-
altitude group) and healthy Han people living in the plains (plain
group) to provide multidimensional clinical data as a reference for
the study of brain structural alterations and cognitive function after
long-termhigh-altitude exposure.This study revealed the following:

1) The significant intergroup differences between the high-
altitude group and the plain group were mainly in emotional
and cognitive function indicators, which may be due to
the influence of the high-altitude environment. The anxiety,
depression and cognitive abilities of the high-altitude group
were worse than those of the plain group.

2) This study found that the FA value in the body of the corpus
callosum in the high-altitude group was lower than that in
the plain group, but no significant between-group differences
were observed in other DTI parameters, suggesting that the
corpus callosum is sensitive to the high-altitude environment
and susceptible to the influence of hypoxia, which causes
irreversible damage to the white matter microstructure.

3) Correlation analysis revealed that the FA value of the body
of the corpus callosum in the plain group was negatively
correlated with the Logical Memory-Immediately and Logical
Memory-Delay scores; however, no significant correlation was
found in the high-altitude group, indicating that the corpus
callosum is responsible for logical memory. Due to adaptive
compensation after the long-term high-altitude exposure, the
logicalmemory function impairment does not occur in healthy
Han people living on the high-altitude.

This study revealed that, compared with the plain group,
the high-altitude group had increased PSQI, SDS, SAS, PHQ-9,
and GAD-7 scores and decreased DST-Backwards, MoCA, and
MMSE scores, which was consistent with previous study results.
Hornbein et al. (1989) reported slight decreases in language and
visual long-term memory and increased error rates in aphasia
screening tests in climbers exposed to ultrahigh altitudes. Cognitive
function declines significantly within one to 2 weeks of being
in a high-altitude environment, and symptoms, such as memory
loss, behavior changes, and slow thinking, occur. With prolonged
exposure, adaptation to the hypoxic conditions of the high-altitude
initially occurs, and the cognitive function of individuals recovers
slightly, but full recovery to preexposure levels is difficult (Ling-
Ling and Ming, 2017). Long-term high-altitude exposure can cause
cognitive impairment, manifested as decreased inhibitory control,
attention, and memory (Li and Wang, 2022). This finding may be
due to a series of compensatory responses to maintain homeostasis
produced by the body in the unique low-pressure and hypoxic high-
altitude environment (Quillinan et al., 2016). As the control center of
the human body, the brain is the most sensitive to hypoxia. During
acute hypoxia, the body initiates the systemic cardiopulmonary
reflex to compensate, resulting in vasodilation and hyperventilation
(Sharp and Bernaudin, 2004) and causing dizziness, headache,
shortness of breath and fatigue. During long-term hypoxia, the
liver and kidneys secrete large amounts of erythropoietin, which
increases the hemoglobin concentration and packed cell volume
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TABLE 1 Demographical results and neuropsychological characteristics in high-altitude habitation health controls and plain habitation health controls.

Characteristics HAG PG Significance

Available data
(n)

Mean ±
SD/median

(IQR)

Available data
(n)

Mean ±
SD/median

(IOR)

t/z/X2-Value p-value

Age [years] 40 48.15 ± 6.95 40 45.20 ± 6.50 1.962 0.053

Gender
(female/male)

23/17 —— 21/19 —— 0.202 0.653

Education level
[years]

6 12 ± 5.83 10 16.1 ± 4.41 −1.600 0.132

Social status 35 —— 35 —— 5.393 0.145

 Enterprises and
institutions
personnel

24 —— 16 —— —— ——

 Health
technicians

10 —— 19 —— —— ——

 Unemployed
person

1 —— 0 —— —— ——

BMI [kg/m2] 36 23.92 ± 4.44 37 22.44 ± 2.29 1.783 0.080

SBP [mmHg] 31 116.87 ± 11.79 27 115.74 ± 12.67 0.352 0.726

DBP [mmHg] 31 78.52 ± 13.40 27 72.78 ± 10.10 1.819 0.074

Smoke (Yes/No)
[years]

37 (16/21) —— 37 (6/31) —— 6.469 0.011∗

Drink (Yes/No)
[years]

