
Characterization of the
ligand-binding properties of
odorant-binding protein 38 from
Riptortus pedestris when
interacting with soybean volatiles

Jianglong Guo, Panjing Liu, Xiaofang Zhang, Jingjie An, Yaofa Li,
Tao Zhang* and Zhanlin Gao*

Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of
Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and
Rural Affairs, IPM Innovation Center of Hebei Province, International Science and Technology Joint
Research Center on IPM of Hebei Province, Baoding, China

Background: Riptortus pedestris (Fabricius) (Hemiptera: Alydidae) is a major
soybean pest throughout East Asia that relies on its advanced olfactory system
for the perception of plant-derived volatile compounds and aggregation
pheromones for conspecific and host plant localization. Odorant binding
proteins (OBPs) facilitate the transport of odorant compounds across the
sensillum lymph within the insect olfactory system, enabling their interaction
with odorant receptors (ORs).

Methods: Real-time quantitative PCR (qRT-PCR) analyses, fluorescence-based
competitive binding assays, and molecular docking analyses were applied to
assess the expression and ligand-binding properties of OBP38 from R. peddestris.

Results: The qRT-PCR analyses revealed high levels of RpedOBP38 expression in
the antennae without any apparent sex bias, and it was also highly expressed in
the adult stage. Recombinant RpedOBP38 was prepared by expressing it in E. coli
BL21 (DE3) followed by its purification with a Ni-chelating affinity column.
RpedOBP38 was found to bind most strongly to trans-2-decenal (Ki = 7.440)
and trans-2-nonenal (Ki = 10.973), followed by β-pinene, (+) -4-terpineol,
carvacrol, methyl salicylate, and (-)-carvone. The 3D structure of RpedOBP38
contains six α-helices and three interlocked disulfide bridges comprising a stable
hydrophobic binding pocket. In a final series of molecular docking analyses,
several polar (e.g., His 94, Glu97) and nonpolar (e.g., Leu29, Ile59) residues were
found to be involved in RpedOBP38-ligand binding.

Conclusion: These data support a role for RpedOBP38 in the perception of
volatiles derived from host plants, providing important insight into the
mechanisms that govern olfactory recognition in R. pedestris, thereby
informing the development of ecologically friendly approaches to managing
R. pedestris infestations.
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1 Introduction

The ability of insects to perceive pheromones, host-derived
odorants, and the wide array of other peripheral chemical signals
present in their surrounding environment is dependent on a
complex olfactory system that ultimately shapes key physiological
processes such as foraging, mating, and oviposition (Martin et al.,
2011; Leal, 2013). The ability to accurately recognize and decipher
these signals is thus vital for the ability of insects to survive and
reproduce. Hydrophobic chemicals need to successfully penetrate
the olfactory sensilla and the hydrophilic sensillum lymph in order
to access the odorant receptors (ORs) present on sensory neuron
surfaces, thereby triggering downstream signal transduction (Li
et al., 2015; Zhou et al., 2022). To facilitate this process,
specialized supporting cells produce odorant-binding proteins
(OBPs), which are secreted into the olfactory sensillum lymph
and play a vital role in the process of insect odorant reception
(Leal, 2013; Paula et al., 2018). OBPs can selectively bind, solubilize,
and transport odorant molecules as they diffuse into the sensillum
lymph, thereby enabling the activation of ORs and associated
downstream signaling pathways (Leal, 2013; Liu et al., 2023).
Given the importance of OBPs during this initial stage of
odorant reception, they hold great promise as molecular targets
for pest control efforts and the development of superior integrated
pest management (IPM) strategies (Zhou et al., 2010; Venthur and
Zhou, 2018).

The OBPs produced by insects are low-molecular-weight
(12–20 kDa) proteins approximately 100–200 amino acids in
length that are water soluble and typically feature a ~20 amino
acid N-terminal signal peptide sequence (Ahmed et al., 2017; Li J. B.
et al., 2022; Zeng et al., 2019). The 3D structures of classical OBPs are
stabilized by three disulfide bridges formed by six conserved cysteine
residues (Leal et al., 1999; Scaloni et al., 1999; Pelosi et al., 2014). The
patterns of conserved cysteines have also been used to define four
other classes of OBPs, including “Dimer” OBPs with two typical
cysteines, “Minus-C” OBPs that lack 1-2 cysteines, “Plus-C″ OBPs
with 2-3 extra cysteines, and “Atypical” OBPs with a long, atypical
C-terminal domain (Zhou et al., 2010; Spinelli et al., 2012;
Manoharan et al., 2013; Venthur et al., 2014; Zeng et al., 2019).
Identified in 1981, the first characterized OBP in insects was found
to be exclusively expressed in Antberaea polypbemus antennae,
enabling male moths to detect a particular sex pheromone
(trans-6, cis-11-hexadecadienyl acetate) such that they were able
to locate conspecific females to engage in mating (Vogt and
Riddiford, 1981). Advances in molecular biology and
transcriptomic technologies have fueled the identification of a
growing number of genes encoding OBPs in many orders of
insects, including Coleoptera (e.g., 39 OBPs in Phyllotreta
striolata, Xiao et al., 2023), Hemiptera (e.g., 49 OBPs in Riptortus
pedestris, Li L. L. et al. (2022)), Diptera (e.g., 28 OBPs in Liriomyza
trifolii, Zhang et al. (2022)), Lepidoptera (e.g., 31 OBPs in Chilo
sacchariphagus, Liu et al. (2021a)), Hymenoptera (e.g., 21 OBPs in
Apis mellifera, Forêt and Maleszka (2006)), Orthoptera (e.g.,
22 OBPs in Locusta migratoria, Pelosi et al. (2018)).
Experimental efforts have revealed that OBPs which are primarily
expressed in the antennae of certain insects are capable of interacting
with specific chemical ligands including host volatiles and
pheromones (Zhang et al., 2020a; Rihani et al., 2021). AlepOBP6,

