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Purpose: The purpose of this study was to evaluate the ability of global
inhomogeneity index (GI) and left-right asymmetry index (AI) based on
electrical impedance tomography (EIT) to be used in assessing cerebral
perfusion heterogeneity. The diagnostic value of these two indices in
identifying abnormalities in the degree of cerebral perfusion heterogeneity was
also explored.

Methods: In this study, Transcranial Doppler (TCD) was used as a control, and
unilateral carotid artery was compressed to change the degree of heterogeneity
of cerebral perfusion in 15 healthy volunteers. The control group consisted of
an additional 15 volunteers without any intervention. EIT perfusion images were
obtained by calculating the impedance difference between at the beginning and
end of cerebral vasodilation. Subsequently, GI and AI were calculated based on
the pixel values of intracranial regions.

Results: The GI and AI values in the non-carotid artery compression (NCAC)
group were significantly lower than those in the unilateral carotid artery
compression (UCAC) group (P < 0.001), whereas there was no significant
difference between the left carotid artery compression (LCAC) and right carotid
artery compression (RCAC) groups. ROC analysis showed that the area under the
curve (AUC), specificity and sensitivity of GI in distinguishing between NCAC and
UCAC were 0.94, 0.90 and 0.87, respectively. The AUC, specificity and sensitivity
of AI in distinguishing between NCAC and UCAC were 0.86, 0.87 and 0.73,
respectively.

Conclusion: The results demonstrated that the GI and AI effectively quantify
the distribution of intracranial perfusion, demonstrating excellent validity and
interindividual comparability, and the ability to detect abnormal cerebral
perfusion heterogeneity.

KEYWORDS

cerebral perfusion, electrical impedance tomography, inhomogeneity index, asymmetry
index, heterogeneity
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1 Introduction

Cerebral perfusion heterogeneity, i.e., the phenomenon of
uneven distribution of blood flow in different regions of the
brain, is common in a variety of diseases, such as stroke, brain
tumors, epilepsy, etc (Gelfand, Wintermark, and Josephson, 2010;
Larsson et al., 2017). These disorders may result in abnormal
blood flow in specific areas, including significant increases or
decreases, which in turn may affect the normal functioning
and metabolic activity of brain cells (Wegener et al., 2024).
Lin et al. and T Mustonen et al. showed that heterogeneity of
cerebral perfusion was associated with thromboembolic events.
They confirmed the validity of cerebral perfusion heterogeneity as
a marker to predict the occurrence of cerebrovascular accidents
(Mustonen et al., 2008; Lin et al., 2021). Therefore, monitoring
cerebral perfusion heterogeneity is essential for identifying brain
diseases and evaluating the course of treatment, helping to improve
the quality of life of patients and reduce the incidence of associated
complications.

Clinical detection of perfusion heterogeneity usually relies
on Computed Tomography (CT) (Copen, Lev, and Rapalino,
2016), Magnetic Resonance Imaging (MRI) (Le et al., 2024)
and Positron Emission Tomography (PET) (Baron, 2022). They
provide not only high-resolution images, but also functional
information such as blood flow, metabolic activity and tissue
perfusion. However, widely application of these techniques is
limited in that they require contrast media and are expensive,
making them difficult to use for continuous noninvasive bedside
monitoring. In addition, while TCD can provide continuous,
noninvasive monitoring of cerebral perfusion heterogeneity, its
application is limited by the fact that it can only monitor the
major blood vessels in the brain, and is unable to provide
simultaneous perfusion of multiple brain regions (Lau et al., 2020).
Therefore, the development of a whole-brain noninvasive, real-time,
bedside cerebral perfusion heterogeneity monitoring technique is of
great need.

Electrical impedance tomography (EIT) is a non-invasive
functional imaging technique that measures boundary voltages at
body surfaces to estimate the spatial distribution of the electrical
properties (conductivity or resistivity) of tissue within a body
(Bayford, 2006). This technology has shown potential for a wide
range of applications in several medical fields including lung
function imaging (Frerichs et al., 2017), brain function imaging
(Aristovich et al., 2016) and abdominal organ imaging (Sadleir
and Fox, 2001). Zhang et al. proposed the contrast-enhanced EIT
technique that can reflect the cerebral perfusion status by the
reconstructed image of the contrast agent, and found that unilateral
internal carotid artery occlusion has a significant variability in the
left and right hemisphere cerebral impedance values (Zhang et al.,
2022). By performing contrast-enhanced EIT imaging on a rabbit
model of focal cerebral infarction, Zhang et al. demonstrated
that EIT can detect the location and area of different cerebral
infarct lesions by monitoring cerebral perfusion (Zhang et al.,
2023). The dynamic cerebral perfusion indices extracted from EIT
reconstructed images by Yan et al. were able to characterize the
differences in cerebral perfusion status at different intracranial
pressure levels, proposing a new approach to intracranial pressure
monitoring (Yan et al., 2024). The above findings show that diseases

can cause changes in the distribution of perfusion impedance
and fully demonstrate the unique advantages of EIT technology
in cerebral perfusion monitoring. EIT not only has a high
temporal resolution that provides long-term continuousmonitoring
of intracranial perfusion, but is also a completely noninvasive
and harmless monitoring technique. However, there is a lack of
indices for assessing cerebral perfusion heterogeneity that can be
used for interindividual comparisons because EIT images from
different individuals show only relative impedance values and
cannot be directly compared. Therefore, there is a great need for
quantitative indices to measure the degree of cerebral perfusion
heterogeneity.