37 (17/20) —— 37 (13/24) —— 0.897 0.344

RBC [1012/L] 23 4.56 ± 0.54 24 4.79 ± 0.55 −1.451 0.154

HGB [g/L] 23 140.48 ± 16.25 24 142.88 ± 15.20 −0.522 0.604

HCT [%] 23 43.19 ± 5.20 24 43.43 ± 4.54 −0.170 0.865

MCV [fL] 23 94.86 ± 3.84 24 91.22 ± 6.64 2.290 0.027∗

MCH [pg] 23 29.68 ± 6.01 24 29.95 ± 2.14 −0.205 0.838

MCHC [g/L] 23 325.61 ± 10.25 24 328.54 ± 9.82 −1.001 0.322

HbA1c [%] 4 5.93 ± 0.46 7 6.00 ± 0.52 0.727 0.817

TG [mmol/L] 5 1.59 ± 1.30 12 1.53 ± 0.60 0.132 0.897

HDL [mmol/L] 17 1.29 ± 0.38 12 1.49 ± 0.39 −1.408 0.171

LDL [mmol/L] 17 2.78 ± 1.02 12 3.06 ± 0.67 −0.836 0.410

VLDL [mmol/L] 17 0.55 ± 0.43 12 0.47 ± 0.17 0.100 0.523

Neuropsychological Characteristics

PSQI 31 9.23 ± 4.39 35 5.14 ± 3.07 4.328 0.000∗

SDS 32 27.50 (11.00) 36 22.00 (6.00) −3.526 0.000∗

(Continued on the following page)
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TABLE 1 (Continued) Demographical results and neuropsychological characteristics in high-altitude habitation health controls and plain habitation
health controls.

Characteristics HAG PG Significance

Available data
(n)

Mean ±
SD/median

(IQR)

Available data
(n)

Mean ±
SD/median

(IOR)

t/z/X2-Value p-value

Neuropsychological Characteristics

SDS-Standard 32 34.50 (13.00) 36 28.00 (8.00) −3.526 0.000∗

SAS 32 28.50 (10.00) 36 23.50 (8.00) −3.113 0.002∗

SAS-Standard 32 35.50 (12.00) 36 29.00 (10.00) −3.113 0.002∗

PHQ-9 32 5.50 (6.00) 36 0.00 (3.00) −4.353 0.000∗

GAD-7 32 4.00 (7.00) 36 0.00 (3.00) −2.973 0.003∗

DST-Forwards 32 8.00 (2.00) 36 9.00 (2.00) 3.828 0.050

DST-Backwards 32 4.00 (1.00) 36 5.00 (2.00) 15.485 0.000∗

MoCA 32 27.00 (4.00) 31 28.00 (3.00) 7.578 0.006∗

MMSE 30 29.00 (2.00) 31 30.00 (1.00) 10.940 0.001∗

Logical Memory-
Immediately

27 12.85 ± 3.54 34 13.41 ± 3.95 0.115 0.734

Logical
Memory-Delay

26 12.38 ± 3.98 33 12.48 ± 3.81 0.003 0.959

Visual Memory-
Immediately

24 7.50 (4.00) 30 6.00 (4.00) 0.043 0.836

Visual
Memory-Delay

23 8.00 (3.00) 29 8.00 (5.00) 0.013 0.909

Notes:∗: p < 0.05. HAG, high-altitude group; PG, plain group; IQR, interquartile range; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; RBC, red blood
corpuscle; HGB, hemoglobin; HCT, hemoglobin; MCV, mean corpuscular volume; MCH, mean corpsular hemoglobin; MCHC, mean corpsular hemoglobin concentration; HbA1c, glycosylated
hemoglobin; TG, triglyceride; HDL, high density lipoprotein; LDL, low density lipoprotein; VLDL, very low density lipoprotein; PSQI, pittsburgh sleep quality index; SDS, the Self-rating
Depression Scale; SDS-Standard, the standard score on Self-rating Depression Scale; SAS, the Self-rating Anxiety Scale; SAS-Standard, the standard score on Self-rating Anxiety Scale; PHQ-9,
the Patient Health Questionnaire-9; GAD-7, Generalized Anxiety Disorder-7; DST, digital span test; MoCA, montreal cognitive assessment; MMSE, the Mini-Mental State Examination.

(PCV), resulting in an increase in erythrocytes and causing high-
altitude polycythemia (HAPC), which can negatively affect the
cognitive function of the individual (Li and Wang, 2022). Cognitive
abnormalities are likely to occur in a high-altitude environment,
which may be closely related to mechanisms such as oxidative
stress, neurotransmitter or neuronal cell damage, the involvement
of hypoxia-inducible factors, and inflammation (Chen et al., 2023).
In general, in a high-altitude environment, cognitive function
first decreases, then moderately increases, and finally decreases,
resulting in cognitive function impairment (An et al., 2017). In
addition, being in a high-altitude environment affects sleep quality
(de Aquino Lemos et al., 2012; Morrison et al., 2017). Kong et al.
(2011) revealed that, in a high-altitude environment, the sleep
quality of soldiers with polycythemia was worse than that of
healthy soldiers, which could further lead to abnormal mood
and exacerbate irritability and depression (Dewald et al., 2010;
Rosenzweig et al., 2015), and this effect was more evident with

increasing altitude (Figueiredo et al., 2022). In summary, body
damage caused by a high-altitude environment is related to altitude
and duration of exposure, i.e., the higher the altitude and the longer
the exposure time, the greater the injury.