for instance, is predominantly expressed in the antennae of male
Athetis lepigone individuals and can recognize both maize-derived
volatile compounds and sex hormones produced by conspecific
females (Li J. B. et al., 2022). In Hippodamia variegate, both
males and females exhibit high levels of HvarOBP5 expression in
their antennae, thus enabling the perception of plant and prey-
derived volatiles (Tang et al., 2023). The behavioral responses of
Eupeodes corolla to the aphid alarm pheromone (E)-β-farnesene
have been shown to be regulated by EcorOBP15 (Wang et al., 2022).
Several OBPs have also been demonstrated to be expressed in other
organs with or without primary chemosensory functions, including
mouthpart palps (Pregitzer et al., 2018), labella (Sparks et al., 2014),
legs (Hull et al., 2014), thorax (Zhang et al., 2018), and reproductive
organs (Sun et al., 2012). These OBPs can facilitate a range of
physiological functions including the recognition of taste
compounds, the solubilization of nutrients, and the augmentation
of resistance against insecticides (Pelosi et al., 2018).

Riptortus pedestris (Fabricius) (Hemiptera: Alydidae), known as
the bean bug, is a serious agricultural pest species that is widely
distributed throughout China, Japan, Korea, and other nations in
East Asia (Jung and Lee, 2018; Jin et al., 2022). R. pedestris is a
polyphagous pest species, feeding on over 30 different plants across
13 families (including Gramineae, Cruciferae, and other crop
families), although they exhibit a particular preference for
soybeans and other leguminous plants (Mainali et al., 2014; Ahn
et al., 2020). Large numbers of these bean bugs typically infest
soybean fields in the late flowering or early pod-growing stages and
persistently feed on and damage these plants until harvest time
(Endo et al., 2011). Soybean leaves, stems, pods, and flowers can be
damaged by both R. pedestris adults and nymphs through their
piercing and sucking behaviors, resulting in leaf rolling, stunted
growth, and seed pods that are shriveled or empty, culminating in
serious reductions in soybean quality and yield (Ahn et al., 2020). R.
pedestris-associated soybean damage has recently emerged as a
particularly serious problem in the Huang-Huai-Hai region of
China (Li L. L. et al., 2022). Soybean plants in this region often
suffer from the staygreen phenomenon that can be caused by R.
pedestris feeding, which results in leaves that remain green, shriveled
pods, and maturity stage seed abortion in soybean plants (Li et al.,
2019; Dong et al., 2022). The control of R. pedestris has traditionally
been achieved through the application of pyrethroids or other
broad-spectrum insecticides (Gao et al., 2019; Guo et al., 2023).
Such insecticide-based management practices, however, entail many
potentially serious issues including environmental pollution,
elevated levels of insecticide resistance, and inadequate efficacy
owing to the highly mobile nature of these insects and their
behavioral avoidance of insecticides (Bae et al., 2019; Zhu et al.,
2022). There is thus a pressing need to develop new, ecologically
friendly olfaction-based strategies for the control of R. pedestris
infestations.

R. pedestris rely on their highly-developed antennae harboring
abundant sensilla to detect both adult male-derived aggregation
pheromone and host plant-derived volatiles, thus facilitating
conspecific and host location efforts (Leal et al., 1995; Kim et al.,
2016; Roh et al., 2021; Song et al., 2022). Li J. B. et al. (2022)
previously analyzed the R. pedestris genome and identified
49 candidate RpedOBPs, including RpedOBP38, which exhibited
high levels of expression in the antennae. The specific involvement
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of RpedOBP38 in the detection of host volatiles or other chemical
signals, however, has yet to be documented. Accordingly, this study
was devised to clarify the olfactory functions of RpedOBP38. To that
end, the sequence of the RpedOBP38 gene was initially analyzed,
after which RpedOBP38 expression was analyzed across a variety of
tissues and developmental stages via real-time quantitative PCR
(qRT-PCR). The binding affinity of RpedOBP38 for 36 volatiles
(including 11 green leaf volatiles, 11 soybean volatiles, 10 volatiles
associated with repellent activity, and 4 aggregation pheromone
compounds) was characterized through a fluorescence binding
assay. Lastly, homology modeling and molecular docking
approaches were used to characterize the binding sites and key
amino acids related to the ligand binding activity of RpedOBP38.
Together, the results of these analyses provide a robust evidence base
for the further molecular characterization of the mechanisms
governing olfactory recognition in R. pedestris, thus supporting
efforts to improve the integrated management of this
economically significant pest species.