In this study, the heterogeneity of cerebral perfusion was
altered by compression of the carotid artery using TCD as a
control. We extracted indices from EIT perfusion images aimed at
characterizing the distribution of cerebral perfusion and evaluated
their interindividual comparability. The ability of these indices in
detecting abnormally elevated cerebral perfusion heterogeneity was
further explored.

2 Materials and methods

2.1 Study protocol

The study was conducted in the laboratory of the Department
of Biomedical Engineering, Fourth Military Medical University
and was approved by the Research Ethics Committee of the
Fourth Military Medical University (FMMU-E-III-001 (1–7)). We
included 30 healthy volunteers, all of whom were fully aware of
the methodology of this study and signed a consent form. Prior to
the start of the experiment, 16 Ag/AgCl electrodes were connected
to the subject’s head to collect impedance information. Electrode
No. 1 was located 2 cm above the left ear, electrode No. 5 was
located at the top of the forehead, electrode No. 9 was located
2 cm above the right ear, and electrode No. 13 was located at the
back of the head in the occipital region. The electrode bands were
located on the same profile and were equally spaced (Figure 1C). A
medical elastic bandage is tightly wrapped around the electrode to
temporarily block the effects of scalp blood flow while assisting in
securing the electrode. Meanwhile, TCD probes (Coggin Industries,
Nanjing, China) were fixed in the subjects’ bilateral temporal
windows to monitor the blood flow velocity in the bilateral middle
cerebral arteries.

Thirty volunteers were divided into two groups. 15 volunteers
were included in the control group and their data were collected
for 3 min without compression of the carotid artery (NCAC). 15
volunteers changed the distribution of perfusion by compressing
the carotid artery. The experimental procedure was as follows:
first, at the beginning of the experiment, we collected 3 min of
baseline data. Then, a 10-s compression of the left carotid artery
was performed (LCAC). At the end of the left carotid artery
compression, subjects were placed on a 3-min rest to allow their
physiology to return to near normal levels. At the end of the rest,
we performed the same compression procedure on the right carotid
artery (RCAC) (Figure 1A).
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FIGURE 1
The experimental process. (A) Experiment time. (B) EIT system. (C) A finite element reconstructed model. NCAC: Non-carotid artery compression;
LCAC: Left carotid artery compression; RCAC: Right carotid artery compression.

2.2 EIT system

The EIT signals were collected using a new jointly developed
EIT system (Figure 1B, UTRON Technology Co., Ltd., Hangzhou,
China), which is based on a high-speed, high-precision system
developed by our team (Shi et al., 2018; Li et al., 2019). The system
has an operating frequency range of 10–250 kHz, an output current
range of 10–1,250 μA, and a signal-to-noise ratio greater than 90 dB.
During the experiments, data collection speed was set to 40 frames
per second, and the excitation frequency was set to 50 kHz.

2.3 EIT image reconstruction

The finite element model was dissected based on CT images
of the human brain, which contained 881 triangular surface
elements (Figure 1C). In order to improve the imaging quality, the
conductivity of the scalp (0.584 S/m), skull (0.0084 S/m), and brain
parenchyma (0.2849 S/m) was included as a priori information in
the EIT reconstruction process (Ouypornkochagorn et al., 2022).
Reconstruction of conductivity distributions is an underdetermined
and ill-posed problem that usually requires simplifying assumptions
or regularization based on a priori knowledge. This study used
a maximum a posteriori probability method of linearized image
reconstruction using the noise variance of the measured data and
the covariance of the conductivity distribution (Adler and Guardo,
1996; Adler and Lionheart, 2006), as shown in Equation 1:

∆σ = (HTWH + λR)−1HTW∆V (1)

where ∆σ is the change in conductivity distribution between the
current frame and the reference frame, ∆V is the change in voltage
between the current frame and the reference frame, λ is the
regularization parameter, W is the measurement error weighting
matrix, H is the sensitivity matrix, R is the regularized matrix.

