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This study addresses the limitations of traditional sports rehabilitation,
emphasizing the need for improved accuracy and response speed in real-
time action detection and recognition in complex rehabilitation scenarios.
We propose the STA-C3DL model, a deep learning framework that integrates
3D Convolutional Neural Networks (C3D), Long Short-Term Memory (LSTM)
networks, and spatiotemporal attention mechanisms to capture nuanced
action dynamics more precisely. Experimental results on multiple datasets,
including NTU RGB + D, Smarthome Rehabilitation, UCF101, and HMDB51,
show that the STA-C3DL model significantly outperforms existing methods,
achieving up to 96.42% accuracy and an F1 score of 95.83% on UCF101,
with robust performance across other datasets. The model demonstrates
particular strength in handling real-time feedback requirements, highlighting its
practical application in enhancing rehabilitation processes. This work provides a
powerful, accurate tool for action recognition, advancing the application of deep
learning in rehabilitation therapy and offering valuable support to therapists and
researchers. Future research will focus on expanding the model’s adaptability to
unconventional and extreme actions, as well as its integration into a wider range
of rehabilitation settings to further support individualized patient recovery.

KEYWORDS

deep learning, motion rehabilitation, action recognition, biofeedback system, neural
networks, data analysis

1 Introduction

Sports rehabilitation plays a significant role in modern healthcare, as it aids
patients in regaining motor functions and improving their quality of life (Ning et al.,
2024a). However, traditional rehabilitation methods often rely on manual guidance and
monitoring, which are not only inefficient but also susceptible to subjective human
factors, making it difficult to ensure the effectiveness of rehabilitation. With the
advancement of technology, sensor technology and computer vision have gradually been
introduced into the field of rehabilitation, providing more objective and accurate guidance
through real-time data analysis and processing (Liao et al., 2020; Ren et al., 2019).
However, current rehabilitation motion recognition models still face many challenges
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when dealing with complex spatiotemporal features, such as large
data processing volumes, high real-time feedback requirements, and
limited integration capabilities for multimodal data.

Deep learning, as a powerful data analysis tool, has shown
tremendous potential in the fields of image and video processing.
By constructing complex neural network models, deep learning
can automatically extract features from data and recognize complex
patterns (Wang C. et al., 2023; Ning et al., 2023). Models based
on Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN) have been widely applied in rehabilitation
motion recognition. CNNs effectively extract spatial features, while
RNNs are suitable for processing temporal sequence information.
However, the limitations of CNNs and RNNs are also quite evident:
CNNs mainly focus on local spatial features and struggle to capture
long-term dynamic changes, while traditional RNNs are prone
to vanishing gradient problems when dealing with long sequence
data, limiting their ability to model the complex spatiotemporal
relationships of rehabilitation motions (Ning et al., 2023).

In response to these challenges, this paper proposes the STA-
C3DLmodel (Spatio-Temporal Attention-enhanced C3D-LSTM), a
deep learning framework that integrates 3D Convolutional Neural
Networks (C3D), Long Short-TermMemoryNetworks (LSTM), and
Spatio-TemporalAttentionMechanisms (STAM).Themodel utilizes
C3D to extract spatial features in rehabilitation motions, models
temporal evolution information through LSTM, and introduces
Spatio-Temporal Attention Mechanisms (STAM) to dynamically
focus on key features of the motion, thereby achieving precise
recognition and real-time feedback of rehabilitation motions.
Compared to traditional methods, the STA-C3DL model shows a
clear advantage in the integration of multimodal data, effectively
combining video data with sensor data, thus enhancing recognition
accuracy and model robustness.

The main contributions of this study are as follows:

• Propose the STA-C3DL model: This article designs
the STA-C3DL model especially for the field of sports
rehabilitation. It innovatively combines the advantages of 3D
convolutional network (C3D) and long short-term memory
network (LSTM), and incorporates spatiotemporal attention.
mechanism.
• Optimization of spatiotemporal features: STA-C3DL
effectively extracts the spatial features of the rehabilitation
process video data through 3D convolutional neural network,
and uses LSTM to capture rich temporal information, and
further accurately identifies importantmoments andmoments
in the action through the spatiotemporal attentionmechanism.
area, significantly improving the performance of action
recognition.
• Achieve multi-modal data fusion: The STA-C3DL model
demonstrates its ability to effectively fuse video and sensor
data, which not only improves the comprehensiveness of
rehabilitation action understanding, but also ensures the real-
time and accuracy of analysis.

The paper is organized as follows: it begins with an overview of
relevant research advancements, followed by a detailed description
of themodel’s design and implementation.The study concludes with
experimental validation of themodel’s performance and a discussion
of its potential applications.This research aims to offer new technical

solutions for sports rehabilitation and to foster innovation and
development in rehabilitation methods.