2 Materials and methods

2.1 Insect rearing and tissue collection

R. pedestris specimens were captured in July-August 2019 from
soybean fields in Shijiazhuang, Hebei province, China. Adults and
nymphs were reared as in prior reports (Guo et al., 2023). Briefly,
these insects were housed at 26°C ± 1°C under 60% ± 5% relative
humidity (RH) with a 16 h: 8 h (L:D) photoperiod in cages, and were
fed dried seeds (variety Jidou 12) and soybean seedlings that were
replaced every 5–7 days. Based on the study of Li L. L. et al. (2022), 3-
day-old virgin male and female adults were processed to collect
antennae (40 pairs), heads without antennae (from 10 individuals),
thoraxes (from 4 individuals), abdomens (from 3 individuals), wings
(from 40 individuals), and legs (from 20 individuals). In addition,
antennae were collected from 2nd (200 pairs), 3rd (120 pairs), 4th
(60 pairs), and 5th (60 pairs) instar nymphs, after which they were
snap-frozen with liquid nitrogen and stored at −80°C.

2.2 Total RNA extraction and preparation

TRIzol (TransGen, China) was used to extract RNA according to
the manufacturer’s instructions, the quality of which was analyzed
via 1.0% agarose gel electrophoresis and spectrophotometry with a
NanoDrop™ 2000 instrument (Thermo Fisher Scientific,
United States). Next, 1 μg of the extracted RNA was processed
with All-in-One First-Strand cDNA Synthesis SuperMix
(TransGen), and the resultant cDNA was stored at −20°C.

2.3 Sequence alignment and
phylogenetic analyses

The SignalP 6.0 server (https://services.healthtech.dtu.dk/
services/SignalP-6.0/) was used for signal peptide prediction,
while ClustalX 2.0 was used for multiple alignment of the
RpedOBP38 protein sequence and those of other Hemiptera

OBPs, with GeneDoc (http://nrbsc.org/gfx/genedoc) being used
for result visualization. The amino acid sequences of other
hemipteran species were downloaded by accessing the NCBI
website. MEGA7 was used to construct a phylogenetic tree with
the neighbor-joining method and bootstrap testing
(1,000 replicates). The Poisson correction method was employed
when calculating evolutionary distance.

2.4 RpedOBP38 expression profiles

RpedOBP38 expression was validated via qRT-PCR with an ABI
QuantStudio6 Q6 Real-Time PCR System (Applied Biosystems, CA,
United States) using primers designed with Premier 6 and prepared
by Sangon Biotech Co., Ltd (Beijing, China) (Supplementary Table
S1). Individual 20 μL reactions comprised 1 μL of cDNA, 0.6 μL each
of F/R primers (10 μM), 10 μL of 2 × FastFire qPCR PreMix
(TianGen Biotech, Beijing, China), and 7.8 μL of ddH2O.
Reaction settings were: 94°C for 30 s; 40 cycles of 94°C for 5 s,
55°C for 15 s, and 72°C for 10 s. Relative RpedOBP38 expression was
assessed with the 2-△△Ct method, using EF1 and Actin as reference
genes (Wang et al., 2023). Three independent biological replicates
were analyzed per sample.

2.5 Recombinant plasmid construction

The RpedOBP38 open reading frame (ORF) lacking a signal
peptide sequence was PCR amplified with TransStart® FastPfu PCR
SuperMix (TransGen Biotech). Primers used to construct an
RpedOBP38 expression vector were as follows: Forward: 5′-GAT
GAGGCGAAACAGATG-3′, Reverse: 5′-TCACTGTAGATCTTC
AGTTCC-3’. Amplification settings were as follows: 95°C for
1 min; 35 cycles of 95°C for 20 s, 55°C for 20 s, and 72°C for
1 min; 72°C for 5 min. The products of PCR amplification were
ligated into the pEASY-Blunt E1 vector (TransGen Biotech) and
transformed into E. coli Trans-T1. Sangon Biotech then sequenced
and confirmed the amplified gene products, and positive
recombinant pEASY-Blunt E1-RpedOBP38 plasmids were
obtained for further use.

2.6 Recombinant RpedOBP38 purification

After transforming E. coli BL21 (DE3) with recombinant
RpedOBP38 expression vectors, positive clones were isolated and
used to initiate cultures in LB broth containing 50 μg/mL ampicillin
that were incubated at 37°C and 220 rpm. When the OD600 reached
0.6, 1 mM of isopropyl β-D-thiogalactoside (IPTG) was added and
bacteria were incubated under the same conditions for a further 6 h.
Cells were then centrifuged (8,000 xg, 4°C) and resuspended in
20 mL of PBS (pH 7.0). Cells were then ultrasonically disrupted, and
homogenates were centrifuged (14,000 rpm, 20 min, 4°C). The
supernatants were then assessed via 12% SDS-PAGE separation.
Target proteins from the supernatant fractions were applied to a Ni-
chelating affinity column (GE, United States), which was
subsequently equilibrated with 100 mM NaCl, 20 mM Tris-HCl,
pH 7.9, and eluted using an ascending imidazole concentration
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series (50, 100, 150 and 200 mM). Dialysis was used to desalt the
eluent, and target protein size and purity were assessed via SDS-
PAGE. Recombinant protein concentrations were measured via
Bradford assay.