The analysis of the subsequent results of this study was
performed based on EIT perfusion images. Perfusion images were
generated by reconstructing the image at the end of vasodilation
(Figure 2A t2) using the time of the start of cerebral vasodilation
(Figure 2A t1) as the reference frame. Figure 2A t1 was the start of
the vasodilatory.When the vasodilation occurs and blood enters the
cranial cavity, a decrease in overall impedance is observed due to the
significant difference in resistivity of blood compared to brain tissue.
The time that the impedance value dropped to the lowest point
(Figure 2A t2) indicated that vasodilation had peaked and blood
perfusion into the cranial cavity was maximized. The EIT perfusion
images captured at this time (Figure 2B) were able to reflect the state
of blood perfusion in the cranial cavity.

2.4 Calculation of indices

For each perfusion cycle, a 64 × 64 perfusion image is generated.
Each pixel of the perfusion image represents the difference in
impedance at the beginning and end of vasodilation. The entire
region of the brain parenchyma is defined as the perfusion region.
Each pixel value in this region is counted and its median is
calculated.This yields the sum of the absolute difference between all
pixel values and thismedian is a way to characterize the variability of
blood flow distribution across the perfusion region, a metric known
as the global inhomogeneity index (Zhao et al., 2009). To ensure that
the cerebral perfusion inhomogeneity index is comparable across
individuals, as well as to better generalize its application, the index
needs to be normalized, i.e., divided by the sum of impedance
values within the perfusion region.They can be calculated using the
following Equation 2:

GI = ∑
x,y∈ROI
|∆σxy −Median(∆σROI)| ÷ ∑

x,y∈ROI
∆σxy (2)
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FIGURE 2
(A) Average transmission impedance of 192 channels, t1 is the reference time and t2 is the foreground time; (B) Differential EIT images at time t1 and t2.

where ∆σ denotes the pixel value in the EIT perfusion image; ∆σxy is
the pixel value in the perfusion region; ∆σROI is all the pixel values
in the perfusion region.

The pixel values of the perfusion regions of the perfusion
images were normalized, i.e., the mean was subtracted from the
original values and divided by the standard deviation for normalized
comparisons. The images were then divided into regions of the left
and right hemispheres along the midline of the brain. For each row
of the EIT image, we calculated the mean values of the pixels on the
left and right sides separately, which in turn yielded the differences
between the left and right means on the corresponding row. The
sum obtained by adding up the absolute values of all the differences
reflects the total difference in the degree of perfusion between the
left and right hemispheres, which can be used as a measure of brain
symmetry. Define the brainmidline x = x0 and divide the image into
left L and right R. AI was calculated by Equation 3:

AI =∑
yi

|

|

1
NL,i
∑
(x,yi)∈L
∆σnorm(x,yi) −

1
NR,i
∑
(x,yi)∈R
∆σnorm(x,yi)|

|
(3)

where ∆σnorm is the normalized ∆σ; L = {(x,y) |x > x0} is the left
region; R = {(x,y) |x < x0} is the right region; NL,i and NR,i are the
number of pixels in the ith row in the left and the right regions,
respectively, yi denotes the ith row.

2.5 TCD control

In the present experiment, blood flow velocities in the left
and right brain were monitored synchronously using the TCD
technique with the aim of assessing the degree of cerebral perfusion
heterogeneity. This was done to help validate the effect of carotid
artery compression on cerebral perfusion heterogeneity. For in-
depth analysis, the ratio of peak systolic flow rate (Vs) to diastolic
flow rate (Vd), the so-called S/D ratio, was calculated. This ratio is
an important indicator of vascular elasticity and vascular resistance.
To quantify the degree of heterogeneity in cerebral perfusion, the
following normalization Equation 4 was used:

R =
|NS/D −CS/D|

NS/D
(4)

where NS/D is the S/D ratio of the non−compressed side of the
cerebral hemisphere;CS/D is the S/D ratio of the cerebral hemisphere
on the side of compression. The degree of heterogeneity in cerebral
perfusion was calculated in the NCAC state using the equation R =
|RS/D−LS/D|

LS/D
. Larger R-values indicate a higher degree of heterogeneity

in cerebral perfusion.

2.6 Statistical analysis

Statistical analysis was performed using SPSS27 (SPSS Inc.,
Chicago, IL, United States). The level of significance for statistical
analysis was 0.05. The Shapiro-Wilk test was used to determine
whether the data conformed to normal distribution.The Levene test
was used to assess the Chi-squared goodness of variances between
different groups.

Independent samples t-tests were used to compare the mean
differences in GI and AI between NCAC and LCAC, andNCAC and
RCAC, respectively. Paired t-tests were used to compare LCAC and
RCAC. In addition, we constructed receiver operating characteristic
curve (ROC) to assess the efficacy of two indices, GI and AI, in
distinguishing NCAC from unilateral carotid artery compression
(UCAC).This assessment is based on threemainmetrics: area under
the curve (AUC), sensitivity and specificity.