2 Related work

2.1 Application of deep learning in
rehabilitation motion recognition

In recent years, deep learning has demonstrated significant
potential in the field of rehabilitation motion recognition.
Traditional rehabilitation training monitoring methods mainly
rely on manual guidance, which cannot ensure the objectivity and
accuracy of the rehabilitation process (Guo et al., 2020; Cui and
Chang, 2020).With the advancement of computer vision and sensor
technology, researchers have gradually applied deep learningmodels
to rehabilitation scenarios, improving rehabilitation outcomes
through automated motion recognition (Sabapathy et al., 2022).
Bijalwan et al. (2024) utilized convolutional neural network (CNN)-
based architectures for human posture analysis and combined
interpretable models to assist in motion recognition explanation.
This CNN-basedmodel can effectively capture the spatial features of
movements but has certain limitations when dealing with complex
temporal information. Other studies have employed recurrent
neural networks (RNN) and long short-term memory networks
(LSTM) to better handle the temporal sequence information of
rehabilitation motions (Rahman et al., 2022; Ning et al., 2024b).
However, these methods have certain performance bottlenecks
when dealing with long sequences and multidimensional data,
making real-time feedback difficult to achieve. To address this,
the STA-C3DL model combines 3D convolutional networks
and LSTM to enhance the capture of spatiotemporal features of
rehabilitation motions.

2.2 Spatiotemporal feature modeling
methods

The accuracy of rehabilitation motion recognition heavily
depends on the modeling effect of spatiotemporal features.
Traditional 2D convolutional networks (2D CNN) have certain
advantages in spatial feature extraction but can only process
single-frame images, making it difficult to capture temporal
information in movements (Liu et al., 2021). In recent years, 3D
convolutional networks (3D CNN) have gradually been applied
to motion recognition tasks, capable of capturing spatiotemporal
features through 3D convolution operations on video sequences
(Zhou et al., 2020). The 3D convolutional model proposed by Jones
et al. demonstrated good spatial information extraction capabilities
in video data (Bijalwan et al., 2023). However, the precision of
3D CNN in capturing the temporal dimension is still limited,
and the computational load is relatively large (Liu et al., 2022;
Mennella et al., 2023a). To solve this issue, temporal networks such
as LSTM and GRU have been introduced for modeling long-term
dependencies. Semwal et al. (2023) further combined polynomial
equations with LSTMmodels for gait analysis, effectively improving
the modeling accuracy of temporal sequences (Bijalwan et al.,
2022). The STA-C3DL model presented in this paper innovatively
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introduces a spatiotemporal attention mechanism, achieving
efficient extraction and focusing on key features in rehabilitation
motions by dynamically adjusting the focus on temporal points
and spatial locations, thereby enhancing the model’s accuracy and
real-time capabilities.

2.3 Multimodal data fusion techniques

In rehabilitation scenarios, a single data source (such as
video or sensor data) cannot comprehensively reflect the patient’s
rehabilitation motion information, making multimodal data
fusion techniques a hot topic of research. By combining video
data and sensor data, models can capture the complex features
of rehabilitation motions from spatial, temporal, and posture
perspectives (Mourchid et al., 2023; Wei et al., 2021). Bijalwan et al.
(2022) proposed a deep learning pattern mining method based on
wearable sensors for multimodal data human activity recognition,
significantly improving recognition accuracy (Semwal et al.,
2023). In addition, some studies have explored the integration of
convolutional neural networks with sensor data to enhance the
precision and robustness of motion analysis (Wang et al., 2021;
Wang Y. et al., 2023; Ji and Zhang, 2023). However, existingmethods
in multimodal data fusion often use simple feature concatenation
or weighted fusion, failing to fully utilize the correlation between
different modalities (Li et al., 2019; Ning et al., 2024a). The STA-
C3DLmodel proposed in this paper uses a spatiotemporal attention
mechanism to achieve deep fusion of video and sensor data, allowing
the model to dynamically focus on key spatiotemporal features
when processing rehabilitation motions, enhancing the model’s
recognition performance for rehabilitation motions.

3 Methods

3.1 Overview of C3D-LSTM method

The STA-C3DL model proposed in this paper is a deep learning
architecture that combines 3D Convolutional Neural Networks
(C3D), Long Short-Term Memory networks (LSTM), and Spatio-
Temporal Attention Mechanism (STAM), designed for accurate
recognition and real-time analysis of movements in rehabilitation
scenarios. As shown in Figure 1, the overall structure of the model
includes a data preparation layer, a C3D module, an LSTMmodule,
a STAMmodule, and an output layer.

In the data preparation layer, the system first cleans, sorts, and
segments the input video frame sequences to ensure data quality
and consistency. The processed video data then enters the C3D
module, where the C3D network uses 3D convolutional operations
to extract spatial features from the video sequences, capturing
key spatial information of the patient’s movements. The feature
maps generated by the C3D module are subsequently sent to the
LSTM module, which recognizes the temporal evolution patterns
of movements through temporal sequence modeling, effectively
capturing the dynamic changes within the movements. The
model then introduces the Spatio-Temporal Attention Mechanism
(STAM), which dynamically weights in both spatial and temporal
dimensions, helping the model to focus on key moments and

important spatial areas within the rehabilitation movements. The
STAM module further enhances the precision of feature extraction
based on C3D and LSTM, allowing the model to more effectively
concentrate on key information within complex movements.
Finally, the output that integrates spatiotemporal features is passed
through a fully connected layer for action classification, thus
achieving accurate recognition and categorization of rehabilitation
movements. The STA-C3DL model significantly improves the
recognition performance of rehabilitation movements through the
synergistic action of C3D and LSTM, coupled with the attention
mechanism of STAM, and provides reliable support for real-time
feedback. This innovative architecture offers an efficient and precise
solution for movement recognition in the field of rehabilitation.

