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Introduction: Automatic segmentation of the left atrium (LA) constitutes a crucial
pre-processing step in evaluating heart structure and function during clinical
interventions, such as image-guided radiofrequency ablation of atrial fibrillation.
Despite prior research on LA segmentation, the low contrast in medical images
exacerbates the challenge of distinguishing various tissues, rendering accurate
boundary delineation of the target area formidable. Moreover, class imbalance
due to the small target size further complicates segmentation.

Methods: This study aims to devise an architecture that augments edge
information for LA segmentation from late gadolinium enhancement magnetic
resonance imaging. To intensify edge information within image features, this
study introduces an Edge Information Enhancement Module (EIEM) to the
foundational network. The design of EIEM is grounded in exploring edge
details within target region features learned from images. Additionally, it
incorporates a Spatially Weighted Cross-Entropy loss function tailored for
EIEM, introducing constraints on different regions based on the importance of
pixels to edge segmentation, while also mitigating class imbalance through
weighted treatment of positive and negative samples.

Results: The proposed method is validated on the 2018 Atrial Segmentation
Challenge dataset. Compared with other state-of-the-art algorithms, the
proposed algorithm demonstrated a significant improvement with an average
symmetric surface distance of 0.684 mm and achieved a commendable Dice
coefficient of 0.924, implicating the effectiveness of enhancing edge information.

Discussion: The method offers a practical framework for precise LA localization
and segmentation, particularly strengthening the algorithm’s effectiveness in
improving segmentation outcomes for irregular protrusions and discrete
multiple targets. Additionally, the generalizability of our model was evaluated
on the heart dataset from the Medical Segmentation Decathlon (MSD) challenge,
confirming its robustness across different clinical scenarios involving LA
segmentation.
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1 Introduction

Atrial fibrillation stands as the most prevalent sustained cardiac
arrhythmia, carrying an elevated risk of heart failure, vascular
embolism, and sudden death. Timely diagnosis and intervention
are pivotal in enhancing patients’ cardiac function and reducing
mortality rates. Late gadolinium enhancement magnetic resonance
imaging (LGE-MRI) provides a comprehensive view of cardiac
structural morphology and function. The assessment of the LA in
LGE-MRI images holds crucial clinical significance, including
planning and guidance of atrial fibrillation ablation, postoperative
follow-up studies, fibrosis quantification, and biophysical modeling
(Aschauer et al., 2016; Khurram et al., 2016). However, the small left
atrial cavity, enclosed by the thin atrial wall and featuring complex
anatomical structures such as irregular protrusions and discrete
multiple targets (Maceira et al., 2010; Wang et al., 2019; Xiong et al.,
2021), poses challenges. Moreover, adjacent anatomical structures,
such as the left ventricle, often exhibit similar image intensities,
making accurate identification more difficult. While manual
segmentation could reconstruct and explore the atrial structure, it
typically necessitates specialized domain knowledge and incurs high
labor costs (Oakes et al., 2009). Additionally, manual atrium
segmentation is time-consuming, error-prone, and highly
subjective (Petitjean and Dacher, 2011; Caudron et al., 2012).
Therefore, the development of an automatic segmentation
method with high precision for the LA holds substantial scientific
significance and practical value as an auxiliary tool for medical
diagnosis, treatment planning, prognosis, and related applications.
Traditional segmentation methods, based on regional growing
(Karim et al., 2008) and atlas guiding (Zuluaga et al., 2013),
encounter limitations due to poor image quality and
individualized variations in anatomical structures. In contrast,
deep learning methods, renowned for their exceptional
segmentation accuracy, possess the ability to automatically learn
image features and have extensive applications in image
segmentation (Litjens et al., 2017). The U-Net network
(Ronneberger et al., 2015), a variant of Fully Convolutional
Network (FCN) (Long et al., 2015), has been widely adopted for
medical image segmentation since 2015. Building upon the success
of 2D U-Net, 3D deep learning networks, such as 3D U-Net (Çiçek
et al., 2016) and V-Net (Milletari et al., 2016), have been developed
to directly process 3D volumetric data and generate 3D volumetric
segmentation results. In the domain of atrial segmentation, deep
learning has been the focal point of comprehensive research
(Drozdzal et al., 2016). modified the network structure by
introducing short-skip connections to FCN, achieving notable
segmentation results without post-processing operations (Yang
et al., 2020). proposed a joint segmentation method, combining
spatial consistency from multiple views with a recursive attention
module for LA and scar segmentation in 3D LGE-MRI images
(Wong et al., 2022). Proposed a novel GCW-UNet architecture,
incorporating Gaussian blur and channel weight neural network for
automatically segmenting the left atrial region in MRI images of
patients with left atrial enlargement (Uslu and Bharath, 2023).
Presented a quality control method based on the multi-view
network TMS-Net. The approach significantly improves noise
robustness and run-time quality estimation for cardiac MRI
segmentation through an innovative design featuring a single

encoder and three decoders (Raj Singh et al., 2023). Introduced
ARW-Net, a deep learning-based segmentation approach with
attention-guided residual links and upgraded deep supervision,
showcasing its potential as an outstanding solution for automated
and generalized cardiac segmentation. Numerous studies have
integrated deep learning methods with traditional approaches or
incorporated prior knowledge into deep learning networks to obtain
more anatomically reasonable segmentation results. For instance,
(El Jurdi et al., 2020), integrated position and shape information into
the convolutional layers of the model, guiding the model to identify
the target structure’s location and fine-tuning network parameters
under a fully supervised learning framework.

Despite the significant progress achieved by deep learning
methods in atrial image segmentation, challenges persist,
particularly in data imbalance and effectively segmenting blurred
edges. In cardiac MRI images, the LA or its margins serve as small
structures, contributing to class imbalance issues within the data due
to their limited size. Approaches to addressing class imbalance
encompass techniques such as image cropping and cascaded
networks. For instance (Xiong et al., 2020), employed two
continuous Convolutional Neural Networks (CNNs) for atrium
segmentation. The first CNN identifies the region of interest,
while the second CNN is utilized for target structure
segmentation. Based on the 3D U-Net (Vesal et al., 2020),
developed a two-stage architecture encompassing coarse and fine
segmentation, achieving end-to-end learning. In contrast to
cropping or cascaded network methods (Kausar et al., 2021),
addressed class imbalance by leveraging prior knowledge and
posterior handling operations, utilizing a dense V-Net for
segmentation, and fine-tuning parameters. In addition (Kausar
et al., 2023), proposed a 3D shallow residual segmentation
network based on the 3D multi-scale residual learning structure,
introducing a composite loss function and parameter adjustment to
tackle class imbalance in medical image datasets without pre-
processing and post-processing. Despite successful LA
segmentation, these methods exhibit limitations, such as
information loss in cropping or cascaded network approaches,
redundancy in two-stage architectures, challenges in ensuring
model robustness, susceptibility to subjective judgments and
empirical influences in designing composite loss functions and
adjusting parameters. Additionally, efforts have been made to
tackle the challenge posed by the indistinct edges of target
structures (Huang et al., 2022). applied the distance map
associated with the target structure’s edge as a weight map and
utilized a two-stage network to improve LA segmentation
performance (Uslu et al., 2022). designed a multi-task
segmentation network that integrated edge information of the
image into decoding modules of multiple scales. Nevertheless,
these methodologies did not fully leverage the available edge
information, limiting their effectiveness in addressing the
challenges posed by blurred boundaries.