3 Results

Figure 3 shows the EIT perfusion images and TCD information
for NCAC, LCAC and RCAC states. A similar trend was clearly
observed in the EIT images and TCD information of all the
volunteers. The EIT perfusion image of NCAC state shows a
more homogeneous distribution of blood flow in the intracranial
region. This can also be seen in the subtle difference in blood
flow velocities between the right and left brain measured by
the TCD in Figure 3B. However, in Figures 3B, C, the blood
flow distribution between the right and left intracranial regions
appeared significantly different. Specifically, when the left carotid
artery was compressed (as shown in Figure 3B), there was a
significant reduction in the red area in the left intracranial
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FIGURE 3
EIT perfusion images and TCD information for NCAC (A), LCAC (B) and RCAC (C) states. L and R represent the left and right parts of the brain,
respectively. NCAC: Non-carotid artery compression; LCAC: Left carotid artery compression; RCAC: Right carotid artery compression; LMCA: Left
middle cerebral artery; RCMA: Right middle cerebral artery; Vp: Peak systolic blood flow velocity; Vd: Diastolic velocity; S/D: The ratio of peak systolic
flow rate (Vp) to diastolic flow rate (Vd).

region relative to the right side, suggesting a reduction in blood
flow on that side. This was also verified by the fact that the
cerebral blood flow velocity measured by TCD was significantly
lower on the left side than on the right side at this time.
Comparatively, when the right carotid artery was compressed
(as shown in Figure 3C), the red area in the right intracranial
region was reduced, indicating decreased blood flow on that side.
Cerebral blood flow velocities were also smaller on the right side
than on the left.

In theNCACgroup, the TCD index Rwas 0.02 ± 0.02, indicating
a lowdegree of flowheterogeneity in the perfused region. In contrast,
the LCAC had an R value of 0.42 ± 0.11, whereas the RCAC had
an R value of 0.49 ± 0.15. These higher values indicate a significant
increase in the degree of heterogeneity of the perfusion distribution
under carotid artery compression.

Tables 1, 2 demonstrate the GI and AI values for each
volunteer in the NCAC, LCAC, and RCAC states. To ensure the
accuracy of the comparison, we calculated the mean and standard
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TABLE 1 GI of 15 volunteers of the control group and 15 volunteers during carotid compression.

Group GI values (mean ± SD)

NCAC

0.55 ± 0.02 0.35 ± 0.03 0.37 ± 0.01 0.49 ± 0.01 0.46 ± 0.02

0.50 ± 0.01 0.37 ± 0.03 0.52 ± 0.10 0.68 ± 0.12 0.37 ± 0.07

0.41 ± 0.05 0.51 ± 0.02 0.34 ± 0.02 0.33 ± 0.02 0.49 ± 0.02

Average mean 0.45; Average SD 0.04

LCAC

0.66 ± 0.04 1.43 ± 0.06 0.62 ± 0.05 0.54 ± 0.07 0.73 ± 0.14

0.64 ± 0.10 0.95 ± 0.14 0.99 ± 0.14 1.12 ± 0.16 0.52 ± 0.07

1.03 ± 0.05 0.64 ± 0.04 0.90 ± 0.13 0.66 ± 0.20 0.70 ± 0.18

Average mean 0.81; Average SD 0.10

RCAC

0.69 ± 0.08 0.76 ± 0.04 0.65 ± 0.02 0.90 ± 0.33 0.67 ± 0.07

0.57 ± 0.12 1.01 ± 0.12 0.89 ± 0.07 0.96 ± 0.08 0.45 ± 0.04

0.59 ± 0.01 0.69 ± 0.07 0.50 ± 0.05 0.53 ± 0.20 1.32 ± 0.60

Average mean 0.75; Average SD 0.13

TABLE 2 AI of 15 volunteers of the control group and 15 volunteers during carotid compression.

Group AI values (mean ± SD)

NCAC

3.42 ± 0.27 5.57 ± 1.2 4.36 ± 0.33 4.68 ± 0.68 3.27 ± 0.15

5.04 ± 0.15 5.82 ± 0.59 7.88 ± 2.5 4.52 ± 0.64 4.73 ± 1.59

6.01 ± 1.02 4.80 ± 1.58 4.48 ± 0.49 5.39 ± 1.12 4.18 ± 0.85

Average mean 4.94; Average SD 0.88

LCAC

13.47 ± 0.47 10.78 ± 1.47 6.86 ± 0.95 5.60 ± 0.79 5.66 ± 0.70

7.53 ± 0.65 5.81 ± 0.30 9.42 ± 0.48 5.45 ± 0.51 4.61 ± 1.16

10.64 ± 2.36 11.56 ± 1.68 9.54 ± 2.33 7.61 ± 3.04 5.02 ± 0.91

Average mean 7.97; Average SD 1.19

RCAC

11.56 ± 1.11 9.94 ± 0.59 6.46 ± 1.04 3.34 ± 0.39 5.85 ± 1.38

8.63 ± 0.72 10.77 ± 0.80 8.30 ± 0.61 7.08 ± 0.63 5.34 ± 0.94

10.36 ± 2.09 8.02 ± 0.63 6.30 ± 1.06 5.80 ± 2.45 5.4 ± 1.28

Average mean 7.54; Average SD 1.05

deviation of five perfusion cycles in each state separately. The
results showed that the GI and AI in the NCAC state had high
stability, which was reflected in their low standard deviations.
However, the standard deviation of these two indices increased
significantly in the LCAC and RCAC states, which may be
due to differences in applied pressure as well as interindividual
differences in compensatory function.