2.7 Fluorescence competitive binding assay

Recombinant RpedOBP38 binding to putative chemical ligands
was characterized with a microplate reader (BioTek Synergy H1,
United States). Fluorescence intensity values at the excitation
wavelength of 337 nm and a maximum fluorescence emission
wavelength of 450 nm were plotted against the free concentration
of ligand for the measurement of dissociation constants, selecting
candidate ligands from among 36 volatile compounds that included
11 green leaf volatiles (Chen et al., 2018; Guo and Wang, 2019;
Cheng et al., 2020; Hong et al., 2022; Tang et al., 2023; Zhu et al.,
2023), 11 soybean volatiles (Wang et al., 2019a; Zhu et al., 2022),
10 repellent activity volatiles (Zhang et al., 2013; Zhang et al., 2014),
and 4 aggregation pheromone compounds (Leal et al., 1995; Yasuda
et al., 2007). HPLC-grade methanol was used for the dissolution of
the probe N-phenyl-1-naphthylamine (1-NPN) and all ligands. The
ability of RpedOBP38 to bind 1-NPN was assessed by using 10 mM
PBS (pH 7.4) to prepare a 2 μM purified protein solution, titrating
with 1 mM 1-NPN in methanol to prepare final concentrations from
2–20 μM. RpedOBP38 binding to each ligand was evaluated in a
solution consisting of 2 μMpurified protein and 1-NPN, followed by
titration through the addition of ligands until no further decrease in
the fluorescence intensity was observed. Ligands were independently
replicated three times, and dissociation constants for each ligand
were measured as follows: Ki = [IC50]/(1 + [1-NPN]/K1-NPN), where
IC50 denotes the ligand concentration when the fluorescence
intensity is half of the initial value [1-NPN] is the free 1-NPN
concentration, and K1-NPN is the dissociation constant for the
RpedOBP38/1-NPN complex (Campanacci et al., 2001). Based on
the study of Cui et al. (2018), the strength of binding affinity could be
indicated by Ki value, including very strong (Ki < 6 μM), strong
(6 µM ≤ Ki < 22 µM), moderate (22 µM ≤ Ki < 40 µM) and weak
(Ki > 40 µM).

2.8 Homology modelling and molecular
docking analyses

RpedOBP38 tertiary structure modeling was performed with the
I-TASSER server (Zheng et al., 2021), due to the <30% homology
with the protein sequences in the Swiss-model server. The
RpedOBP38 amino acid sequence was utilized as an input,
utilizing the 10 template proteins exhibiting the highest sequence
identity for the purposes of modeling (Supplementary Table S2).
C-score values were used to choose the best model from among the
top 5 (Supplementary Table S3), with C-scores generally falling in
the [-5, 2] range, and higher scores being indicative of greater model
confidence. For the chosen ligands, the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/) was accessed to download 3D
structures that were subsequently converted into the mol2 format
with Open Babel GUI v.3.1.1 (O’Boyle et al., 2011). Molecular
docking analyses of the interactions between RpedOBP38 and

seven ligands were performed with AutoDock Vina (v.1.1.2)
(Trott and Olson, 2010) using default parameters. PyMOL v.2.0
(Schrödinger, LLC) was used for the visualization of the molecular
docking results, and interaction forces were examined with PLIP
(https://plip-tool.biotec.tu-dresden.de/plipweb/plip/index).

2.9 Statistical analyses

RpedOBP38 expression was analyzed across various R. pedestris
tissues and developmental stages using one-way ANOVA with
Tukey’s multiple comparison test. p < 0.05 was selected as the
cut-off for significance, and SPSS 20.0 (IBM 2011) was used for all
statistical analyses, while GraphPad Prism 8.0 was used for figure
generation.

3 Results

3.1 RpedOBP38 sequence analyses

RpedOBP38 cDNA sequences were downloaded from the R.
pedestris genome (Li J. B. et al., 2022). The RpedOBP38 ORF was
found to consist of 462 bp encoding a 153-amino-acid (aa) protein,
with a 19-aa N-terminal signal peptide. This protein had a predicted
molecular mass of 15.08 kDa and a predicted isoelectric point of 5.20.
BLASTp similarity analyses revealed some level of sequence identity
with OBPs from other Hemiptera species, including YsigOBP15 from
Yemma signatus (43.42%), PstaOBP3 from Plautia stali (38.78%),
HhalOBP15 from Halyomorpha halys (37.50%), TeleOBP5 from
Tropidothorax elegans (36.23%), and NvirOBP20 from Nezara
viridula (35.71%). Phylogenetic tree analyses revealed the clustering
of RpedOBP38 and YsigOBP15 from Y. signatus (Figure 1A).
Sequence alignment also revealed the presence of six conserved
cysteine residues within RpedOBP38 (Figure 1B), consistent with
its classification within the classical OBP family.