Therefore, to improve the performance in atrial boundaries, this
research introduces an EIEM capable of optimizing segmentation by
learning and reinforcing boundary information of the target
structure, accompanied by a specifically designed Spatially
Weighted Cross-Entropy (SWCE) loss function that constrains
the module. The contributions of this work can be summarized
as follows:
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• A novel EIEM was developed to enhance the edge information
for image segmentation by integrating edge features with
region features. Channel attention modules and multi-scale
structural feature fusion are incorporated for edge information
learning, enhancing the model’s attention to crucial edge
feature channels and the model’s capacity to capture
diverse-scale structures and details.

• In this study, we innovatively designed a SWCE loss function
tailored to the EIEM to address the class imbalance in the
dataset. This loss function incorporates dynamic weighting for
positive and negative samples, allowing for adaptive
adjustments. Combined with image cropping, the
customized loss function effectively mitigates class
imbalance in a flexible and data-driven manner.

• The SWCE loss function adapts to the significance of each area
through its distance-sensitive weighting scheme, aiming to
effectively leverage edge details and alleviate challenges posed
by fuzzy edges in segmentation. Supplemented by the Cross-
Entropy loss linked to the target region segmentation network,
the SWCE loss encourages the model to prioritize edge regions
and enhances flexibility.

• The proposed framework is validated on the 2018 Atrial
Segmentation Challenge dataset, demonstrating superior
performance compared to state-of-the-art methods, especially
regarding average symmetric surface distance. The integration of
edge constraints improves segmentation outcomes, particularly
for irregular protrusions and discrete multiple targets.

The paper is organized as follows: Section 2 provides a detailed
introduction to our model; Section 3 outlines the experimental
methodology; Section 4 discusses the experimental results; and
Section 5 concludes the paper.

2 Materials and methods

2.1 Datasets

The datasets utilized in the proposed method are sourced from
two distinct collections:

2018 Atrial Segmentation Challenge dataset (Xiong et al., 2021):
The dataset used comprises 100 3DLGE-MRI images.While the dataset
included additional test cases, only the 100 training cases were utilized
in our study as they were the primary dataset provided for training and
validation during the challenge. These cases were considered sufficient
tomeet the experimental requirements. Each set of images consists of an
original image and a corresponding ground truth (GT) label. The
original images cover the full LA, and the GT labels include the intact
left atrial cavities and part of the pulmonary veins annotated by domain
experts. The spatial resolution of these images is 0.625 × 0.625 ×
0.625 mm³. Each 3D volume comprises 88 slices along the Z-axis, and
the image dimensions are either 640 × 640 or 576 × 576 pixels. The
grayscale values in the original images range from 0 to 255. For the GT
labels, the grayscale value is 0 or 255, and a grayscale value of 0 denotes
the background class, while a value of 255 designates the area
constituting the GT label.

MSD heart dataset (Simpson et al., 2019; Antonelli et al., 2022):
This dataset consists of 20 annotated MRI scans, each containing

approximately 100 2D image slices, capturing the entire heart at a
single cardiac phase. The images were acquired under free-breathing
conditions, with ECG gating, using a 1.5T Achieva scanner. The
voxel resolution for these scans is 1.25 × 1.25 × 2.7 mm³. Labeling of
the left atrium, including the left atrial appendage, mitral plane, and
portal vein end points, was performed using an automated tool,
followed by the expert’s manual corrections to ensure high accuracy.
A key characteristic of this dataset is the small sample size combined
with significant variability across the images, which was used to
evaluate the generalization performance of the model trained on the
2018 Atrial Segmentation Challenge dataset.

2.2 Pre-processing

Since the MRI images show that the proportion of the LA is
small, there is a class imbalance between the foreground class,
composed of the LA, and the background class, consisting of
other anatomical structures. The learning process tends to focus
on the large background class, resulting in poor segmentation of the
LA. Moreover, some images consist of inconsistent dimensions.
Therefore, based on the positional information of the LA, in this
study, the images are first center-cropped to 300 × 300 pixels (from
the 2018 Atrial Segmentation Challenge dataset) or 130 × 130 pixels
(from the MSD heart dataset) to increase the proportion of the
region of interest in the image and then resized to fit the same size of
256 × 256, aligning with the network’s input requirements. The
difference in cropping sizes arises from variations in the proportions
of the LA within the images, with the cropping sizes being roughly
selected to ensure that the background is reduced while retaining the
entire LA in all cases. Moreover, data augmentation is applied to the
training set through a randomized combination of transformations,
including rotation, translation, and scaling, in line with the
conditions that may be encountered during medical image
acquisition. This operation introduces diversity into the data,
augmenting the presence of noisy data, while also mitigating the
impact of variations in cropping sizes. The inclusion of a variety of
data and the introduction of additional noisy data can enhance the
model’s robustness and generalization capabilities.

For both datasets, the data is split into 60% for training, 20% for
validation, and 20% for testing. Each data set used for network
training consists of images, corresponding GT labels, and generated
edge images. Both GT labels and generated edge images are binary,
with foreground regions set to 1 and background regions set to 0.
The erosion operation is utilized to extract the edges from the
GT labels.

2.3 Edge information enhancement
segmentation network

In this study, the 2D U-Net network serves as the backbone
architecture for learning the region features of the target anatomy.
The U-Net network comprises nine blocks, each with two
continuous 3 × 3 convolution layers. Following pre-processing,
the input images are fed into the network. After two successive
3 × 3 convolutions in the encoder block, down-sampling is performed
through the max-pooling process since the max-pooling operation
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can retain more texture information compared to the average-pooling.
The decoder block also contains two successive 3 × 3 convolution
layers, followed by up-sampling achieved through deconvolution. The
batch normalization and dropout layers are used in the network as
regularization techniques to mitigate overfitting. The Relu activation
function is applied in feature extraction layers, while the sigmoid
activation function is employed in classification layers.