Figure 4 demonstrates the results of the comparison of the two
indices GI and AI for NCAC, LCAC and RCAC.The results showed
that theGI ofNCAC,was significantly different from theGI of LCAC
andRCAC,whichwas statistically significant (p < 0.001), whereas no
significant difference was found when comparing the GI of LCAC
and RCAC. For AI, its performance in different states was similar to
GI. Specifically, the AI values of NCAC were significantly different
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FIGURE 4
GI (A) and AI (B) for NCAC, LCAC and RCAC. Boxes represent quartiles, i.e., the top edge of the box represents the third quartile (Q3) and the bottom
edge the first quartile (Q1). The whiskers of the box-and-line plots extend from the ends of the boxes, and the ends of the whiskers represent the
maximum and minimum values of the data. ns: no significant difference;∗p < 0.05;∗∗∗p < 0.001. NCAC: non-carotid artery compression; LCAC: left
carotid artery compression; RCAC: right carotid artery compression.

FIGURE 5
GI (A) and AI (B) ROC curves used to distinguish between NCAC and UCAC. The diagonal line indicates the random probability (0.5).

from those of LCAC and RCAC (P < 0.001), while no significant
difference was found between the AI values of LCAC and RCAC.

ROC analysis showed (Figure 5) that the critical value of
GI in distinguishing NCAC from UCAC was 0.525. Its AUC,
specificity and sensitivity were 0.94, 0.90 and 0.87, respectively.
The critical value of AI in distinguishing NCAC from UCAC was
5.395. Its AUC, specificity and sensitivity were 0.86, 0.87 and 0.73,
respectively.

4 Discussion

Many brain diseases, such as brain tumors, strokes, and
cerebrovascular lesions, have the potential to affect the degree
of cerebral perfusion heterogeneity. Assessing and characterizing
the degree of cerebral perfusion heterogeneity is critical in the
diagnosis and treatment of these diseases. Existing cerebral

perfusion monitoring techniques have multiple limitations that
make it difficult to effectively realize real-time noninvasive
monitoring of the degree of cerebral perfusion heterogeneity. EIT
has outstanding advantages in terms of high temporal resolution
and noninvasiveness, which offer the possibility of solving the
limitations of existing techniques. However, there is a lack of indices
that can assess cerebral perfusion heterogeneity and are suitable
for interindividual comparisons. In this study, EIT imaging was
performed on theNCAC, LCAC, and RCAC status of the volunteers,
i.e., perfusion imageswere generated between the beginning and end
of vasodilatation. Using these perfusion images, we extracted two
indices to characterize the state of cerebral perfusion and compared
these two indices between NCAC, LCAC, and RCAC. In addition,
we evaluated the ability of these indices to distinguish between
NCAC and UCAC through the ROC.

Carotid artery compression significant effects cerebral blood
flow, and it is a validated clinical procedure often used by physicians
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to assess cerebral autoregulation (CA) (Smielewski et al., 1996).
Carotid artery compression is an excellent way to verify the
sensitivity of EIT to changes in cerebral hemodynamics. Shi and
Ouypornkochagorn et al. reported 2D and 3D EIT imaging during
carotid artery compression in human volunteers, respectively,
and verified the sensitivity of EIT to cerebral hemodynamics
(Shi et al., 2018; Ouypornkochagorn et al., 2022). In clinical practice,
carotid artery compression is commonly used in conjunction with
TCD to assess cerebral autoregulation (CA). Given that the temporal
window is very sensitive to blood flow velocities in the region of
the middle cerebral artery, TCD becomes an ideal control tool for
validating the validity of indices (GI and AI) extracted from EIT
perfusion images that reflect cerebral perfusion heterogeneity. In
this study, we used TCD as a control means to assess the cerebral
perfusion heterogeneity of NCAC, LCAC and RCAC. By analyzing
the TCD, we extracted the index R, which reflects the degree of
cerebral perfusion heterogeneity, and thus verified the effect of
carotid artery compression on the aspect of cerebral perfusion
heterogeneity.