This study revealed that the FA value of the body of the
corpus callosum in the high-altitude group was lower than that
in the plain group. The corpus callosum is located at the bottom
of the interhemispheric fissure; is the largest white matter fiber
tract in the central nervous system; is the most important hub
between the cortical areas of the left and right cerebral hemispheres;
connects the fibers of the motor, sensory and visual cortices
(von Richthofen et al., 2003); and is closely related to emotion,
cognitive function, movement, and vision. The corpus callosum is
sensitive to a high-altitude environment and easily senses changes
in the partial pressure of oxygen, causing different degrees of
damage. Humans who acutely enter high-altitudes develop transient
bilateral visual loss associated with cytotoxic damage to the corpus
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FIGURE 2
Differences in fractional anisotropy (FA) between high-altitude group and plain group. Notes: (A) The mean FA skeleton across all subjects is shown in
green over the FMRIB58-FA-1mm template; (B) Boxplot of mean FA in high-altitude group, plain group.

TABLE 2 White matter region of lower FA in high-altitude group compared with plain group.

Index Tract label Voxels MNI-space p-value

x y z FWE corrected

1 Body of corpus callosum 270 12 2 29 0.034

Notes: FA, fractional anisotropy; FWE, family-wise error; MNI, montreal neurological institute.

callosum (Yang et al., 2023). Patients with high-altitude cerebral
edema present withmultiple microbleeds along the corpus callosum
(Schommer et al., 2013; Son et al., 2021; Karki et al., 2022) and
hemosiderin deposition (Kallenberg et al., 2008; Schommer et al.,
2013). Prolonged high-altitude exposure may damage blood vessels
and promote neuronal apoptosis and the abnormal expression of
related proteins (Cramer et al., 2019; Cao et al., 2023), thereby
causing white matter microstructural damage. Zhang Y. Q. et al.

(2022) showed that the FA value of the corpus callosum (body,
splenium) decreased after short-term mountain climbing, which is
consistent with the results of this study. In addition, after 2 years
of high-altitude exposure, the FA value of the body of the corpus
callosum decreases, and the FA value of the genu of the corpus
callosum increases (Chen et al., 2019). After long-term adaptation
to a high-altitude environment, the FA value of the corpus callosum
increases (Zhang et al., 2010). The FA value is the diameter and
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FIGURE 3
Correlations between FA and neuropsychological characteristics. Notes: Plain: plain group; High-altitude, high-altitude group; FA, fractional
anisotropy; PSQI, Pittsburgh Sleep Quality Index; SDS, the Self-rating Depression Scale; SDS-Standard, the standard score on Self-rating Depression
Scale; SAS, the Self-rating Anxiety Scale; SAS-Standard, the standard score on Self-rating Anxiety Scale; PHQ-9, the Patient Health Questionnaire-9;
GAD-7, Generalized Anxiety Disorder-7; DST, Digital Span Test; MoCA, Montreal Cognitive Assessment; MMSE, the Mini-Mental State Examination.

density of white matter fibers and reflects the microscopic structural
characteristics of white matter fibers (Chen et al., 2016). A decrease
in the FA value indicates that white matter microstructural integrity
is damaged (Basser and Pierpaoli, 1996), which is associated with
local brain edema, negative changes to the cerebrospinal fluid
(CSF), damage to the myelin sheath structure, changes in axonal
morphology and structure, and changes in the interaxial spacing of
fiber tracts (Beaulieu, 2002). In this study, a decrease in the FA value
indicated that long-term adaptation to a high-altitude environment
caused irreversible damage to the white matter microstructure
of the corpus callosum. White matter structure is also disrupted
with age (Cao et al., 2021), and white matter destruction can
lead to hippocampal atrophy and induce cognitive impairment and
dementia (Alber et al., 2019; Celle et al., 2021; Reas et al., 2021).
Brain structural changes caused by long-term exposure to a high-
altitude environment constitute the anatomical basis of cognitive
impairment. Further investigation is needed to determine whether
the cognitive impairment observed in this studywas affected by both
age and the high-altitude environment.