The EIEM concentrates on learning edge features of the target
anatomy from the backbone network, while also integrating the learned
edge details back into the backbone network. Initiating from input
images, the network’s learning process diverges into two distinct
directions: learning region features through the backbone network

and extracting edge features through the EIEM, which complement
each other. The network produces twomain outputs: the predicted label
images and the predicted edge images for the LA. The final
segmentation results are obtained by post-processing the predicted
label images by extracting the maximum connected component.

2.3.1 Edge Information Enhancement
Module, EIEM

Edge information plays a critical role in accurately delineating
the boundaries of the target and improving overall segmentation
accuracy. To learn and enhance the edge information of the target
structure, an EIEM is introduced, as illustrated in Figure 1. The

FIGURE 1
The overall architecture of the proposed method.

Frontiers in Physiology frontiersin.org04

Zhang et al. 10.3389/fphys.2024.1478347

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1478347


EIEM first learns edge features from the backbone network atmultiple
scales and integrates these multi-scale features. These learned edge
features are then fed back into the backbone network for additional
reference. The EIEM takes the input image and region featuremaps as
inputs, and the outputs are edge feature maps of the target structure.
The input image, as well as outputs of the first four blocks in the
backbone network, serve as inputs for the branches of EIEM,
constituting a total of five side branches. The first side branch
(EIB1) directly takes the original image as input and perceives
global image information, which can capture finer-grained features.
These low-level features typically contain more details and texture
information, which helps to improve the model’s sensitivity to input
images and enhance edge feature extraction. This branch integrates
with the backbone network by receiving input directly from the image
and providing comprehensive edge details that enhance the global
context for subsequent processing stages. The inputs of other side
branches (EIB2-5) receive region features of the target anatomy at
different scales from the backbone network. Two sequential 3 ×
3 convolution operations are subsequently employed to extract the
edge features from the multi-scale region features. The resultant
feature maps are then up-sampled to match the input image size,
aligning with region features from the output of the backbone
network. Within this submodule, regularization constraints,
including batch normalization and dropout layers, are applied.

Within the edge information block (EIB), channel attention (Hu
et al., 2018) is applied to enhance the network’s learning capacity for
edge details by focusing on channels containing crucial edge-related
information of the target structure. The dynamic adjustment of
channel weights by channel attention enables a selective
suppression of channels deemed less relevant to edge segmentation,
thereby reducing the computational burden associated with processing
redundant information. This mechanism is integrated into the
backbone network by optimizing feature representations before
combining them with the region features from the backbone. Due

to its superior performance and low computational cost, channel
attention significantly enhances the network’s ability to capture
critical edge information while reducing computational redundancy.

Each EIB yields two outputs: the edge features at the original
image size (oi1) and the edge features before undergoing up-sampling
(oi2), as depicted in Figure 2. The oi1 outputs are fused and processed
to obtain the final predicted edge images, constrained by the SWCE
loss to optimize the EIEM’s performance in edge segmentation.
Concurrently, the fused edge features are combined with the
region features learned by the backbone network to enhance the
network’s overall segmentation performance on the target,
constrained by Binary Cross-Entropy (BCE) loss. Furthermore, the
oi2 outputs are integrated with the region features from the decoder
parts of the backbone network, providing additional edge information
for learning atrial region features and ensuring the preservation of
sensitivity to the edge throughout the decoding process. These
comprehensive integration and fusion processes with the backbone
network, guided by SWCE and BCE losses, ensure the model’s
effectiveness in capturing and delineating edges and reinforce the
overall accuracy of the model’s segmentation outputs.

2.3.2 Loss functions
The network incorporates two loss functions: the Binary Cross-

Entropy Loss (LBCE) associated with the target region segmentation
network and the Spatially Weighted Cross-Entropy Loss (LSWCE)
pertaining to the EIEM. The comprehensive loss (L) of the network
is the weighted summation of these two losses, expressed by the
formula (Equation 1):

L � waLBCE + wbLSWCE (1)
where wa and wb are set the values 0.5 each, representing the
weighted coefficients for the two losses.

BCE loss is selected for its ability to achieve a better balance
between sensitivity and specificity in segmentation results, exhibiting

FIGURE 2
The structure of the edge information block (EIB).
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greater stability and a propensity to converge more readily toward the
global minimum throughout the optimization process. The BCE loss
function of the network is as follows (Equation 2):

LBCE � −yp log ŷ( ) − 1 − y( )p log 1 − ŷ( ) (2)
where y denotes the value of GT labels and ŷ denotes the value of
predicted images.

The left atrial edges occupy only a tiny region in a thoracic LGE-
MRI image, with the background class covering a significant
proportion of the data. Therefore, the SWCE loss function of the
network is designed based on the weighted binary cross-entropy loss
function to ensure a balanced impact of foreground and background
classes on network learning. Further, the SWCE loss function
introduces additional parameters to dynamically modulate the
importance of pixels based on their spatial characteristics and
mitigate class imbalance through dynamic weights assigned to
positive and negative samples during computation. The
formulation of the loss function is defined as follows (Equation 3):

LSWCE y, ŷ( ) � − 1
N
∑N
i�1

c · yi · log ŷi( ) + 1 − yi( ) · log 1 − ŷi( )[ ] · wi

(3)
where N represents the total number of pixels in the image, yi

denotes the GT label for pixel i, ŷi represents the predicted
probability for pixel i, and wi signifies the spatial weight of the
pixel i. The spatial weight wi is computed based on the pixel’s
proximity to the edge. wi and yi are given by the following
expressions ( Equations 4, 5):

wi �
a, if yi � 1

b + 1
d to e i( ), if yi � 0 and∃j, yj � 1

b, if ∀i, yi � 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(4)

yi � 1, if d to e i( )≤ d − 1
0, otherwise

{ (5)

where d to e(i) is the Euclidean distance from pixel i to the nearest
edge pixel. In Equation 5, the method for thickening the edge inward
involves an erosion operation, with the default that pixel i is inside
the edge. The parameters a, b, c, and d in Equations 3–5 play crucial
roles in the SWCE loss function, governing edge weighting, weight
decay rate, class-wise weighting, and edge range, with each serving
specific purposes in improving segmentation performance. These
parameters are designed to address challenges related to boundary
precision and handling class imbalance.

Firstly, parameter a serves as the edge weighting and is introduced
to enhance the model’s sensitivity to edges. Assigning higher weights to
edge pixels encourages the model to focus more on capturing fine
boundary details. This is particularly important in cases where the target
structure is small, complex, or irregularly shaped, as these challenging
characteristics make it more difficult for the model to capture and
differentiate fine boundary details. In such scenarios, the model must be
even more sensitive to subtle edge variations, making the role of
parameter a crucial for improving segmentation performance.