Figure 3 clearly demonstrates the differences between NCAC,
LCAC, and RCAC on EIT perfusion imaging; these images visually
reveal the significant effects of carotid artery compression on
cerebral perfusion heterogeneity and confirm the ability of the
EIT technique to accurately capture these changes. Analysis of
the indices showed that the two key indices were significantly
different between NCAC and LCAC and RCAC (Figure 3),
a result that is consistent with the heterogeneity of cerebral
perfusion embodied in TCD. It is worth noting that NCAC has a
smaller interquartile spacing between the two indices compared
to UCAC, which may stem from inter-individual physiologic
differences as well as differences in the degree of carotid artery
compression. This variability can likewise be captured by the
standard deviation of the TCD index. By analyzing the ROC curves
of GI and AI (Figure 4), we identified their potential value in
detecting excessive degrees of cerebral perfusion heterogeneity.
The above results not only demonstrate the stability and inter-
individual comparability of GI and AI, but also show their potential
application in detecting heterogeneous abnormalities of brain
perfusion under disease.

Substantial progress has been made in the field of cerebral
perfusion research with EIT. Currently, the technique is divided
into two main monitoring methods: contrast-enhanced EIT and
dynamic cerebral perfusion EIT. A study by Zhang et al. utilized
contrast-enhanced EIT with contrast media in an animal model
of carotid artery occlusion and revealed significant differences
in perfusion between the unoccluded and occluded sides of
the carotid artery (Zhang et al., 2022). Similarly, Zhang et al.
successfully identified significant differences in perfusion between
infarcted regions and normal brain tissue using contrast-enhanced
EIT technique (Zhang et al., 2023). These findings not only
highlight the potential application of EIT in brain perfusion
research, but also indirectly demonstrate the ability of EIT to
monitor brain perfusion heterogeneity. However, although these
studies identified perfusion differences between lesions and healthy
tissues on EIT images, they failed to propose an index that
could accurately quantify the distribution of cerebral perfusion
impedance.

Yan et al. monitored cerebral perfusion changes during
elevated intracranial pressure using the dynamic cerebral
perfusion EIT technique and extracted several monitoring
indices from reconstructed images that could accurately
characterize the differences in cerebral perfusion under changes
in intracranial pressure (Yan et al., 2024). However, these indices
are affected by multiple factors such as blood pressure, which
limits their comparability between individuals and makes them
more suitable for comparing changes in different physiological
states in a single individual. The two indices extracted from
the perfusion images in this study contain information about
each pixel in the EIT image and can accurately characterize
the degree of heterogeneity in brain perfusion distribution.
Although the dynamic cerebral perfusion EIT technique was
used in this study, both indices can also be applied in contrast-
enhanced EIT.

This study has some limitations. (1) In this study, the
distribution of cerebral perfusion was altered by compression
of the carotid artery, which in turn validated the extracted
indices. However, this method does not directly reflect the true
cerebral perfusion distribution in disease states. For a more
comprehensive understanding of brain perfusion heterogeneity
under different pathological conditions, future studies should be
expanded to include in-depth studies of stroke, brain tumors,
and other diseases that affect brain perfusion distribution. (2) In
examining cerebral perfusion heterogeneity in this study, we focused
mainly on the inhomogeneity of global perfusion distribution
and the left-right asymmetry of cerebral perfusion. However, the
distribution patterns of cerebral perfusion are likely to be more
complex and diverse, and other under-explored distributional
features exist. Therefore, future studies should broaden their
horizons to explore more dimensions of cerebral perfusion
distribution and develop a more detailed and comprehensive
parameter system based on them, with a view to more accurately
characterizing and understanding the complexity of cerebral
perfusion.

5 Conclusion

This study verifies that the GI and AI indices for assessing the
degree of cerebral perfusion heterogeneity are highly reliable and
stable for inter-individual comparisons. In addition, these indices
can accurately characterize the distribution of cerebral perfusion
in different states and have a certain detection value, which is
expected to be an important tool for clinical assessment and
treatment. At the same time, GI and AI metrics may also play
an important role in other situations affecting cerebral perfusion,
such as evaluating the effectiveness of thrombolysis, assessment
of collateral circulation, and cerebral function studies, among
other areas.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Frontiers in Physiology 08 frontiersin.org

https://doi.org/10.3389/fphys.2024.1476040
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Zhu et al. 10.3389/fphys.2024.1476040

Ethics statement

The studies involving humans were approved by Research
Ethics Committee of the Fourth Military Medical University. The
studies were conducted in accordance with the local legislation and
institutional requirements. The participants provided their written
informed consent to participate in this study. Written informed
consent was obtained from the individual(s) for the publication of
any potentially identifiable images or data included in this article.