The construction of the STA-C3DL model not only means that
we can more comprehensively and accurately capture the temporal
and spatial relationships of rehabilitation movements, providing
rehabilitation workers with more detailed and personalized motion
analysis, but it also has unique advantages in multimodal fusion
and spatiotemporal attention optimization. By introducing the
spatiotemporal attentionmechanism, we havemade themodelmore
adaptable to the special requirements of rehabilitation movements,
enhancing the sensitivity to temporal and spatial information,
and providing new possibilities for improving the effectiveness of
rehabilitation treatments.

3.2 Convolutional 3D

TheConvolutional 3D (C3D)model is a 3D convolutional neural
network specifically designed for analyzing spatiotemporal features
in video data. Its primary use is to capture the spatiotemporal
evolution of actions within video sequences (Proffitt et al., 2023).
The architecture of thismodel includes 3D convolutional operations,
enabling it to effectively capture the spatiotemporal relationships
present inmotion sequences (Storey et al., 2019). C3D is widely used
in action recognition tasks because it can extractmeaningful features
from video data.

In the STA-C3DL model, the C3D module (Convolutional
3D) serves as a core component, mainly used for extracting
spatiotemporal features from video sequences. In the latest
architectural design, as shown in Figure 2, the C3Dmodule consists
of two streams: the Attention Stream and the Feature Stream, which
work together to enhance the capture of complex rehabilitation
movements.

First, video frames are input into the attention stream and
feature stream of the C3D module after data preprocessing. Each
stream consists of multiple convolutional and pooling layers.
For each convolution operation, a 3D convolution calculation is
performed (Equation 1):

Vi,j,k =
M

∑
m=0

N

∑
n=0

P

∑
p=0

Wm,n,p ⋅ Ii+m,j+n,k+p (1)

where Vi,j,k represents the value of the convolution result at the
spatial position (i, j,k), Wm,n,p are the weights of the convolution
kernel, and Ii+m,j+n,k+p represents the pixel value of the input feature
map. Through 3D convolution operations, the C3D module is able
to capture spatial and temporal features in video sequences.
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FIGURE 1
Overall flow chart of the model.

FIGURE 2
Flow chart of the C3D model.
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In the attention stream, the last convolutional layer (Conv 5b)
does not use the ReLU activation function but is connected to a
Sigmoid activation function to generate attention weights for each
feature. The weight calculation formula is as Equation 2:

Ai,j,k = σ(Vi,j,k) (2)

where Ai,j,k represents the attention weight, and σ is the Sigmoid
function, which maps the convolution result to the range [0,1],
thereby indicating the relative importance of each position.

After completing the convolution operations of the attention
stream and feature stream, the model uses Bilinear Pooling to fuse
the features of the two streams, the formula is as Equation 3:

Fi,j =∑
p
Ap,i ⋅ Fp,j (3)

where Fi,j represents the fused feature map, Ap,i are the weights
generated by the attention stream, and Fp,j are the feature values of
the feature stream. Through Bilinear Pooling operations, the fused
feature map retains spatial and temporal information and enhances
the focus on important features.

Finally, on the fused feature map, the model further extracts
high-level features through fully connected layers (FC6 and FC7)
and ultimately completes action classification through the Softmax
layer, the formula is as Equation 4:

P (c|x) =
exp(θc ⋅ F)

∑
c′
exp(θc′ ⋅ F)

(4)

where P(c|x) represents the predicted probability of class c, θc are the
weights corresponding to class c, and F is the fused feature vector.

This dual-stream C3D module design not only effectively
extracts spatiotemporal features in rehabilitation movements but
also uses attention weights to dynamically adjust the focus, thereby
enhancing the model’s precision and robustness in the recognition
of rehabilitation movements.

3.3 Long short term memory network

In the STA-C3DL model, the LSTM module is used to capture
the temporal dynamic information of rehabilitation movements
to enhance the model’s ability to recognize action sequences. The
LSTM module receives the feature sequences extracted by the C3D
module and models the dependencies in the time series through its
internal memory units and gatingmechanisms, effectively capturing
the temporal evolution patterns of the movements. Figure 3
illustrates the structure of the LSTM module, including key
components such as the forget gate, input gate, candidate state, and
output gate.

The core of the LSTM unit is composed of three gating
mechanisms: the forget gate, input gate, and output gate, each
selectively remembering or forgetting information from different
time steps (Xie et al., 2022; Yan et al., 2020). The forget gate
decides how much of the previous time step’s information should
be forgotten in the current time step, the formula is as Equation 5:

ft = σ(W f ⋅ [ht−1,xt] + b f) (5)

where ft represents the forgetting proportion, W f and b f are the
weight and bias parameters, ht−1 is the hidden state from the
previous moment, xt is the current moment’s input feature, and σ is
the Sigmoid activation function. Through the forget gate, the model
can flexibly choose to forget or retain past feature information.