Secondly, parameter b governs the weight decay rate based on the
pixel’s distance from the edge. This helps manage the class imbalance
between the large background and the small foreground regions by
reducing the influence of background pixels farther from the edge.

Combining the reciprocal of the d to e(i)with parameter b achieves a
weight decay mechanism, assigning higher weights to pixels closer to
the edges and lower weights to those farther away during loss
computation, thereby emphasizing pixels near the boundary. Since
pixels near the boundary often contain critical transitional
information between different regions, focusing on them allows the
model to capture fine boundary details more accurately. When b is set
to a smaller value, the sensitivity of loss weights to distance increases,
prompting the model to focus more on pixels near the edges and
emphasize the learning of edge details. Conversely, with a larger value
of b, the sensitivity of loss weights to distance decreases, allowing the
model to process the entire image smoothly. This design enables
flexible adjustments to the model’s focus on different regions of the
image, balancing the importance of pixels in the image and enhancing
its ability to learn edge information.

Thirdly, parameter c functions as the class-wise weighting to
address the class imbalance, helping to balance the contributions of
positive and negative samples during training. By tuning c
appropriately, the SWCE loss function adjusts the relative
importance of positive and negative samples, ensuring the model
effectively learns from both classes. This adjustment leads to a more
balanced performance across classes.

Lastly, parameter d denotes the edge range. By expanding d -
1 layers inward, the annotated edge region is broadened, providing a
more extensive context of the edge features for supervision, which aids
in learning more robust edge representations. A larger d value extends
the edge region, allowing the model to capture more contextual
information around the boundary, which is beneficial for learning
the structural characteristics of the edge. However, an excessively large
d value may introduce unnecessary complexity. Therefore, the value of
d should strike a balance between capturing sufficient context and
avoiding overcomplication. Additionally, d will further affect the
calculation ofw in Equation 4 due to its impact on the y-value of pixels.

Together, these parameters enable the SWCE loss function to
focus on edge regions, manage class imbalance, and provide
flexibility in how different areas of the image are weighted during
training. Their careful selection and tuning, as demonstrated in our
ablation studies, contribute to optimizing the model’s performance
in image segmentation tasks, enhancing its fine-grained perception
of target structures and segmentation accuracy.

2.3.3 Metrics
The proposed method uses the Dice coefficient (DC), Jaccard

coefficient (JC), and average symmetric surface distance (ASSD) as
metrics to assess the validity of the results.

The DC quantifies the overlap between GT labels and predicted
images, with values between 0 and 1. A higher DC signifies a larger
overlapping area, indicating a better outcome. The formula for the
DC is as follows (Equation 6):

D A,B( ) � 2 · A ∩ B| |
A| | + B| | (6)

where A represents the GT labels, B denotes the predicted images,
|A ∩ B| signifies the intersection of A and B. |A| and |B| denote the
sum of the voxel values of the images. The JC is a metric used to
assess the similarities and differences between GT labels and
predicted images. A higher JC value indicates a greater similarity
between the two. The formula for the JC is as follows (Equation 7):
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J A,B( ) � A ∩ B| |
A ∪ B| | (7)

where |A ∩ B| represents the intersection of A and B, and |A ∪ B|
denotes the union of A and B. The ASSD is chosen as the metric for
assessing the segmentation results in terms of distance. The unit of
ASSD is in millimeters, quantifying the average distance between
two surfaces in the images. A smaller ASSD value indicates a closer
alignment between GT labels and predicted images, reflecting a
better segmentation result. The formula for the ASSD is as follows
(Equation 8):

ASSD A,B( ) � ASD A,B( ) + ASD B,A( )
2

(8)

in which Equation 9 is given by the following expression:

ASD A,B( ) �
Σ
a∈A

minb∈Bd a, b( )
A| | (9)

where ASD(A, B) denotes the Average Surface Distance between
volumes A and B, and d(a, b) represents the Euclidean distance
between pixels a and b. |A| signifies the number of surface voxels in
volume A.

To further evaluate the performance of the proposed method, we
compute the mean and standard deviation (std) of the metrics (DC, JC,
ASSD) across test cases. The mean reflects the average performance of
the segmentation, providing a central tendency across cases. Meanwhile,
the standard deviation quantifies the consistency or variability of the
segmentation results. A smaller standard deviation suggests more stable
performance, while a larger one indicates greater variability across test
cases. Together, the mean and standard deviation offer insights into not
only the overall effectiveness of the segmentation method but also its
stability across various conditions.

3 Experiments and results

Due to the challenges posed by edge blurring and the similarity in
grayscale values of adjacent tissues in medical images, the segmentation
of boundary details of the target structure presents a challenging task. In
response to this challenge, the study introduces an edge information
enhancement design and conductsmultiple sets of ablation experiments
to demonstrate the effectiveness of the proposed method.

Our model was implemented using the Keras framework
(version 2.11.0) and operates on a workstation equipped with an
NVIDIA GeForce RTX 3090 GPU. The operating system is Ubuntu
22.04, and the Python environment uses version 3.8. Additionally,
CUDA 11.2 and cuDNN 8.1 are employed for GPU acceleration. We
employed the Adamax optimizer with polynomial decay to adjust
the learning rate during training, starting with an initial value of
0.001. The model was trained for 200 epochs, with the DC on the
validation set monitored throughout the training process. The DC
on the validation set continuously improved and stabilized around
the 200th epoch. As the final model, we selected the parameters that
achieved the highest DC on the validation set, ensuring optimal
segmentation performance during testing. For further details on the
code and environment setup, please refer to the following GitHub
repository: https://github.com/PencilSC/EIEM, where we provide
the code and necessary configurations to facilitate reproducibility.

3.1 Performance evaluation of the
proposed framework

To assess the performance of the proposed model, this study
compares it with several state-of-the-art segmentation models on
the 2018 Atrial Segmentation Challenge dataset, including nnU-Net
(Isensee et al., 2021). The quantitative comparison results, based on
three evaluation metrics, are presented in Table 1. In contrast to the
other methodologies enumerated in Table 1, the presented approach
demonstrates superior performance regarding the ASSD.
Meanwhile, the Dice and Jaccard coefficients of this study
achieve results comparable to other state-of-the-art methods.