3.2 Evaluation of RpedOBP38
expression patterns

RpedOBP38 expression across tissues and developmental stages was
next characterized by qPCR, revealing significant differences in
RpedOBP38 among tissues in both female (F5, 12 = 65.68, P < 0.001)
and male (F5, 12 = 129.09, P < 0.001) adults, with the highest expression
levels in the antennae of adult females and males, respectively
(Figure 2A). Antennae RpedOBP38 expression levels rose with
increasing developmental stages, with significant differences among
stages (F5, 12 = 106.62, P < 0.001), and expression levels being highest in
adult antennae. However, there was no significant sex difference for
RpedOBP38 expression levels (Figure 2B).

3.3 Characterization of RpedOBP38 binding
to 1-NPN and candidate ligands

After expressing recombinant RpedOBP38 in E. coli BL21
(DE3), it was purified, yielding a final recombinant
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RpedOBP38 concentration of 0.603 mg/mL. SDS-PAGE analyses
confirmed a similar target protein size to the predicted size
(Figure 3A). The ability of RpedOBP38 to bind 1-NPN was then
assessed, revealing strong binding between RpedOBP38 and 1-NPN
(dissociation constant [Kd]): 4.059 μmol/L). Binding curve analyses
and Scatchard plots revealed the presence of a single binding site,
indicating that 1-NPN was a highly suitable probe for subsequent
binding analyses (Figure 3B).

In total, 36 volatile compounds including 11 green leaf volatiles,
11 soybean volatiles, 10 volatiles associated with repellent activity,
and 4 aggregation pheromone compounds were chosen for the
evaluation of RpedOBP38 ligand binding. The resultant analyses
demonstrated the ability of RpedOBP38 to strongly bind to the
soybean volatiles trans-2-decenal (Ki = 7.440 μM), trans-2-nonenal

(Ki = 10.973 μM) and methy salicylate (Ki = 21.065 μM) (Figure 3C;
Table 1). It also exhibited strong or moderate binding to three
volatiles associated with repellent activity ((+) -4-terpineol, Ki =
14.017 μM; carvacrol, Ki = 19.446 μM; (−)-carvone, Ki = 27.215 μM)
(Figure 3D; Table 1). In contrast, it exhibited weak binding activity
for the tested aggregation pheromone compounds (Ki >
40 μM) (Table 1).

3.4 Homology modeling and molecular
docking analyses

When the I-TASSER server was used to construct 3Dmodels of
the structure of RpedOBP38, the first model among the top five

FIGURE 1
RpedOBP38 sequence characteristics. (A) Odorant-binding proteins (OBPs) from Riptortus pedestris and other hemipteran species were used to
construct a phylogenetic tree. (B) RpedOBP38 alignment to OBP sequences from other hemipteran species. The signal peptide sequence is marked with
a red box. Hhal: Halyomorpha halys, Nvir: Nezara viridula, Psta: Plautia stali, Tele: Tropidothorax elegans, Ysig: Yemma signatus.

FIGURE 2
Relative RpedOBP38 expression analyses. (A) qRT-PCR analyses of RpedOBP38 mRNA levels in various tissues. He: heads, Th: thoraxes, Ab:
abdomens, Le: legs, Wi: wings, An: antenna. (B) qRT-PCR analyses of RpedOBP38 mRNA levels in the antennae of Riptortus pedestris at different
developmental stages. F: female, M: male. Significant differences are indicated by different lowercase letters (p < 0.05; Tukey’s HSD test).
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generated models exhibited the highest C-score of −1.13
(Supplementary Table S3). This predicted RpedOBP38 model
contained six α-helices designated α1 (Pro21-Glu42), α2
(Glu47-Ser55), α3 (Cys67-Gly75), α4 (Trp87-Glu97), α5
(Pro101-Ala113), and α6 (His124-Ala142) that were folded
around a hydrophobic cavity. It also harbored three
interlocking disulfide bridges formed by links between Cys39 in
α1 and Cys71 in α3, Cys67 in α3 and Cys125 in α6, and Cys114 in
α5 and Cys134 in α6, providing further stability to the
hydrophobic structure of this protein (Figure 4A).

Based on the fluorescence competitive binding assays performed
above, β-pinene, methyl salicylate, trans-2-nonenal, trans-2-decenal
(+) -4-terpineol (−)-carvone, and carvacrol were chosen as target
ligands for molecular docking analyses. All seven of these ligands
exhibited negative binding energy values when interacting with
RpedOBP3 ranging from −5.71 to −4.20 (Table 2). Hydrogen
bonds, hydrophobic interactions, and π-stacking were all found
to contribute to these RpedOBP38-ligand binding interactions
(Figures 4B–H). Both polar (e.g., Lys133, Glu97, His 94, Thr31)
and nonpolar (e.g., Ile59, Leu136, Val85, Phe135) residues within
the hydrophobic RpedOBP38 cavity were found to contribute to
intermolecular binding interactions. Some of these amino acid
residues were found to bind to multiple ligands, including 10
(Glu32, Ile59, Val85, Ile96, Thr111, Tyr129, Ala131, Lys133,
Phe135, and Leu136) that were able to bind to three ligands, and
5 (Leu29, Thr31, Ile93, His94, and Glu97) that were able to bind to
three ligands (Table 2).