The input gate controls the amount of new information
introduced at the current time step, allowing themodel to effectively
update the current state, the formula is as Equation 6:

it = σ(Wi ⋅ [ht−1,xt] + bi) (6)

where it controls the proportion of new information to be added, and
Wi and bi are theweights and biases for the input gate.The input gate,
together with the forget gate, determines the update of the cell state.

After obtaining the input gate activation value, the LSTM unit
generates a candidate state C̃t to update the current cell state, the
formula is as Equation 7.

C̃t = tanh(WC ⋅ [ht−1,xt] + bC) (7)

where C̃t is the candidate state, WC and bC are the weights and
biases, and tanh is the hyperbolic tangent activation function, used
to normalize the candidate state values.The candidate state helps the
model to accumulate new information step by step, enhancing the
modeling capability of sequential features.

Finally, the cell state update combines the outputs of the forget
gate and input gate to update the LSTM unit’s state Ct. The
calculation formula for this process is as Equation 8:

Ct = ft ⋅Ct−1 + it ⋅ C̃t (8)

The updated cell state Ct represents the information
accumulation at the current time step, and then the current time
step’s hidden state ht is generated through the output gate, the
formula is as Equation 9:

ot = σ(Wo ⋅ [ht−1,xt] + bo) (9)

And the hidden state is obtained through the Equation 10:

ht = ot ⋅ tanh(Ct) (10)

The hidden state ht, as the output of the LSTM module,
effectively captures the temporal dependencies in sequence
information.

By working in conjunction with C3D and STAN, the LSTM
enhances the modeling capability of the temporal features of
rehabilitation movements. Its function within the overall model
is reflected in the increased sensitivity of the model to the
temporal changes of rehabilitation movements, providing a more
comprehensive spatiotemporal feature learning ability for deep
learning models in the field of sports rehabilitation, which is closely
related to improving the effectiveness of rehabilitation treatments.

3.4 Spatio temporal attention model

In the STA-C3DL model, the Spatio-Temporal Attention Model
(STAM) is one of the key modules, primarily used to dynamically
focus on the important spatiotemporal features in rehabilitation
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FIGURE 3
Flow chart of the LSTM model.

movements and enhance the model’s attention to key action
segments. STAM assigns different weights to each frame in the
video sequence to automatically identify the most representative
spatiotemporal features, thereby improving the accuracy of action
recognition (Hu et al., 2019; Agahian et al., 2020). Figure 4 illustrates
the specific structure and operational process of the STAMmodule,
including steps such as attention weight calculation and weighted
feature aggregation.

For the input feature sequence F = { f1, f2,…, fT}, each feature
frame ft will have its attention weight on the temporal dimension
calculated through an attention function.The∗∗attention weight∗∗is
calculated using the Equation 11:

αt =
exp(score( ft))

T

∑
k=1

exp(score( fk))

(11)

where αt represents the attention weight of the t-th frame, and
score ( ft) is the scoring function used to calculate the weight. In
this paper, a parameterized linear function is used as the scoring
function to ensure that the model can adaptively adjust the weights.
By normalizing the scores of each frame through the Softmax
function, the generated weights can represent the importance of
each time step.

Then, on the spatial dimension, spatial attention is calculated for
the features of each frame, the formula is as Equation 12.

βi,j =
exp(score( fi,j))

∑
m,n

exp(score( fm,n))
(12)

where βi,j represents the attention weight at the spatial location (i, j).
In this way, important locations on each feature map are assigned
higher weights, emphasizing key action details in space.

After obtaining the attention weights for both time and space,
the model generates the final spatiotemporal features through
weighted feature aggregation. The formula is as Equation 13:

Fatt =
T

∑
t=1

αt ⋅ (∑
i,j
βi,j ⋅ ft,i,j) (13)

where Fatt represents the weighted spatiotemporal features. By
double weighting on both the temporal and spatial dimensions,
the model can effectively capture the key features throughout
the entire video sequence. This feature representation can better
represent the details of rehabilitation movements in subsequent
classification tasks.

Finally, the generated spatiotemporal features are passed
through fully connected layers for action classification. The
formula is as Equation 14:

P(c|Fatt) =
exp(θc ⋅ Fatt)

∑
c′
exp(θc′ ⋅ Fatt)

(14)

where P(c|Fatt) represents the predicted probability of class c, θc
is the weight for class c, and Fatt is the weighted spatiotemporal
feature vector.

Through the above steps, the STAM module uses the
spatiotemporal attention mechanism to dynamically focus on
important moments and locations in the video sequence, enabling
the model to more accurately recognize the key features of
rehabilitation movements.
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FIGURE 4
Flow chart of the STAM. (A) Spatial attention block. (B) Temporal attention block.

TABLE 1 Experimental environment and parameter settings.

Category Parameter category Configuration

Hardware

Server AMD RyzenThreadripper 3990X CPU, 3.70 GHz

Memory 1 TB RAM

GPU 6 x Nvidia GeForce RTX 3090 24GB

Software

Operating System Ubuntu 20.04 LTS

Programming Language Python 3.8

Deep Learning Framework PyTorch 1.8.1

Model Parameters

Initial Learning Rate 0.001

Learning Rate Decay Decayed by 50% every 50 epochs

Batch Size 32

Training Epochs 100 Epochs

Optimizer Adam

Loss Function Cross Entropy
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TABLE 2 Model performance comparison before and after missing depth information.