Although the algorithm proposed in this study ranks fourth in
DC and third in JC, the experimental results show that our algorithm
yields slightly lower performance than the methods proposed by
Huang et al. (2022), Bian et al. (2019) in terms of Dice and Jaccard
coefficients, with only a small difference in values. Meanwhile, our
proposed algorithm achieved a significantly improved ASSD result
of 0.693 compared to Huang et al.’s 0.82 (the best result of assessed
algorithms) and Bian et al.’s 1.496. This enhancement indicates that
our algorithm can more accurately capture the manually segmented
LA. Compared to other methods, our proposed algorithm enhances
boundary information, resulting in more accurate segmentation
outcomes, which is crucial for clinical diagnosis and treatment
planning. Accurate boundary segmentation can assist clinicians
in identifying pathological areas better and provide support for
surgical navigation and treatment efficacy evaluation. The lack of
notable differences in Dice and Jaccard coefficients may be
attributed to factors such as dataset characteristics, data pre-
processing, algorithm architecture, and implementation details.

3.2 Ablation and analysis

3.2.1 Number of branches
The encoder progressively reduces the size of the feature maps

through multiple pooling operations. In the shallow layers of the
U-Net, where the resolution of feature maps is higher, fine details
such as edge information are preserved. To investigate the impact of

TABLE 1 Performance comparison between the proposed method and
other methods for LA segmentation based on DC, JC, and ASSD with ± std
following the values.

Method DC (%) JC (%) ASSD (mm)

2D U-Net 91.36 ± 2.14 84.16 ± 3.56 0.832 ± 0.253

Chen et al. (2019) 90.1 ± 3.0 82.2 ± 6.0 1.04 ± 0.32

Yang et al. (2019) 92.24 85.64 1.490

Bian et al. (2019) 92.83 86.69 1.496

Isensee et al. (2021) 92.80 ± 1.74 86.62 ± 3.02 0.942 ± 0.741

Uslu et al. (2022) 92.1 ± 1.8 85.5 ± 1.3 0.862 ± 0.237

Huang et al. (2022) 94.1 − 0.82

Ocal. (2024) 91.49 − −

The proposed method 92.43 ± 1.36 85.96 ± 2.35 0.693 ± 0.152

Bold values indicate the highest performance within each column.
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varying the number of side branches on the experimental outcomes,
ablation experiments were conducted, specifically targeting the
number of lateral branches to assess the method’s performance.
Starting with the shallow layers, the encoder part utilizes one to five
branches for learning edge information. These results illustrate the
impact of varying lateral branch quantities on method performance,
assessed via DC, JC, and ASSD, as presented in Table 2. Increasing
the number of branches from one to five shows improved
segmentation performance, especially in capturing fine edge
details, as evidenced by higher DC and JC values and lower
ASSD values. The incorporation of channel attention modules
and multi-scale structural feature fusion enhances the model’s
ability to focus on crucial edge feature channels and capture
diverse-scale structures and details. Therefore, despite the
progressive reduction in resolution as the number of branches
increases, fine details such as edge information are preserved.
Deeper layers capture high-level semantic information, while
shallow layers retain fine-grained details. By incorporating edge
information at multiple scales, the proposed method effectively
utilizes both high-level semantic context and low-level fine
details, leading to more accurate segmentation results.

The boxplots in Figure 3 visually represent the distribution of
the Dice coefficients and average symmetric surface distances
corresponding to the numerical data in Table 2. These boxplots
complement Table 2 by providing a clear and comparative view of

the data’s variability, making it easier to identify patterns and trends
across different branch configurations, which may not be
immediately apparent from the tabular data alone. In boxplots,
data variability is typically illustrated by indicators such as the
interquartile range (IQR) or the overall width of the distribution.
A wider IQR indicates higher variability, while a narrower IQR
suggests more consistent performance. Other aspects include the
central tendency, which is represented by the median line in the
boxplots, a robust measure that is unaffected by outliers. For
instance, while integrating EIEM improves segmentation accuracy
overall, particularly in capturing subtle edge details, the impact of
varying branch quantities on the mean DC appears less pronounced,
which could be attributed to factors like object morphology
complexity, image noise, or inherent model limitations. The
boxplots show how DC values are distributed for each
configuration, with wider spreads indicating higher variability in
segmentation performance. This variability is also evident in the
higher standard deviation reported in Table 2, which reflects similar
distribution patterns. However, the boxplots provide a more
comprehensive view by including the IQR, which, along with the
overall distribution, offers additional insights into data distribution
and is more robust to outliers compared to the standard deviation.
On the contrary, the number of branches significantly impacts the
ASSD results, exhibiting a noticeable decrease in the mean ASSD
with an increasing number of branches, reflecting better boundary
accuracy. The boxplots reinforce this observation by showing amore
concentrated ASSD distribution as branch numbers increase,
reflecting improved consistency in boundary delineation.
Although the performance improvements are not strictly linear,
the overall trend shows enhancement as network complexity
increases. EIEM(5) achieves the best balance between network
complexity and data characteristics, delivering optimal
performance across the evaluated metrics.

Figure 4 illustrates the visualization outcomes of models
employing varying numbers of branches. For clarity, only the
image edges are shown. Each row corresponds to an image along
with its segmentation results from different models. GT labels are
highlighted in red, while predicted images are depicted in green.

TABLE 2 Ablation experiments assessing the impact of varying lateral
branch quantities on the proposed method’s performance, evaluated
through DC, JC, and ASSD with ± std.

Method DC (%) JC (%) ASSD (mm)

EIEM (5) 92.43 ± 1.36 85.96 ± 2.35 0.693 ± 0.152

EIEM (4) 92.14 ± 1.34 85.45 ± 2.32 0.756 ± 0.186

EIEM (3) 91.66 ± 1.82 84.66 ± 3.11 0.778 ± 0.200

EIEM (2) 92.00 ± 1.57 85.22 ± 2.69 0.754 ± 0.207

EIEM (1) 91.07 ± 2.88 83.73 ± 4.75 0.838 ± 0.327

Bold values indicate the row with the best overall performance.

FIGURE 3
Boxplots of DC and ASSD for models with different side branch numbers.
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EIEM branches significantly contribute to improving segmentation
accuracy and enhancing edge detection. As the number of branches
increases, there is a more precise delineation of object boundaries,
particularly in detecting the edge of prominent terminations. This is
evident from the closer alignment observed between predicted edges
(green) and GT edges (red).

3.2.2 The SWCE loss function
Ablation experiments were conducted to analyze the impact of

different parameter settings (a, b, c, d) for the SWCE loss function on
the network’s performance, as elucidated in Table 3.