4 Discussion

OBPs have been identified across many insect species to date and
have been confirmed to be integral to the recognition of exogenous
chemical signals and the regulation of physiological activities
(Venthur and Zhou, 2018). OBPs have been established as
promising molecular targets when screening for odorous
compounds with attractant or repellent properties, informing the
development of push-pull pest control strategies (Zhang et al., 2021;
Song et al., 2022; Zhu et al., 2022; Zhu et al., 2023). For instance,
CquiOBP1 of Culex quinquefasciatus was used as a target to guide
the successful synthesis of a blend of trimethylamine and nonanal
through the combination of conventional and reverse chemical
ecology methodological approaches (Leal et al., 2008). The ability
of certain OBPs to bind to aphid alarm pheromone has also enabled
the design and synthesis of novel (E)-β-farnesene analogs with
repellent and insecticidal activity for Acythosiphon pisum (Sun
et al., 2011). In light of the importance of OBPs and the rising
demand for environmentally friendly approaches to managing pest
species, OBPs have emerged as a research hotspot in the insect
chemical ecology space.

Initial sequencing analyses performed in this study revealed that
RpedOBP38 had 153 amino acids in length with a 19-aa N-terminal
signal peptide and six conserved cysteine residues, consistent with its
classification as a member of the classic OBP family (Pelosi et al.,
2006; Brito et al., 2016). Phylogenetic analyses can be used to infer
evolutionary relationships for particular genes across species,

FIGURE 3
Characterization of RpedOBP38 ligand binding properties. (A) SDS-PAGE analyses pertaining to recombinant RpedOBP38 expression and
purification. Lane 1: non-induced pEasy-Blunt E1-RpedOBP38; Lane 2: induced pEasy-Blunt E1-RpedOBP38; Lane 3: Supernatant of induced pEasy-
Blunt E1-RpedOBP38; Lane 4: precipitation of induced pEasy-Blunt E1-RpedOBP38; Lane 5: purified RpedOBP38. (B) Binding curves and scatchard plots
correspond to the interaction between the fluorescent probe 1-NPN and RpedOBP38. (C, D) Binding curves corresponding to interactions between
RpedOBP38 and green leaf volatiles, soybean volatiles. (C) or repellent volatiles (D).
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TABLE 1 Binding affinities of all tested ligands to RpedOBP38.

Ligands CAS number IC50 (μmol/L) Ki (μmol/L)

Green leaf volatiles

trans-2-hexenal 6,728-26-3 >40 >40

octanal 124-13-0 >40 >40

nonanal 124-19-6 >40 >40

β-myrcene 123-35-3 >40 >40

trans-caryophyllene 87-44-5 >40 >40

α-pinene 13,877-91-3 >40 >40

geraniol 106-24-1 >40 >40

camphene 565-00-4 >40 >40

β-pinene 127-91-3 16.393 ± 0.261 12.315 ± 0.196

(+)-α-pinene 7,785-70-8 >40 >40

(−)-α-pinene 7,785-26-4 >40 >40

Soybean volatiles

hexanal 66-25-1 >40 >40

1-hexanol 111-27-3 >40 >40

1-octen-3-ol 3,391-86-4 >40 >40

3-octanone 106-68-3 >40 >40

cis-3-hexen-1-ol 928-96-1 >40 >40

cis-3-hexenyl acetate 3,681-71-8 >40 >40

methyl salicylate 119-36-8 28.039 ± 5.938 21.065 ± 4.461

trans-2-hexenyl acetate 2,497-18-9 >40 >40

trans-2-octenal 2,548-87-0 >40 >40

trans-2-nonenal 18,829-56-6 14.606 ± 0.821 10.973 ± 0.617

trans-2-decenal 3,913-81-3 9.904 ± 0.970 7.440 ± 0.729

Volatiles with repellent activity

eugenol 97-53-0 >40 >40

isoeugenol 97-54-1 >40 >40

(−) -4-terpineol 20,126-76-5 >40 >40

(+) -4-terpineol 2,438-10-0 18.658 ± 0.428 14.017 ± 0.321

γ-terpinene 99-85-4 >40 >40

cineole 470-82-6 >40 >40

α-terpinene 99-86-5 >40 >40

(−)-carvone 6,485-40-1 36.226 ± 5.169 27.215 ± 3.883

(+)-carvone 2,244-16-8 >40 >40

carvacrol 499-75-2 25.898 ± 0.443 19.456 ± 0.333

Pheromone compounds

trans-2-hexenyl hexanoate 53,398-86-0 >40 >40

(E)-2-hexenyl (Z)-3-hexenoate (E2-6:Z3Hex) 53,398-87-1 >40 >40

(Continued on following page)
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thereby informing functional analyses such that they have been
widely used for characterizing insect OBPs (Chen et al., 2018; Zhang
et al., 2022; Tang et al., 2023; Zhu et al., 2023). In this study,
RpedOBP38 and YsigOBP15 from Y. signatus clustered together,
suggesting their evolution from a shared ancestor and their potential
for similar physiological functions. Analyzing the patterns of insect

OBP expression across developmental stages and tissues is vital for
the clarification of the physiological functions of these factors (Ju
et al., 2014; Wang et al., 2019b; Li et al., 2020). In general, OBPs are
likely to play a role in the recognition of chemical signals if they are
expressed at high levels in antennae and other olfactory organs
(Chen et al., 2018; Li et al., 2020; Hong et al., 2022; Zhang et al., 2022;

TABLE 1 (Continued) Binding affinities of all tested ligands to RpedOBP38.