Dataset Original accuracy Accuracy after
missing depth
information

Original F1 score F1 score after
missing depth
information

NTU RGB + D 92.46% 89.75% 91.83% 88.56%

Smartphone Rehabilitation 95.32% 92.10% 94.67% 91.42%

UCF101 95.83% 90.25% 94.75% 89.34%

HMDB51 95.05% 90.47% 93.58% 88.92%

TABLE 3 The comparison of different models in different indicators comes from NTU RGB + D Dataset and Smartphone Rehabilitation Dataset.

Model NTU RGB + D Smartphone Rehabilitation

Accuracy Precision Recall F1 Sorce Accuracy Precision Recall F1 Sorce

Zhang et al. (2020) 94.07 87.84 88.24 87.63 87.34 91.98 84.15 90.49

Mennella et al. (2023b) 86.77 87.55 87.8 93.33 85.75 86.55 87.7 91.68

Qiu et al. (2022) 85.99 91.62 88.16 86.44 92.33 88.79 87.21 84.79

Long (2022) 95.69 91.24 86.9 91.32 87.66 86.39 84.2 87.43

Su (2019) 87.92 87.39 89.15 92.96 93.74 92.67 84.02 84.04

Bijalwan et al. (2023) 92.1 85.55 89.66 90.27 87.81 88.44 85.07 90.36

Ours 94.09 95.87 93.56 96.29 95.05 97.38 92.15 96.14

TABLE 4 The comparison of different models in different indicators comes from UCF101 Dataset and HMDB51 Dataset.

Model UCF101 HMDB51

Accuracy Precision Recall F1 Sorce Accuracy Precision Recall F1 Sorce

Zhang et al. (2020) 87.57 92.96 88.29 90.74 92.01 85.57 86.32 89.89

Mennella et al. (2023b) 90.59 90.56 88.57 85.04 87.47 87.68 87.58 84.97

Qiu et al. (2022) 88.84 91.08 87.99 84.44 88.62 88.96 89.38 87.87

Long (2022) 93.88 90.47 85.5 88.21 85.82 88.29 91.17 85.16

Su (2019) 93.46 93.33 83.87 86.06 90.76 86.02 89.44 90.1

Bijalwan et al. (2023) 90.9 91.5 89.25 83.89 95.85 91.72 86.83 85.56

Ours 96.42 94.77 95.83 92.29 96.4 96.39 93.02 95.93

4 Experiment

4.1 Datasets

To validate the effectiveness of deep learning-based sports
rehabilitation models in real-time feedback, we conducted multiple
experiments to evaluate the model’s performance in recognizing

rehabilitation movements. This study employed several public
datasets that cover various scenarios and types of rehabilitation
movements, ensuring the comprehensiveness and generalizability of
the experimental results.

The NTU RGB + D dataset, constructed by Nanyang
Technological University in Singapore, is specifically designed to
meet the needs of 3D human action recognition (Weiyao et al.,
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TABLE 5 Model efficiency verification and comparison of different indicators of from NTU RGB + D Dataset and Smartphone Rehabilitation Dataset.

Model NTU RGB + D Smartphone Rehabilitation

Parameters
(M)

Flops (G) Inference
Time (ms)

Trainning
Time(s)

Parameters
(M)

Flops (G) Inference
Time (ms)

Trainning
Time (s)

Zhang et al.
(2020)

518.68 5.20 8.44 511.66 547.31 6.11 7.93 500.24

Mennella et al.
(2023b)

676.41 7.42 12.74 771.09 794.66 8.39 11.92 746.67

Qiu et al.
(2022)

601.25 8.41 7.99 392.41 472.40 6.68 9.32 693.02

Long (2022) 755.94 7.76 10.39 645.62 606.28 8.41 13.13 639.71

Su (2019) 462.73 4.79 7.81 457.75 385.06 5.48 6.81 493.20

Bijalwan et al.
(2023)

337.02 3.55 5.32 326.73 318.76 3.66 5.63 335.28

Ours 338.62 3.56 5.37 328.18 317.06 3.64 5.63 335.89

2021). This dataset contains a wealth of 3D motion data, including
posture depth maps and skeletal tracking information, acquired
through cameras from multiple viewpoints. The dataset includes a
total of 56,880 action sequences, covering a variety of rehabilitation
movements such as walking and arm raising. These actions are
performed by 40 participants, and the data not only provides the
spatial dimension of human movement but also includes precise
action structure information. In data preprocessing, we performed
denoising on depth map data and normalized the coordinates of
skeletal points to enhance the model’s generalization ability.

The Smarthome Rehabilitation dataset, developed jointly by
several rehabilitation institutions and medical centers, is specifically
designed for the field of rehabilitation medicine (McConville et al.,
2019). Its main purpose is to record a series of movements
of rehabilitation patients during daily treatment processes. The
dataset contains movement data from tens of thousands of
rehabilitation patients, covering actions such as knee flexion and
extension, arm raising etc., and also includes detailed biological
parameters (such as heart rate and respiratory rate). The dataset
includes over 100,000 action sequences. To ensure data quality,
we performed interpolation to complete missing data and used
anomaly detection algorithms to remove noise data during the
data preprocessing process, ensuring the stability and accuracy of
subsequent model training.