The parameter a controls the weight assigned to pixels located
on the edges. To identify the optimal value for a, we tested a range
from 2 to 8 (2, 4, 8). The results indicated that lower values (e.g., 2)
did not sufficiently emphasize edge details. Conversely, higher
values (e.g., 8) improved edge detection but showed diminishing
returns and potential overemphasis on edge pixels. The intermediate
value of 4 was found to strike the best balance. This suggests that
moderate edge weighting improves the model’s ability to capture
boundary details without excessive focus on the edges, thereby
optimizing segmentation performance. Parameter b adjusts the
rate at which the weight of pixels decreases with increasing
distance from the edge. We evaluated values ranging from
0.05 to 0.2 (0.05, 0.1, 0.2). Smaller values (e.g., 0.05) led to a
steep weight decay, focusing excessively on edge pixels and
diminishing the representation of background pixels. Larger
values resulted in a more gradual decay, which balanced the
influence of edge and non-edge pixels but sometimes (e.g., a
value of 0.2) reduced the emphasis on crucial edge features. The

value of 0.1 was optimal, providing an effective balance that
improved segmentation performance by adequately considering
pixels both near and far from the edges. The class-wise weighting
parameter c balances the contributions of positive and negative
samples during training. Parameters a and d increase the weight of
positive samples, while the weight decay mechanism reduces the
weight of negative samples. Together with c, these factors shape how
the model learns from each class. We explored values from 0.5 to 2
(0.5, 1, 2) for c. Lower values (e.g., 0.5) did not adequately weight

FIGURE 4
Segmentation results of models with different side branch numbers (In the top left corner are the metrics for the corresponding 3D data). Predicted
edges: green; GT edges: red.

TABLE 3 Ablation experiments investigating the optimal parameter settings
for the SWCE loss function, evaluated through DC, JC, and ASSD with ± std
following the values.

Parameters (a/b/c/d) DC (%) JC (%) ASSD
(mm)

(2/0.1/1/1) 92.26 ± 1.48 85.67 ± 2.56 0.699 ± 0.144

(4/0.1/1/1) 92.38 ± 1.42 85.87 ± 2.47 0.704 ± 0.162

(8/0.1/1/1) 92.00 ± 1.51 85.23 ± 2.58 0.764 ± 0.202

(4/0.05/1/1) 92.01 ± 1.70 85.24 ± 2.88 0.745 ± 0.195

(4/0.2/1/1) 92.12 ± 1.39 85.43 ± 2.39 0.744 ± 0.184

(4/0.1/0.5/1) 91.91 ± 1.67 85.07 ± 2.86 0.756 ± 0.188

(4/0.1/2/1) 92.23 ± 1.38 85.60 ± 2.37 0.732 ± 0.171

(4/0.1/1/2) 92.43 ± 1.36 85.96 ± 2.35 0.693 ± 0.152

(4/0.1/1/4) 92.03 ± 1.39 85.28 ± 2.40 0.704 ± 0.162

Bold values indicate the row with the best overall performance.
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positive samples, affecting the model’s ability to learn from the
minority class. Higher values (e.g., 2) increased the weight of positive
samples but could lead to reduced sensitivity to negative samples.
The value of 1 provided the optimal balance, ensuring effective
learning from both positive and negative samples and mitigating
class imbalance. The parameter d defines the range of pixels
considered around the edge, extending the annotated edge region
inward. We tested values ranging from 1 to 4 (1, 2, 4) for d. Smaller
values (e.g., 1) offered limited context, resulting in suboptimal edge
feature learning. Larger values (e.g., 4) included more context but
risked overexpansion, potentially introducing noise. The value of
2 was most effective, offering sufficient edge context without
excessive expansion, thereby enhancing segmentation accuracy.

Based on the ablation study results, the combination of (a = 4,
b = 0.1, c = 1, d = 2) achieves the best segmentation performance,
with the highest DC and JC scores and the lowest ASSD. In
summary, the proposed SWCE loss function effectively reflects
the impact of parameters a, b, c, and d corresponding to edge
weighting, weight decay rate, class-wise weighting, and edge range,
enhancing the algorithm’s performance in fine-grained perception
of target structures and segmentation accuracy. By selecting and
tuning these parameters, the SWCE loss encourages the model to
focus more on edge regions while providing flexibility for optimizing
segmentation outcomes.

3.2.3 Modification of edge learning components
Furthermore, additional experiments were conducted to

comparatively analyze the effectiveness of the designed loss
function LSWCE. The results of replacing the SWCE loss function
with the BCE loss function are documented in the first row in
Table 4. The results indicate that SWCE loss, compared to
traditional BCE loss, effectively captures edge information by
managing the contribution of positive and negative samples,
increasing the model’s focus on boundary transition areas and
reducing attention to distant regions. This enhances the precision
of the algorithm in left atrial segmentation.

Next, as shown in Table 4, experiments were conducted to
investigate the impact of different methods on the overall
segmentation performance, such as extracting GT edges (the
second row), utilizing channel attention in the edge-learning
branches (the third row), and deleting edge information in the
skip connections (the fourth row). The results indicate that the
erosion-based method employed in this study outperforms the
Canny edge detection method for edge extraction. This
superiority could be attributed to the erosion-based method’s

ability to more accurately capture valid edges, thus enhancing
segmentation accuracy. Additionally, in the absence of channel
attention, there is a degradation in DC, JC, and ASSD metrics
compared to the proposed method since channel attention helps the
model focus better on crucial features, thereby improving
segmentation precision. Furthermore, when all oi2 outputs are
removed from the EIEM module, there is a deterioration in
performance. This suggests that the lack of edge information in
skip connections may impair segmentation performance.

In Figure 5, each row presents a sample from the testing
dataset along with its corresponding GT edge (highlighted in
red) and segmentation results from various models, with
predicted edges highlighted in green. Consistent with the results
in Table 4, the samples in Figure 5 illustrate that the method
proposed in this study outperforms counterparts utilizing the
BCE loss, employing the Canny-based method for edge
extraction, lacking channel attention, and not incorporating edge
information in the skip connections. Notably, when there is only one
detection target with a relatively regular shape, the improvement in
segmentation performance by the proposed method is minimal (as
shown in the first row). However, when multiple detection targets
are present in an image, the detection capability of this method is
notably enhanced (as depicted in the second, third, and fourth rows).
Nevertheless, when detection targets are irregular and multiple
detection regions exist in an image, although the proposed
method shows some improvement, it cannot accurately identify
the segmented targets and their edges.

