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Introduction: In recent years, high-density microelectrode arrays (HD-MEAs)
have emerged as a valuable tool in preclinical research for characterizing
the electrophysiology of human induced pluripotent stem-cell-derived
cardiomyocytes (iPSC-CMs). HD-MEAs enable the capturing of both
extracellular and intracellular signals on a large scale, while minimizing potential
damage to the cell. However, despite technological advancements of HD-MEAs,
there is a lack of effective data-analysis platforms that are capable of processing
and analyzing the data, particularly in the context of cardiac arrhythmias and
drug testing.

Methods: To address this need, we introduce CardioMEA, a comprehensive
data-analysis platform designed specifically for HD-MEA data that have been
obtained from iPSCCMs. CardioMEA features scalable data processing pipelines
and an interactive web-based dashboard for advanced visualization and analysis.
In addition to its core functionalities, CardioMEA incorporatesmodules designed
to discern crucial electrophysiological features between diseased and healthy
iPSC-CMs. Notably, CardioMEA has the unique capability to analyze both
extracellular and intracellular signals, thereby facilitating customized analyses
for specific research tasks.

Results and discussion:We demonstrate the practical application of CardioMEA
by analyzing electrophysiological signals from iPSC-CM cultures exposed to
seven antiarrhythmic drugs. CardioMEA holds great potential as an intuitive,
userfriendly platform for studying cardiac diseases and assessing drug effects.

KEYWORDS

cardiac arrhythmia, microelectrode array, machine learning, antiarrhythmic drug,
induced pluripotent stem cell
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Introduction

As the principal cause of mortality in the Western world,
cardiovascular diseases represent a significant healthcare challenge
(Multiple Cause, 2024). Moreover, medication intended for non-
cardiac conditions can inadvertently induce life-threatening
arrhythmias due to off-target effects on the heart (Pai and
Nahata, 2000; Singal and Iliskovic, 1998). Therefore, preclinical
research to investigate drug effects on the heart is of paramount
importance. Preclinical testing helps to evaluate the therapeutic
potential and to identify any harmful effects of drug candidates
targeted at cardiac diseases before commencing human trials.

A combination of human induced pluripotent stem cell (iPSC)
and microelectrode array (MEA) technologies has been effectively
employed to characterize disease phenotypes and evaluate drug
responses in vitro. Measurements of either extracellular field
potentials (Yamamoto et al., 2016; Blinova et al., 2018; Li et al.,
2020; Mulder et al., 2018) or intracellular-like signals (Hayes et al.,
2019; Iachetta et al., 2023; Lee et al., 2022) emanating from iPSC-
derived cardiomyocytes (CMs) have been conducted. High-density
MEAs (HD-MEAs) offer several advantages over conventional
MEAs featuring larger gold or TiO2 electrodes (>40 µm diameter)
at a considerably larger pitch (>250 µm). First, the co-integration
with signal-conditioning circuitry provides better signal-to-noise
characteristics (signal-to-noise ratio (SNR)) (Ballini et al., 2014),
as the signals are filtered, amplified, and digitized right at the site
of biological signal generation. Featuring a large number of small
electrodes at high spatial density, HD-MEAs can more accurately
capture local characteristics of field potentials, which enables a
more precise detection of cardiac signal signatures and propagation
characteristics. The smaller, more densely packed electrodes help to
effectively capture locally more confined extracellular field potential
signals and to reduce interference from cell movement artifacts.
Additionally, a larger number of measurements and measurement
values becomes available to reliably characterize a certain cell
preparation. The co-integration of electrodes and circuity helps to
reduce noise interference along the leads and connections and to
minimize environmental disturbances due to the fully differential
amplifier architectures and the fact that all amplifiers sit on the same
substrate with the cells. The fully programmable filter and amplifier
cascade including digitalization on the sameHD-MEA chip helps to
minimize artifacts and enables effective common-mode rejection.
The high spatial resolution, enabled by the dense arrangement
of the electrodes (Emmenegger et al., 2019; Müller et al., 2015),
allows for a precise mapping of field potential propagation across
cardiomyocyte cultures, which is critical for studying wavefronts,
conduction velocity, and arrhythmic events.

Over the past decade, advancements in micro- and
nanotechnology have pushed the boundaries of HD-MEA
technology, with an ever increasing electrode density and number of
readout channels generating large data volumes. Despite significant
progress inHD-MEA technology, platforms to process and interpret
this data remain scarce. Previous studies have offered MATLAB-
based software using graphical user interfaces (GUIs) for processing
and visualizing MEA data (Pradhapan et al., 2013; Georgiadis et al.,
2015). While GUI applications provide a user-friendly interface
and direct interaction with the operating system for efficient

computation, they have limitations in the adaptability of the data-
processing steps. If users wish to alter processing steps or handle
varying file formats, proficiency in GUI programming becomes
an essential prerequisite. Additionally, MATLAB is a commercial
software, which generates additional costs, when code alterations
are necessary. Cardio PyMEA, an open-source application, was
recently proposed to address some of these issues (Dunham et al.,
2022). Built on Python, a widely accessible and extensively used
programming language, Cardio PyMEA offers the potential to
serve a broad user base. However, the authors of Cardio PyMEA
reported performance issues, including the GUI freezing during
data processing due to Python’s Global Interpreter Lock (GIL).They
also noted data processing speed as a limitation.