This study revealed that the FA value of the body of the corpus
callosum in the plain group was negatively correlated with the
Logical Memory-Immediately and Logical Memory-Delay scores,
whereas no significant correlation was found in the high-altitude
group. Logical memory refers to the ability to sequentially encode,
store and retrieve plots or information. The Logical Memory test is
often used to evaluate verbal memory ability and to assess cognitive
function. Previous studies have shown that delayed recall added to a
memory task (i.e., WMS-III logical memory, Story A) can increase
the overall accuracy of the differentiation between mild cognitive
impairment (MCI) and normal aging (Rabin et al., 2009). The brain
regions associated with logicalmemory include the leftHeschl gyrus
(Dickey et al., 2002), hippocampus (Rhein et al., 2020), cingulate
gyrus (Medhi et al., 2021) and cerebellar vermis (Levitt et al.,
1999). In addition, abnormalities in the corpus callosum can
also cause memory impairment (Zaidel, 1995; Paul et al., 2016).
Related studies (Estruch et al., 1997; Ahmed et al., 2012) have
shown that abnormalities of the corpus callosum (atrophy, less
gray matter, or reduced thickness) are significantly associated with
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logical memory, visual memory, or visual representation. After
partial or total resection of the corpus callosum, all patients
developed logical memory impairment (Zaidel and Sperry, 1974).
These results indicate that the corpus callosum is also a relevant
brain region responsible for logical memory, which is consistent
with the results of this study. For the first time, this study
explored the correlation between logical memory and the FA
value of the body of the corpus callosum. However, no significant
correlation was found between the FA value of the body of the
corpus callosum and logical memory in the high-altitude group.
These findings indicate that the high-altitude environment has
not caused logical memory impairment, which may be related
to tissue regeneration in other related brain regions responsible
for the logical memory changes induced by prolonged high-
altitude exposure or abnormal brain functional activity (Ding et al.,
2015)caused by a combination of adaptive compensatory effects,
but the specific pathophysiological mechanisms involved remain to
be studied.

This study also has several limitations. First, owing to sample size
limitations, this studymainly observed trends in differences between
the groups, and correlation analysis only observed correlations,
without multiple comparison correction; therefore, subsequent
studies with larger sample sizes are needed to further confirm the
results of this study. Second, other factors that may affect the study
results, such as lifestyle factors, were not considered in this study.
Future studies need to include more Han individuals living on the
high-altitude and plains for multigroup control analysis. Finally,
this study analyzed only DTI data, and other analyses of related
MRI data were not performed. Multimodal MRI studies on the
comprehensive effects caused by a high-altitude environment are
needed in the future.

5 Conclusion

This study investigated the correlations between white matter
structural changes and clinical indicators in the high-altitude group
and the plain group and conducted a correlation analysis on the
changes in cognitive function and brain structure after long-term
high-altitude exposure. This study revealed that long-term exposure
to a high-altitude environment could cause a series of changes
in sleep, emotion, and cognitive function, as well as irreversible
damage to the white matter microstructure of the body of the
corpus callosum, which is the brain region responsible for logical
memory. In this study, the high-altitude group did not develop
logical memory impairment, which may be due to the existence of
adaptive compensation after long-term high-altitude exposure. The
findings of this study suggested that TBSS-based DTI analysis could
more objectively locate and quantitatively evaluate white matter
microstructural changes in individuals after long-term high-altitude
exposure and clarified the impact of a high-altitude environment on
cognitive function.
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Glossary

AD axial diffusivity

BMI body mass index

CSF cerebrospinal fluid

DBP diastolic blood pressure

DST Digital Span Test

DTI diffusion tensor imaging

FA fractional anisotropy

FWE family-wise error

FOV field of view

GAD-7 Generalized Anxiety Disorder-7

HAG high-altitude group

HAPC high-altitude polycythemia

HbA1c glycosylated hemoglobin

HCT hemoglobin

HDL high density lipoprotein

HGB hemoglobin

LDL low density lipoprotein

MCH mean corpsular hemoglobin

MCHC mean corpsular hemoglobin concentration

MCI mild cognitive impairment

MCV mean corpuscular volume

MD mean diffusivity

MoCA Montreal Cognitive Assessment

MMSE the Mini-Mental State Examination

MNI Montreal neurological institute

MRI magnetic resonance imaging

PCV packed cell volume

PG plain group

PHQ-9 the Patient Health Questionnaire-9

PSQI Pittsburgh Sleep Quality Index

QTP Qinghai-Tibetan plateau

RBC red blood corpuscle

RD radial diffusivity

SAS the Self-rating Anxiety Scale

SBP systolic blood pressure

SDS the Self-rating Depression Scale

TBSS The tract-based spatial statistics

TE echo time

TG triglyceride

TR repetition time

UV ultraviolet

VLDL very low density lipoprotein
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