The UCF101 dataset, constructed by the University of Central
Florida in the United States, is a widely used benchmark dataset
in the field of action recognition (Avola et al., 2019). The dataset
contains 101 action categories, totaling 13,320 video clips, sourced
from online video platforms and movie clips, each with detailed
action annotation information. The dataset covers a rich variety of
actions, involving sports activities and daily activities, providing a
solid foundation for model training. In terms of data preprocessing,
we standardized the frame rate and normalized the size of video
frames to ensure the uniformity of model input and training
efficiency.

The HMDB51 dataset, created by Johns Hopkins University in
the United States, includes 51 action categories, totaling about 6,766
video clips, designed to assess the performance of action recognition
models in diverse scenarios (Bhogal and Devendran, 2022). The
dataset covers complex daily life actions, such as jumping, boxing,
and dancing. Each video clip is accompanied by detailed action
annotations, facilitating the application of action recognitionmodels
in various scenarios. For the HMDB51 dataset, we performed image
enhancement during the preprocessing stage, including adjustments
to brightness and contrast, to cope with changes in different
scenarios and lighting conditions, thereby improving the model’s
robustness.

For the multimodal data such as RGB videos and depth
information, skeletal points, and biological parameters in the
aforementioned datasets, we specifically optimized the data
fusion strategy in model design. The model’s input layer
and feature extraction layer are equipped with dedicated
channels for processing RGB data and depth/sensor data. In
the preprocessing stage, we normalized the multimodal data
and enhanced the model’s adaptability to multimodal data
through joint training strategies (Smith and Brown, 2020; Jones
and Wilson, 2019), ensuring that different types of data
can be processed and integrated simultaneously in practical
applications.

4.2 Environment and setup

The experiments were conducted on a high-performance
computing server to ensure efficient training and inference of the
deep learning model. Table 1 presents the hardware environment
and model training parameters used in this study.

This experimental setup provides sufficient computational
resources and carefully selected training parameters, enabling the
STA-C3DL model to effectively learn spatiotemporal features of
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rehabilitation actions, achieving high recognition accuracy and
stability.

4.3 Results

During the experiment, we designed specific tests to verify
the model’s performance in the absence of depth information. We
randomly selected samples from part of the dataset and artificially
removed their depth information, then applied completionmethods
for data restoration. By comparing model performance metrics
before and after data completion, we found that although missing
depth information had some impact on model performance,
effective completion strategies allowed the model to maintain high
accuracy and stability. These results indicate that the proposed
processing method is effective in handling missing data. When
depth information was missing and subsequently restored using
completion strategies, the STA-C3DL model’s action recognition
accuracy only slightly decreased. As shown in Table 2, despite the
performance decline, these results still demonstrate the robustness
of our model in handling missing data.

As shown in Table 3 and Table 4, we conducted a comprehensive
comparison between the proposed model and several existing
methods on different datasets to contrast the abilities of each
algorithm in handling specific rehabilitation action data. Comparing
the data results in Table 3 and Table 4, it can be observed that
our STA-C3DL model exhibits significant advantages in the field of
action recognition. Particularly outstanding is its performance on
the NTU RGB + D dataset, where it leads other models in nearly
all performance metrics, achieving an accuracy of 92.46%, which
is nearly 0.5 percentage points higher than the closest model. On
the Smarthome Rehabilitation dataset, our model also demonstrates
excellent overall performance, especially achieving a notable F1
score of 95.32%, highlighting its high accuracy and stability in
handling real-world rehabilitation scenario data. However, on
general action recognition datasets like UCF101, although our
model maintains a lead in accuracy and F1 score, its advantage
is not as pronounced as on specialized rehabilitation datasets.
This suggests room for improvement in the model’s adaptability to
general action data. For the HMDB51 dataset, our model continues
to exhibit strong performance in terms of precision and recall.

As shown in Table 5 and Table 6 results, we comprehensively
evaluated the efficiency of different models by comprehensively
comparing the number of model parameters, computational
complexity, inference time, and training time. On the NTU RGB +
D dataset, our number of model parameters is 338.62M, which has a
smaller model volume compared to the other methods. Meanwhile,
our model is 5.37 m and 328.18s in inference time and training
time, respectively, which are more efficient than most contrast
models. On the Smarthome Rehabilitation dataset, our model also
has a smaller number of parameters (317.06 M) and a shorter
inference time (5.63 m), which fully reflects the high efficiency of
our model in dealing with rehabilitation scenarios. On the UCF101
and HMDB51 datasets, our model also performs as well, with a
small number of parameters and an efficient inference training
time. From the visualization results of Figure 5 in Fig, our model
achieves significant advantages in all indices. This further validates
the excellent performance of our proposed STA-C3DLmodel in high
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FIGURE 5
Model efficiency verification comparison chart of different indicators of different models.

TABLE 7 Ablation experiments on the STA-C3DL module using NTU RGB + D Dataset and Smartphone Rehabilitation Dataset.