3.3 Generalization capability

To evaluate the generalization performance of the proposed
framework, we validated it on the MSD heart dataset. When the
model was tested directly on the new dataset, the DC was 0.8,
suggesting a reasonable level of adaptability under challenging
conditions. This initial result prompted further experimentation
to enhance the segmentation performance. The dataset is
characterized by a limited number of samples and large
variability. Given these factors, we simplified the model by
reducing the EIEM structure from five to four branches while
keeping all other parameters unchanged. This modification aimed
to ensure better convergence and improve the model’s stability on
new data by reducing complexity, as combining a small dataset with
a relatively complex model can hinder effective optimization and
lead to non-convergence. Table 5 compares the results of the
proposed model with the U-Net backbone on the MSD heart
dataset. The proposed model consistently outperformed the
U-Net backbone across all evaluation metrics: DC, JC, and
ASSD. The DC, a key measure of segmentation accuracy,
improved from 0.88 with the U-Net backbone to 0.92,
demonstrating that the proposed model was more effective at
correctly identifying and segmenting the LA. Similarly, the JC
showed a 6% improvement, suggesting better performance in
terms of overlap between predicted and GT regions. Moreover,
the ASSD was reduced by 43%, from 2.27 mm to 1.28 mm,
indicating a significant enhancement in boundary precision, with
the proposed model showing better alignment between predicted
and actual LA boundaries. The reduced ASSD is particularly

TABLE 4 Several ablation experiments on the proposed method based on
DC, JC, and ASSD with ± std following the values.

Method DC (%) JC (%) ASSD (mm)

EIEM (LBCE) 91.83 ± 1.78 84.95 ± 3.02 0.785 ± 0.246

EIEM (Canny) 92.09 ± 1.33 85.37 ± 2.30 0.745 ± 0.143

EIEM (w/o CA) 91.99 ± 1.49 85.21 ± 2.56 0.748 ± 0.156

EIEM (w/o oi2) 92.16 ± 1.50 85.49 ± 2.57 0.744 ± 0.166

The proposed method 92.43 ± 1.36 85.96 ± 2.35 0.693 ± 0.152

Bold values indicate the row with the best overall performance.
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important in medical image segmentation, where fine-grained
accuracy at the boundaries can have a meaningful impact on
clinical decisions. Even on the smaller MSD heart dataset, the
model surpassed the U-Net backbone, showing improvements in
both segmentation accuracy and boundary precision. These findings
underscore the robustness and adaptability of the proposed
framework, highlighting its potential for effective application
across diverse clinical datasets.

4 Discussion

4.1 Capacity for edge information learning

In previous segmentation algorithms, the absence of constraints
on edge information often resulted in inaccurate and unstable
segmentation outcomes. This is because edge information carries

crucial geometric and semantic indications in images, and the lack of
constraints on edges can lead to imprecise boundary delineations.
Hence, incorporating edge constraints is essential for improving the
accuracy of atrial segmentation. The proposed EIEM, designed as a
tributary structure of the network, explicitly processes edge
information independently of other image features. On one hand,
the edge features extracted by the edge information blocks are
directly applied to the learning of target edges, constraining the
network’s segmentation outputs with edge information. On the
other hand, in combination with skip connections in the target
segmentation task, the backbone network considers edge
information constraints while learning region features, leading to
better delineation of regions and, consequently, enhanced
segmentation precision. Moreover, multiple side branches for
edge feature learning extend the module’s capacity to capture
multi-scale features, thereby further improving segmentation
accuracy. The reason behind this lies in the complementary
nature of multi-scale features in capturing edge information
across different levels of detail. By fusing features from multiple
scales, the network gains a more comprehensive understanding of
edge characteristics, allowing it to better constrain segmentation
outputs with accurate edge information. Consequently, the inclusion
of multi-scale feature fusion not only enriches the representation of
edge information but also strengthens its capacity to guide the
segmentation process effectively, ultimately leading to superior
segmentation precision.

FIGURE 5
Segmentation results of models with various component replacements (In the top left corner are the metrics for the corresponding 3D data).
Predicted edges: green; GT edges: red.

TABLE 5 Performance comparison between the proposedmodel and U-Net
backbone on the MSD heart dataset based on DC, JC, and ASSD with ± std
following the values.

Method DC JC ASSD (mm)

U-Net Backbone 0.88 ± 0.03 0.79 ± 0.04 2.27 ± 0.97

Proposed EIEM (4) 0.92 ± 0.01 0.85 ± 0.01 1.28 ± 0.14
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The incorporation of edge information enhancement leads to a
notable improvement in the ASSD metric. By the explicit utilization
of edge features for guiding the segmentation process, our proposed
method ensures that the network is better equipped to accurately
delineate target boundaries within the MRI images. Consequently,
the segmentation outputs exhibit reduced surface distance
discrepancies between the predicted and GT boundaries, resulting
in a lower ASSD metric. On the other hand, the DC primarily
measures the overlap between the segmented regions and the GT
without explicitly considering boundary delineation. Therefore,
algorithms that solely optimize for region overlap may achieve
similar Dice scores despite potential differences in boundary
accuracy. However, our method’s utilization of edge information
ensures more precise boundary localization, which may not
significantly impact the DC but ensures a more accurate
delineation of boundaries.

4.2 Enhanced edge constraints: the SWCE
loss function

To further enhance the learning of edge information, this
study proposed a novel SWCE loss function. The SWCE loss
function imposes constraints on the network’s learning of edge
information through several aspects: edge weighting, weight
decay mechanism, and edge range. Primarily, the edge
weighting directs the model’s attention towards the boundaries
of the target region, thereby augmenting its sensitivity to
contours and shapes. Subsequently, the weight decay
mechanism allows adaptable modifications to pixel weights
based on the distance between pixels and edges during loss
calculation. Pixels farther from the edges are assigned lower
calculation weights compared to those closer to the edges,
thereby reducing excessive focus on regions distant from the
target. Finally, adjusting the edge range means extending the
annotated edge region inwards, augmenting from one layer of
target pixels to multiple layers, thus enlarging the edge detection
target and providing richer information for supervision.

The erosion-based approach is a reliable technique utilized for
extracting GT edges. This method functions by shrinking the target
area within an image layer by layer, obtaining the target edge with
the specified number of layers inside the original target region,
thereby achieving accurate edge delineation. Channel attention
modules dynamically adjust feature responses across different
channels, enabling the edge-learning branches to focus on edge-
related information while suppressing irrelevant details. This
selective enhancement of critical features contributes to
improving the network’s ability to discern edge variations and
accurately delineate target boundaries. Furthermore, incorporating
edge information into the skip connections of the network enhances a
contextual understanding of the target edges, facilitating better feature
propagation and integration across different network layers and
enabling more effective utilization of edge-related information
throughout the network.

In summary, the SWCE loss function and these edge learning
components contribute to the network’s capability to accurately
delineate target boundaries and produce high-quality
segmentation results.