Ligands CAS number IC50 (μmol/L) Ki (μmol/L)

(E)-2-hexenyl (Z)-2-hexenoate (E2-6:E2Hex) 54,845-28-2 >40 >40

myristyl isobutyrate 167,871-30-9 >40 >40

‘Ki > 40 μM’ means that the binding ability of RpedOBP38 recombinant protein to this ligand was considered weak.

FIGURE 4
Molecular docking of ligands within the putative RpedOBP38 ligand binding pocket. (A) A structural model of RpedOBP38. The indicated amino acid
residues correspond to key residues within the predicted RpedOBP38 pocket. (B–H) Molecular docking analyses for interactions between
RpedOBP38 and trans-2-decenal (B), trans-2-nonenal (C), β-pinene (D), methyl salicylate (E), carvacrol (F) (−)-carvone (G), and (+) -4-terpineol (H).
Hydrogen bonds are indicated with blue lines, while hydrophobic interactions are denoted using blue dashed lines, and π-stacking is represented
using red dashed lines.
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Tang et al., 2023). Higher levels of RpedOBP38 expression were
noted in the antennae relative to other tissues in this study, with no
significant difference between females and males. This result was in
line with a prior report by Li L. L. et al (2022), indicating that
RpedOBP38 may play an important role in the recognition of host
volatiles and/or aggregation pheromones by R. pedestris. Other
groups have also reported similar outcomes. For instance, Huang
et al. (2018) reported the specific expression of AipsOBP2 in Agrotis
ipsilon antennae and found that it was capable of binding both host
volatiles and sex pheromones. Cheng et al. (2020) additionally noted
the strong binding of SmosOBP12, which was expressed at high
levels in the antennae of female Sitodiplosis mosellana, to host
volatiles derived from wheat including hexyl acetate and 3-
hexanol. R. pedestris reportedly harbor many different olfactory
sensors on their antennae (Kim et al., 2016), and are attracted to
soybean-derived volatile compounds and aggregation pheromones
released by conspecific males (Leal et al., 1995; Song et al., 2022).
High levels of RpedOBP38 expression were also noted in the adult
stage, suggesting its potential involvement as a mediator of soybean
volatile and aggregation pheromone recognition in R. pedestris.

Given the role that OBPs play as carriers in the context of
chemical communication in insects, there is a need to clarify the
affinity of these compounds for exogenous organic factors including
pheromones and host-derived odorants, thereby potentially offering
insight into the structural features of cognate ligands to guide reverse
chemical ecology studies (D’Onofrio et al., 2020). Fluorescence
competitive binding have been established as a reliable means of
assessing in vitro binding between OBPs and their ligands (He et al.,
2019; D’Onofrio et al., 2020). This approach has been successfully
implemented across various species of insects including Diaphorina
citri (Liu et al., 2021b), Liromyza trifolii (Zhang et al., 2022), R.
pedestris (Zhu et al., 2022), Bradysia odoriphaga (Zhu et al., 2023),
and Hippodamia variegate (Tang et al., 2023). In this study, the
ability of RpedOBP38 to bind to 11 green leaf volatiles, 11 soybean
volatiles, 10 volatiles with repellent activity, and 4 aggregation
pheromone compounds was assessed. In total, it was found to
bind to three soybean volatiles (trans-2-decenal, trans-2-nonenal,
methyl salicylate) and one green leaf volatile (β-pinene). Host plant
volatiles have been shown to promote feeding, avoidance,
oviposition, and a range of other behavioral responses (Anderson
et al., 1993; Leal et al., 1994; Zhu et al., 2022). RpedOBP38 may thus
play a role in the detection of soybean volatiles, although behavioral
and RNA interference assays will be necessary to confirm this

hypothesis. Zhu et al. (2022) previously demonstrated the ability
of RpedOBP4 to bind other soybean volatiles including 1-hexanol
and trans-2-hexenyl acetate, supporting the potential involvement
of multiple OBPs in the process of host plant recognition in line with
what has been reported by Li et al. (2017). RpedOBP38 was also able
to bind less strongly to plant essential oil-derived volatiles with
repellent activity ((+) -4-terpineol (−)-carvone, carvacrol) that
exhibit high levels of repellency for various insect species
(Quintana et al., 2009; Zhang et al., 2014). However, the binding
affinity of RpedOBP38 for tested aggregation pheromones was low
(Ki > 40 μM), suggesting that binding to these compounds may be
primarily mediated by other chemosensory proteins including
RpedCSP12 (Yin et al., 2023). Notably, RpedOBP38 exhibited
distinct binding affinity levels for certain isomers as in the case
of (+) -4-terpineol (Ki = 14.02 μM) and (−) -4-terpineol (Ki >
40 μM), or (−)-carvone (Ki = 27.22 μM) and (+)-carvone (Ki >
40 μM). Factors including carbon chain length, conformational
changes, and structural features can thus likely shape
RpedOBP38 binding affinity (Chen et al., 2018; Hong et al., 2022).