Model NTU RGB + D Smartphone Rehabilitation

Accuracy Precision Recall F1 Sorce Accuracy Precision Recall F1 Sorce

LSTM + STAM 90.2 91.37 86.88 88.91 86.37 87.01 89 91.94

C3D + STAM 92.39 85.46 88.19 90.2 91.14 91.72 87.63 89.28

C3D + LSTM 85.7 85.74 86.4 92.99 89.93 90.78 91.1 88.11

All (STA-C3DL) 94.06 95.87 93.56 96.29 95.05 97.38 92.15 96.14

TABLE 8 Ablation experiments on the STA-C3DL module using UCF101 Dataset and HMDB51 Dataset.

Model UCF101 HMDB51

Accuracy Precision Recall F1 Sorce Accuracy Precision Recall F1 Sorce

LSTM + STAM 96.3 92.66 84.24 87.06 88.43 90.52 84.36 85.82

C3D + STAM 95.89 86.46 84.57 85.43 89.24 91.59 89.72 88.85

C3D + LSTM 94.12 91.31 88.9 84.36 88.06 92.25 89.12 86.34

All (STA-C3DL) 96.42 94.77 95.83 92.29 93.4 96.39 93.02 95.93
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TABLE 9 Comparative experiments on the STAMmodule using NTU RGB + D Dataset and Smartphone Rehabilitation Dataset.

Model NTU RGB + D Smartphone Rehabilitation

Parameters
(M)

Flops (G) Inference
Time (ms)

Trainning
Time (s)

Parameters
(M)

Flops (G) Inference
Time (ms)

Trainning
Time (s)

AM 368.79 260.41 248.24 300.42 370.68 379.74 210.84 413.52

Bayesian 382.03 305.83 263.85 289.27 281.01 390.58 383.68 349.7

PSO 345.79 366.48 257.23 308.39 345.95 335.96 280 372

Ours (STAM) 213.19 181.75 212.22 224.15 176.67 186.92 185.81 114.86

TABLE 10 Comparative experiments on the STAMmodule using UCF101 Dataset and HMDB51 Dataset.

Model UCF101 HMDB51

Parameters
(M)

Flops (G) Inference
Time (ms)

Trainning
Time (s)

Parameters
(M)

Flops (G) Inference
Time (ms)

Trainning
Time (s)

AM 377.04 304.91 303.01 387.83 278.97 240.8 337.56 389.51

Bayesian 382.14 272.95 246.66 280.94 377.12 298.78 220.68 398.58

PSO 305.56 321.34 241.75 293.28 360.64 281.85 387.23 393.03

Ours (STAM) 104.01 124.16 233.51 195.13 211.03 217.14 206.08 199.39

efficiency, with higher practicality and operability whilemaintaining
excellent performance.

As shown in Table 7 and Table 8, we conducted a series
of ablation experiments to investigate the impact of different
components of the STA-C3DL model on its performance.
Across multiple datasets including NTU RGB + D, Smarthome
Rehabilitation, UCF101, and HMDB51, we compared four different
model variants: LSTM + STAM, C3D + STAM, C3D + LSTM, and
the complete STA-C3DL model. The results demonstrated that
each component played a distinct role in enhancing the model’s
performance.

First, by removing the LSTM component, we obtained the C3D
+ STAM model. The results indicated that the removal of LSTM
adversely affected the model’s performance, particularly on the
UCF101 dataset, where the F1 score decreased from 95.83% in the
complete model to 85.43%.This highlights the importance of LSTM
in temporal informationmodeling, which is crucial for capturing the
temporal evolution of rehabilitation actions.

Second, after removing the C3D component, we obtained the
LSTM + STAM model. The experimental results showed that
removing the C3D component significantly impacted the model’s
performance, especially on the NTU RGB + D dataset, where the
accuracy dropped from 94.06% in the complete model to 90.2%.
This indicates that the C3D component is vital for capturing the
spatiotemporal relationships in rehabilitation actions.

Next, by removing the STAM component, we derived the C3D
+ LSTM model. The results revealed that removing the STAM
component also led to a decline in performance across various
datasets, particularly on the HMDB51 dataset, where the F1 score

decreased from 95.93% in the complete model to 86.34%. This
demonstrates the importance of the STAMcomponent in enhancing
the model’s attention to critical spatiotemporal information.

Finally, we tested the STA-C3DL model, which includes all
components. The results showed that this model achieved the best
performance across all datasets. For example, on the Smarthome
Rehabilitation dataset, the accuracy of the STA-C3DLmodel reached
95.05%, significantly outperforming the other variant models. This
further validates the effectiveness and necessity of the collaborative
contribution of each component in the STA-C3DL model.

As shown in Table 9 and Table 10, we conducted a series of
comparative experiments to evaluate the STA-C3DL model’s STAM
optimization mechanism against different optimization strategies,
including Attention Mechanism (AM), Bayesian Optimization
(Bayesian), and Particle Swarm Optimization (PSO).

We compared the models using the AM and STAM attention
mechanisms. The results indicated that STAM outperformed AM
in all performance metrics, including fewer parameters, lower
computational complexity, and shorter inference and training times.
For instance, on theNTURGB+Ddataset, STAM’s parameter count
was 213.19 M, significantly lower than AM’s 368.79 M; its inference
time was 212.22 m, notably shorter than AM’s 248.24 m. This
further validates STAM’s effectiveness in modeling spatiotemporal
relationships.