While there has been considerable progress in the development
of analysis platforms for MEA data of CMs, there is still a lot
of work to be done to achieve comprehensive characterization
of the electrophysiological characteristics of healthy and diseased
cells or potential drug responses. Most existing platforms have
been designed for working with MEAs that feature a comparably
low number of electrodes and offer low spatial resolution, which
poses a challenge given the fact that state-of-the-art HD-MEAs
feature thousands of readout electrodes and channels (Ballini et al.,
2014; Yuan et al., 2020; Dragas et al., 2017) and have an electrode
pitch as small as 11.47 µm (Suzuki et al., 2023). HD-MEAs
generate massive numbers of data points per experiment, so
that a statistically relevant sample size can be quickly reached.
Moreover, due to the high density and large number of electrodes,
they enable reliable signal-conduction-speed estimation of the CM
cell assembly (Bayly et al., 1998).

Commercially available MEA systems typically include
proprietary software tools that offer basic data processing and
visualization capabilities. CardioMEA offers several advantages over
commercial software tools, primarily due to its open-source nature,
which allows for free adaptation and expansion to accommodate
and support advanced data analysis methods. Commercial software
often lacks transparency regarding the algorithms used for analysis
and is typically designed for more generic applications, catering
to a broader customer base rather than to specific research needs.
Moreover, the use of commercial software is usually limited to data
acquired by the respective proprietary MEA systems. In contrast,
open-source platforms like CardioMEA are highly adaptable,
offering great flexibility for adding new features or new data formats
whenever needed.

Most of the currently used data-analysis platforms have been
designed for processing and analysis of extracellular signals and
do not fully leverage the capabilities of HD-MEAs, as recent
studies have shown that HD-MEAs are capable of recording not
only extracellular but also intracellular-like signals on demand
(Lee et al., 2022; Abbott et al., 2017; Iachetta et al., 2021). Compared
to intracellular-like measurements, the measurement of merely
extracellular activities may not be sufficient to adequately capture
drug-induced alterations in cardiac membrane potentials (Spira
and Hai, 2013). In most existing platforms, data processing and
visualization steps are integrated into a single pipeline. However,
this integration leads to inefficiencies in comparative analysis across
multiple data files, as each file requires a significant amount of time
to process.
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FIGURE 1
Data flow in the CardioMEA data analysis platform. CardioMEA incorporates every data analysis stage within its structure, ranging from an initial
identification of experimental recording files, through raw-data handling and feature extraction, to the subsequent data uploading to an SQL database.
Further, it provides a robust system for data visualization and advanced analysis, offering a comprehensive solution for evaluating and interpreting
experimental data.

For a comprehensive evaluation, an analysis platform should
enable the comparison of drug responses at different concentrations
or across multiple cell lines with adequate visualization.
Furthermore, data processing should be efficient and make optimal
use of available computational resources, such as multiple central
processing units (CPUs) and memory space, which are often not
needed for visualization and comparative analysis. Therefore, the
execution of all analysis steps in a single pipeline does not provide
optimal performance.

To overcome the aforementioned challenges and limitations,
we developed CardioMEA, a comprehensive data analysis platform
providing a set of pipelines for the extraction of raw HD-
MEA data, feature extraction, data storage, visualization, and
advanced analysis (Figure 1). CardioMEA includes data-processing
pipelines and a web-based dashboard for data visualization and
feature analysis, which have been designed to ensure reproducibility,
scalability, and maintainability of all processing tasks. Numerous
data files can be processed in parallel using multiple CPUs,
which entails a significant reduction in computation time. The
resulting processed data are stored in a structured query language
(SQL) database, enabling tracking of data history and previous
processing steps. In addition, querying pre-processed data from the
database facilitates comparative analysis by eliminating the need for
repetitive and time-consuming processing steps during each access.
Moreover, the CardioMEA Dashboard offers an interactive, web-
based platform for data visualization and analysis. This “no-code”
application is designed to benefit a broad range of users, facilitating
exploratory data analysis, while only a minimal effort is required to
understand the underlying code. We demonstrate that - with just a
few mouse clicks within the CardioMEA Dashboard - it is possible
to analyze CM data of three iPSC lines and their responses to seven
antiarrhythmic drugs.