The physiological functions of a given protein are determined by
its 3D structure, and insect OBPs generally harbor a hydrophobic
cavity formed frommultiple α-helices, with some of the amino acids
therein facilitating interactions between these OBPs and their
ligands (He et al., 2019; Zhang et al., 2020b; Yang et al., 2021;
Zhu et al., 2023). Molecular modeling analyses performed herein
revealed the presence of a hydrophobic binding pocket within
RpedOBP38 that was stabilized by six α-helices and three
interlocking disulfide bridges. This is consistent with similar
reports for DcitOBP7 in Diaphorina citri (Liu et al., 2021a), and
PyasOBP2 in Pachyrhinus yasumatsui (Hong et al., 2022),
suggesting that they may engage in similar ligand-binding
mechanisms. Molecular docking analyses revealed negative
binding energy values for interactions between RpedOBP38 and
seven analyzed ligands, implying strong protein-ligand interactions,
consistent with the fluorescence competitive binding assay results.
OBP-ligand binding is generally mediated by types of intermolecular
forces including hydrogen bonds, van der Waals interactions, and
hydrophobic interactions (Zhuang et al., 2014; Li et al., 2021; Hong
et al., 2022). In this study, hydrogen bonds, hydrophobic
interactions, and π-stacking were all found to shape RpedOBP38-
ligand interactions, with molecular docking analyses also revealing
the distribution of several polar (e.g., Lys133, Glu97, His 94, Thr31)
and nonpolar (e.g., Ile59, Leu136, Val85, Phe135) residues within

TABLE 2 Prediction of key amino acid residues involved in the docking of RpedOBP38 to different ligands.

Ligands Binding energy (kcal/mol) Closer contact interacting residues

β-pinene −5.07 LEU73, VAL85, VAL90, THR111, ALA131, PHE135

methyl salicylate −5.42 ILE59, TYR129, LYS133, LYS133, LEU136

trans-2-nonenal −4.20 LEU29, THR31, ILE93, HIS94, ILE96, GLU97

trans-2-decenal −5.17 TRY57, ILE59, TYR129, LYS133, LEU136, LYS140, HIS145

(+)-4-terpineol −5.30 MET28, LEU29, THR31, GLU32, MET76, ILE93, ILE96, GLU97

(−)-carvone −5.71 LEU29, THR31, GLU32, ILE93, HIS94, GLU97

carvacrol −5.52 VAL85, HIS94, THR111, ALA131, LEU132, PHE135

Amino acids in bold font represent hydrogen bond, amino acids in italic represent π-stacking, and other amino acids represent hydrophobic interaction.
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the RpedOBP38 hydrophobic pocking jointly contributing to such
intermolecular binding. This aligns well with other reports for insect
OBPs, including the Val114, Thr9, and Val111 residues in
Grapholita Molesta OBP2 (Li et al., 2016), Tyr77, Ile41, Ala116,
and Lys38 in Apbid Sitobion OBP9 (Ullah et al., 2020), Leu33, Phe8,
Met76, IIe30, Tyr47, Asp29, and Lys120 in R. pedestris OBP4 (Zhu
et al., 2022), and Lys43, His64, and Leu42 in H, variegate OBP5
(Tang et al., 2023). Some of these amino acids were found to be
capable of binding to more than one ligand, including Leu29, Thr31,
His94, Glu97, Ile59, and Lys133, in line with what has previously
been described in both Athetis lepigone (Li L. L. et al., 2022) and R.
pedestris (Zhu et al., 2022). These residues may thus be particularly
important mediators of RpedOBP38-ligand binding, highlighting an
opportunity for site-directed mutagenesis to validate this hypothesis
in the future (Zhu et al., 2020).

In summary, these experiments revealed that RpedOBP38,
which was highly expressed in the antennae of adult R.
pedestris, is a classical OBP family member that clusters most
closely with YsigOBP15 from Y. signatus. Fluorescence
competitive binding analyses demonstrated the ability of
RpedOBP38 to bind strongly to two soybean volatiles (trans-2-
decenal, Ki = 7.440 μM; trans-2-nonenal, Ki = 10.973 μM; methyl
salicylate, Ki = 21.065 μM) and to bind strongly or moderately to
volatiles associated with repellent activity ((+) -4-terpineol, Ki =
14.017 μM; carvacrol, Ki = 19.456 μM; (−)-carvone, Ki =
27.215 μM). Through 3D modeling and molecular docking
analyses, RpedOBP38 was found to harbor six α-helices that
form a stable hydrophobic binding pocket, with the Leu29,
Thr31, His94, Glu97, Ile59, and Lys133 amino acid residues all
playing key roles in the ability of this OBP to bind its ligands.
Together, these results offer further insight into the mechanisms
that govern olfactory recognition in R. pedestris. In order to more
deeply elucidate the function of RpedOBP38, future studies are
planned to analyse the exact role of RpedOBP38 in the recognition
of more green leaf volatiles and soybean volatiles using a
combination of behavioural experiments, electrophysiological
experiments, and RNA inference (Zhu et al., 2022).
Furthermore, we attempt to use RpedOBP38 as a control target,
devise ecologically friendly behavioural inhibitors to disrupt the
feeding behavior of R. pedestris and thus improve the management
of R. pedestris (Zhu et al., 2022).
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