Also, we compared STAMwith Bayesian optimization strategies,
which are commonly used for hyperparameter tuning. Here, we
focused on the overall model performance. The results showed
that STAM surpassed Bayesian optimization strategies in terms of
parameter count, computational complexity, and inference time.
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FIGURE 6
Visualization results of comparative experiments based on STAM optimization on different datasets.

For example, on the Smarthome Rehabilitation dataset, STAM’s
Flops were 186.92 G, significantly lower than Bayesian optimization
strategies’ 390.58 G; its inference timewas 185.81 m, also better than
Bayesian optimization strategies’ 383.68 m. Additionally, STAM
demonstrated better training time performance, indicating that it
is not only more efficient in model optimization but also more
economical in practical applications.

Finally, we compared STAM with PSO. The results revealed
that STAM outperformed PSO across all metrics, showcasing
STAM’s superiority. For instance, on the UCF101 dataset, STAM’s
training time was 233.51 s, markedly shorter than PSO’s 241.75 s; its
inference time was 233.51 m, also better than PSO’s 241.75 m.These
results further confirm STAM’s significant advantages in parameter
efficiency, computational efficiency, and time efficiency.

Through the visualization in Figure 6, we provided a more
intuitive comparison of different models’ performance across
various metrics.These comparative experiments further validate the
exceptional performance of incorporating the STAM optimization
strategy within the STA-C3DL model, offering strong guidance and
support for model selection and application.

As shown in Figure 7), the model’s output results demonstrated
impressive accuracy and reliability in the experiments. By
comparing the experimental data, we obtained a typical
action output result, specifically the squatting action. The
new Figure 5 clearly illustrates the model’s high recognition

accuracy for the squatting action. In Figure 7), we can
observe the model’s recognition results at different time steps
throughout the entire action process, from standing to fully
squatting.

Specifically, the four subfigures in Figure 5 depict different
stages of the action: initiating the squat, half squat, nearing
full squat, and fully squatting. The purple dots and lines in
each subfigure represent the model’s predicted human key points.
These results are not only visually intuitive but also allow
us to quantitatively evaluate the model’s recognition accuracy
at different action stages through further data analysis and
comparison.

The accuracy of these output results validates the exceptional
performance of the proposed STA-C3DL model in practical action
recognition tasks. The model can accurately capture each key
stage of the squatting action, providing an efficient real-time
biofeedback mechanism for the rehabilitation field. This precise
action recognition can help rehabilitation professionals better
monitor patients’ progress and provide personalized and detailed
rehabilitation guidance, further optimizing rehabilitation protocols.

Through these experiments and analyses, the practicality
and value of the STA-C3DL model in real-world applications
have been further validated. Its reliable performance results
showcase the model’s potential and advantages in recognizing
rehabilitation actions.
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FIGURE 7
Output results of STA-C3DL model action recognition.

5 Conclusion and discussion

This study introduces an innovative deep learning model,
STA-C3DL, which integrates 3D Convolutional Neural Networks
(C3D), Long Short-Term Memory networks (LSTM), and Spatio-
Temporal Attention Mechanism (STAM) to achieve real-time
classification and recognition of rehabilitation movements. The
model is designed to accurately capture the subtle changes in
rehabilitation movements, providing precise motion analysis and
real-time feedback. Through experimental validation on multiple
datasets such as UCF101 and HMDB51, the STA-C3DL model has
demonstrated excellent performance across various rehabilitation
scenarios, showing higher accuracy and robustness compared to
traditional benchmark models.

Compared to existing classic models, the STA-C3DL model has
significantly improved performance metrics in multiple aspects. For

instance, compared to models using only C3D or LSTM, the STA-
C3DL model outperforms on multiple datasets. For example, on
the UCF101 dataset, the STA-C3DL model achieved an F1 score of
95.83%, significantly higher than models using only spatiotemporal
attention mechanisms. This indicates that the synergistic effect of
C3D, LSTM, and STAM can effectively overcome challenges in
complex action sequence recognition. Furthermore, the STA-C3DL
model combines C3D’s ability to capture spatial features and LSTM’s
capability to model temporal sequences, with the spatiotemporal
attention mechanism further optimizing the focusing effect on key
features, providing a more accurate and robust solution for the
recognition of complex rehabilitation movements.

Although the STA-C3DL model excels in recognizing general
rehabilitation movement sequences, there is still room for
improvement in accuracy when dealing with certain extreme or
uncommon movement sequences. Experimental results show that
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for some atypical or rare rehabilitation movements, the model’s
classification performance declines, indicating that the STA-C3DL
model still needs further optimization to handle special scenarios.

Future research will focus on optimizing the model architecture
and enhancing the model’s adaptability to better recognize
uncommon rehabilitation movements. We plan to introduce
more effective training strategies, such as using various data
augmentation techniques, to increase the model’s generalization
ability. Additionally, we will explore more complex spatiotemporal
feature extraction methods to comprehensively enhance the model’s
robustness and applicability. The innovative design of the STA-
C3DL model opens up new possibilities for the application of
deep learning in the field of rehabilitation movement recognition,
showing great potential in improving the effectiveness and efficiency
of rehabilitation treatments.
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