Author contributions

MZ: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Software, Validation, Visualization,
Writing–original draft, Writing–review and editing. YW:
Conceptualization, Data curation, Investigation, Methodology,
Software, Validation, Visualization, Writing–review and editing.
JL: Data curation, Investigation, Methodology, Validation,
Writing–review and editing. WW: Conceptualization, Data
curation, Methodology, Writing–review and editing. GG: Data
curation, Investigation, Methodology, Writing–review and
editing. ZJ: Conceptualization, Validation, Writing–review and
editing. BL: Conceptualization, Validation, Writing–review and
editing. LW: Conceptualization, Data curation, Methodology,
Validation, Writing–review and editing. WL: Conceptualization,
Data curation, Investigation, Methodology, Supervision,
Validation, Writing–review and editing. XS: Conceptualization,
Formal Analysis, Funding acquisition, Methodology, Project
administration, Resources, Supervision, Writing–review
and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by the Key Research and Development Projects of
the Science and Technology Committee (2022YFC2404803); the
Key Basic Research Projects of the Basic Strengthening Plan of the
Science and Technology Committee (2019-JCJQ-ZD-115-00-02).

Acknowledgments

The authors thank all the subjects for their participation in
this study.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Adler, A., and Guardo, R. (1996). Electrical impedance tomography: regularized
imaging and contrast detection. IEEE Trans. Med. imaging 15 (2), 170–179.
doi:10.1109/42.491418

Adler, A., and Lionheart, W. R. B. (2006). Uses and abuses of EIDORS: an extensible
software base for EIT. Physiol. Meas. 27 (5), S25–S42. doi:10.1088/0967-3334/27/5/s03

Aristovich, K. Y., Packham, B. C., Koo, H., dos Santos, G. S., McEvoy, A., and Holder,
D. S. (2016). Imaging fast electrical activity in the brain with electrical impedance
tomography. Neuroimage 124, 204–213. doi:10.1016/j.neuroimage.2015.08.071

Baron, J. C. (2022). Elevated cortical tau Positron emission tomography binding
in misery perfusion: novel, puzzling, and heuristic. Stroke 53 (12), e504–e506.
doi:10.1161/strokeaha.122.041406

Bayford, R. H. (2006). Bioimpedance tomography (electrical
impedance tomography). Annu. Rev. Biomed. Eng. 8, 63–91.
doi:10.1146/annurev.bioeng.8.061505.095716

Copen, W. A., Lev, M. H., and Rapalino, O. (2016). Brain perfusion: computed
tomography andmagnetic resonance techniques.Handb. Clin. neurology 135, 117–135.
doi:10.1016/b978-0-444-53485-9.00006-4

Frerichs, I., Amato, M. B. P., van Kaam, A. H., Tingay, D. G., Zhao, Z. Q.,
Grychtol, B., et al. (2017). Chest electrical impedance tomography examination,
data analysis, terminology, clinical use and recommendations: consensus statement
of the TRanslational EIT developmeNt stuDy group. Thorax 72 (1), 83–93.
doi:10.1136/thoraxjnl-2016-208357

Gelfand, J. M., Wintermark, M., and Josephson, S. A. (2010). Cerebral perfusion-
CT patterns following seizure. Eur. J. Neurology 17 (4), 594–601. doi:10.1111/j.1468-
1331.2009.02869.x

Larsson, H. B. W., Vestergaard, M. B., Lindberg, U., Iversen, H. K., and Cramer, S.
P. (2017). Brain capillary transit time heterogeneity in healthy volunteers measured by
dynamic contrast-enhanced T1-weighted perfusionMRI. J. Magnetic Reson. Imaging 45
(6), 1809–1820. doi:10.1002/jmri.25488

Lau, V. I., Jaidka, A., Wiskar, K., Packer, N., Tang, J. E., Koenig, S., et al.
(2020). Better with ultrasound transcranial Doppler. Chest 157 (1), 142–150.
doi:10.1016/j.chest.2019.08.2204

Le, T. T., Im, G. H., Lee, C. H., Choi, S. H., and Kim, S. G. (2024). Mapping cerebral
perfusion in mice under various anesthesia levels using highly sensitive BOLD MRI
with transient hypoxia. Sci. Adv. 10 (9), eadm7605. doi:10.1126/sciadv.adm7605

Li, W. C., Xia, J. Y., Zhang, G., Ma, H., Liu, B. Y., Yang, L., et al. (2019). Fast high-
precision electrical impedance tomography system for real-time perfusion imaging. Ieee
Access 7, 61570–61580. doi:10.1109/access.2019.2902975

Lin, T. S., Hsu, P. Y., Ko, C. L., Kuo, Y.M., Lu, C. H., Shen, C. Y., et al. (2021). Increased
heterogeneity of brain perfusion predicts the development of cerebrovascular accidents.
Medicine 100 (15), e25557. doi:10.1097/md.0000000000025557

Mustonen, T., Koivisto, T., Vanninen, R., Hänninen, T., Vapalahti, M., Hernesniemi,
J., et al. (2008). Heterogeneity of cerebral perfusion 1 week after haemorrhage
is an independent predictor of clinical outcome in patients with aneurysmal
subarachnoid haemorrhage. J. Neurology Neurosurg. Psychiatry 79 (10), 1128–1133.
doi:10.1136/jnnp.2007.142851