4.3 Class imbalance in medical images

In medical image segmentation, class imbalance is a common
challenge, where certain classes appear more frequently in images
than others. This imbalance can cause deep learning networks to
bias towards majority classes during the learning process,
overlooking important information from minority classes and
ultimately affecting the accuracy of segmentation results. In the
segmentation of LA in MRI images, the relatively small LA region in
many slices results in suboptimal segmentation outcomes,
particularly along boundaries where precision is crucial.

To address this challenge, the pre-processing step initially
involves image cropping to increase the proportion of the target
region and reduce the impact of class imbalance. However,
imbalance may persist even after cropping, especially for edge
segmentation tasks. To overcome this, our study introduces the
SWCE loss function, which dynamically balances the contribution of
positive and negative samples in pixel-wise loss calculation by
assigning weights. Parameter d (edge range) expands the edge
region by extending layers inward from the annotated boundary,
increasing the number of pixels labeled as the target during training.
Meanwhile, parameter a (edge weighting) directly increases the
weight of these edge pixels in the loss calculation. Together, these
adjustments provide the model with more edge information and
emphasize boundary learning, improving its ability to capture edge
features that might otherwise be under-represented due to class
imbalance. Additionally, the weight decay mechanism controls the
reduction of pixel weights based on their distance from the edge.
Negative samples are assigned lower weights in the loss calculation,
effectively reducing their contribution and allowing the model to
focus on more critical boundary regions. On the foundation of these
spatial adjustments, parameter c (class-wise weighting) further
balances the contributions of positive and negative samples
globally, ensuring that the network does not become biased
toward the majority class (background) and can effectively learn
from both positive and negative samples. This helps prevent the
model from being dominated by negative samples while maintaining
attention to the target structures.

Through this combination of mechanisms, the SWCE loss
function effectively mitigates class imbalance and enhances the
network’s capability to handle imbalanced data. This leads to
more accurate and reliable segmentation results.

4.4 Clinical implications and applications

Precise segmentation plays a critical role in cardiac imaging. The
enhanced segmentation accuracy achieved by our method holds
substantial clinical significance, particularly for cardiac conditions
involving the left atrium, such as atrial fibrillation. Accurate
delineation of atrial boundaries is essential in procedures like
radiofrequency ablation, where it guides catheter placement and
ablation path planning, ultimately contributing to safer and more
effective interventions. Additionally, accurate boundary delineation
not only improves the reliability of automated measurements but
also minimizes the need for manual adjustments, thereby optimizing
diagnostic processes and increasing efficiency. The incorporation of
this advanced segmentation technique into clinical practice has the
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potential to enhance various aspects of patient care, from more
accurate disease monitoring to better assessment of treatment
response. These improvements can ultimately contribute to better
patient outcomes and more efficient healthcare delivery.

4.5 Limitations and future work

Although this study offers valuable insights into LA
segmentation, several limitations should be acknowledged.

One limitation of the study is its utilization of a 2D architecture
for the segmentation task. Although this approach presents
advantages in computational efficiency and simplicity, it might
fail to capture certain spatial and structural complexities inherent
in three-dimensional data. Specifically, the 2D framework processes
each slice independently, which can result in the loss of continuity
and contextual information between adjacent slices, limiting
segmentation accuracy. Future research could investigate
incorporating 3D architectures, such as 3D U-Net, which are
better suited for handling volumetric data. By leveraging 3D
models, continuous edge information can be extracted across
multiple slices in three-dimensional space, allowing for more
effective delineation of left atrial structural details during
segmentation. This would potentially enhance the accuracy and
robustness of the segmentation process, facilitating more precise
clinical applications.

Furthermore, incorporating additional modules like the EIEM
and the customized loss function increases the computational
complexity of the segmentation framework. In the experiments,
we observed that the simplest model (backbone) contains
approximately 10M trainable parameters, while the most
complex configuration contains around 23M. This increase in
network complexity led to longer training time per epoch, with the
most complex configuration requiring approximately 2.3 times
the training time compared to the backbone model. The
additional trainable parameters result in greater computational
demands and potentially longer inference times, which could
impact both training and deployment phases. Thus, striking a
balance between computational efficiency and segmentation
performance becomes crucial when considering the model’s
applicability in clinical practice. Further optimization efforts
should focus on reducing computational overhead, such as
through model compression or efficient inference strategies,
while maintaining segmentation quality.

Moreover, while our method has shown promise in left atrial
segmentation, it is important to acknowledge that the improvement
in DC may not be as significant as desired. One notable factor
contributing to this limitation is the challenge of dealing with
irregular shapes and discrete multiple targets, which are common
in left atrial imaging. In such cases, our algorithm encounters
difficulties in accurately delineating edge information, resulting in
suboptimal segmentation outcomes. This challenge may arise from
the algorithm’s dependence on specific features or characteristics of
the data, which insufficiently model the complex and variable
anatomical structures, especially in cases where the left atrial
anatomy exhibits high variability. To address this limitation,
future research could explore integrating more advanced
feature extraction techniques or employing machine learning

algorithms capable of capturing subtle variations and
irregularities in shape, such as transformer-based architectures
or deformable convolution networks.

Therefore, while our method demonstrates advancements in
left atrial segmentation, the identified shortcomings underscore
areas for further refinement. Addressing these challenges through
methods such as the integration of 3D architectures, optimization
of computational complexity, and improvements in handling
irregular structures will be valuable for future research in
atrial segmentation and broader applications in medical
image analysis.

5 Conclusion

In summary, this study presents a novel approach to image
segmentation geared towards the challenges associated with class
imbalance and the segmentation of blurred edges in medical
images. On one hand, the introduced EIEM not only extracts
edge features to directly guide edge segmentation but also
indirectly constrains the network’s learning of target shapes.
On the other hand, the proposed SWCE loss function not only
constrains the edge learning from aspects such as edge weighting,
weight decay mechanism, and edge range but also addresses the
common class imbalance issue in medical images through
adjusting the weights of positive and negative samples in loss
calculation. The integration of these two mechanisms significantly
improves the segmentation accuracy of left atrial MRI images. The
findings indicate the substantial potential of our method for
clinical applications, such as improving diagnostic accuracy
and treatment planning, particularly in addressing the
challenge of blurred and irregular edges, which may lead to
more reliable assessments and better patient outcomes. Future
work will involve testing and optimizing the method on a broader
range of datasets and clinical scenarios to further validate its
robustness and effectiveness. Additionally, its applicability to
other anatomical structures and imaging modalities will be
explored to establish a more comprehensive and clinically
impactful segmentation strategy.
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