Ouypornkochagorn, T., Terzija, N., Wright, P., Davidson, J. L., Polydorides, N.,
and McCann, H. (2022). Scalp-mounted electrical impedance tomography of cerebral
hemodynamics. Ieee Sensors J. 22 (5), 4569–4580. doi:10.1109/jsen.2022.3145587

Sadleir, R. J., and Fox, R. A. (2001). Detection and quantification of intraperitoneal
fluid using electrical impedance tomography. IEEE Trans. bio-medical Eng. 48 (4),
484–491. doi:10.1109/10.915715

Shi, X. T., Li, W. C., You, F. S., Huo, X. Y., Xu, C. H., Ji, Z. Y., et al. (2018). High-
precision electrical impedance tomography data acquisition system for brain imaging.
Ieee Sensors J. 18 (14), 5974–5984. doi:10.1109/jsen.2018.2836336

Smielewski, P., Czosnyka, M., Kirkpatrick, P., McEroy, H., Rutkowska, H., and
Pickard, J. D. (1996). Assessment of cerebral autoregulation using carotid artery
compression. Stroke 27 (12), 2197–2203. doi:10.1161/01.Str.27.12.2197

Frontiers in Physiology 09 frontiersin.org

https://doi.org/10.3389/fphys.2024.1476040
https://doi.org/10.1109/42.491418
https://doi.org/10.1088/0967-3334/27/5/s03
https://doi.org/10.1016/j.neuroimage.2015.08.071
https://doi.org/10.1161/strokeaha.122.041406
https://doi.org/10.1146/annurev.bioeng.8.061505.095716
https://doi.org/10.1016/b978-0-444-53485-9.00006-4
https://doi.org/10.1136/thoraxjnl-2016-208357
https://doi.org/10.1111/j.1468-1331.2009.02869.x
https://doi.org/10.1111/j.1468-1331.2009.02869.x
https://doi.org/10.1002/jmri.25488
https://doi.org/10.1016/j.chest.2019.08.2204
https://doi.org/10.1126/sciadv.adm7605
https://doi.org/10.1109/access.2019.2902975
https://doi.org/10.1097/md.0000000000025557
https://doi.org/10.1136/jnnp.2007.142851
https://doi.org/10.1109/jsen.2022.3145587
https://doi.org/10.1109/10.915715
https://doi.org/10.1109/jsen.2018.2836336
https://doi.org/10.1161/01.Str.27.12.2197
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Zhu et al. 10.3389/fphys.2024.1476040

Wegener, S., Baron, J. C., Derdeyn, C. P., Fierstra, J., Fromm, A., Klijn, C. J. M., et al.
(2024).Hemodynamic stroke: emerging concepts, risk estimation, and treatment. Stroke
55 (7), 1940–1950. doi:10.1161/strokeaha.123.044386

Yan, X. H., Wang, Y., Li, W. C., Zhu, M. X., Wang, W. C., Xu, C.
H., et al. (2024). A preliminary study on the application of electrical
impedance tomography based on cerebral perfusion monitoring to intracranial
pressure changes. Front. Neurosci. 18, 1390977. doi:10.3389/fnins.2024.
1390977

Zhang, W. R., Jiao, Y., Zhang, T., Liu, X. C., Ye, J. A., Zhang, Y. Y., et al. (2023). Early
detection of acute ischemic stroke using Contrast-enhanced electrical impedance

tomography perfusion. Neuroimage-Clinical 39, 103456. doi:10.1016/j.nicl.2023.
103456

Zhang, Y. Y., Ye, J. A., Jiao, Y., Zhang, W. R., Zhang, T., Tian, X., et al. (2022).
A pilot study of contrast-enhanced electrical impedance tomography for real-time
imaging of cerebral perfusion. Front. Neurosci. 16, 1027948. doi:10.3389/fnins.2022.
1027948

Zhao, Z. Q., Möller, K., Steinmann, D., Frerichs, I., and Guttmann, J. (2009).
Evaluation of an electrical impedance tomography-based global inhomogeneity index
for pulmonary ventilation distribution. Intensive Care Med. 35 (11), 1900–1906.
doi:10.1007/s00134-009-1589-y

Frontiers in Physiology 10 frontiersin.org

https://doi.org/10.3389/fphys.2024.1476040
https://doi.org/10.1161/strokeaha.123.044386
https://doi.org/10.3389/fnins.2024.1390977
https://doi.org/10.3389/fnins.2024.1390977
https://doi.org/10.1016/j.nicl.2023.103456
https://doi.org/10.1016/j.nicl.2023.103456
https://doi.org/10.3389/fnins.2022.1027948
https://doi.org/10.3389/fnins.2022.1027948
https://doi.org/10.1007/s00134-009-1589-y
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 Study protocol
	2.2 EIT system
	2.3 EIT image reconstruction
	2.4 Calculation of indices
	2.5 TCD control
	2.6 Statistical analysis

	3 Results
	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