CardioMEA offers unique functionalities for feature analysis,
enabling users to assess the predictive power and contribution of

each feature in classifying data collected from healthy and diseased
cells, as demonstrated in this study. In addition, CardioMEA
presents the first open-source platform that can also process and
visualize intracellular-like signals of CMs, recordedwithHD-MEAs,
to obtain detailed insights intomembrane potential dynamics (Spira
and Hai, 2013). Its open-source configuration and standardized
structuremay empower a broad spectrum of users in cardiology and
the pharmaceutical sector to effortlessly implement and adjust the
platform according to their specific requirements. CardioMEA has
been designed for use by scientists with little or no experience in
programming, supporting their efforts to investigate the efficacy or
potential toxicity of compounds.

As the field of cardiac disease, toxicity research, and
individualized precision medicine continues to expand - with ever-
increasing data volumes - the need for efficient, scalable, and user-
friendly data-analysis tools will grow correspondingly. CardioMEA
holds significant potential for drug development and personalized
medicine, offering to assess drug effects and characterize patient-
derived CMs based on intracellular and extracellular signals.
By efficiently streamlining intrinsic processes and featuring an
interactive dashboard for data visualization and advanced analysis,
CardioMEA will help to advance biomedical research and the
development of therapeutics.

Materials and methods

Data science framework to build the data
pipeline

For the development of an open-source data analysis
platform, adherence to software engineering best practices is
essential to ensure that the code is both readily comprehensible
and maintainable. Furthermore, the possibility of reproducing
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data processing and analysis is a crucial consideration in
constructing such a platform. To meet these requirements,
we utilized Kedro (Alam, 2024), a Python-based open-source
framework renowned for fostering the development of modular
and maintainable data science platforms. Kedro comes with
built-in wrappers that manage input and output data in diverse
formats, including comma-separated values (CSV) and SQL.
These features enable efficient data extraction, transformation,
and loading processes - critical aspects that make Kedro a
suitable tool for developing the data pipelines for this study. By
constructing pipelines, which contain sequentially chained nodes,
we created a data-flow structure that is both easy to comprehend
and reproducible. Kedro’s pipeline-based architecture enabled us
to break down the data processing tasks into smaller, reusable
components (nodes). The modularity simplifies the addition of new
features or steps without disrupting the entire workflow, which is
particularly advantageous for researchers wishing to expand existing
analyses, to incorporate additional data sources, or to explore new
hypotheses within the same project framework. The principles
of clarity and reproducibility were consistently prioritized in our
platform’s design and functionality.

Feature extraction algorithms

To extract features from the raw data, we developed two
data pipelines to process extracellular and intracellular signal
features. An overview of the extracted features and detailed
descriptions can be found in Table 1. Among the extracellular
signal features, parameters, such as R-wave spike amplitude, R-
wave spike width, and field potential duration (FPD) were used as
illustrated in Figure 2A.

The conduction speed was computed following the method
described in previous studies (Dunham et al., 2022; Bayly et al.,
1998), with some modifications. In brief, the elapsed time, denoted
as T, from the onset of wave propagation, along with the x and y
coordinates of the electrode within the MEA, were fitted to a three-
dimensional, cone-shaped surface (Figure 2C). This representation
can be found in Equation 1.

T = √a(x− x′)2 + b(y− y′)2 + c (1)

In Equation 1, the coefficients are represented as a, b, and
c, while x′ and y′ are the coordinates of the wave propagation
initiation. Following the fitting of the data to the three-dimensional,
cone-shaped surface, local conduction velocities at each electrode
location were computed as described previously (Bayly et al., 1998).
Subsequently, the magnitudes of local conduction velocities were
averaged to derive an estimate of the overall conduction speed.

Among other extracellular signal features, time domain heart-
rate-variability (HRV) features were computed using a previously
published Python package (Champseix et al., 2021). The HRV
features include metrics, such as mean values and standard
deviations of intervals of consecutive R spikes (RR-intervals)
(Electrophysiology, 1996). HRV features and other features, such as
intracellular signal features (Figure 2B) and recording information,
are detailed in Table 1. Intracellular signal features were extracted
from intracellular-like signals recorded by the HD-MEAs. As

described in a previous study, three consecutively measured
waveforms - recorded either 9 s after electroporation or after
channel stabilization - were averaged to obtain a single waveform
per channel (Lee et al., 2022). Signals with a peak amplitude larger
than 1 mV and a peak width exceeding 50 m were classified as
intracellular-like signals. These criteria can be easily adjusted by
users to suit their specific needs.

Cardiomyocyte differentiation and culture

The generation of human iPSCs was approved by the Ethics
Committee of the University Medical Center Göttingen and
carried out in accordance with the approved guidelines (see Ethics
Statement section for details). A human iPSC line UMGi129-A,
termed SQT5-line, was derived from a short-QT-syndrome type-5
(SQT5) patient harboring a known variant in the CACNB2 gene.
TheCACNB2gene is responsible for encoding L-typeCa2+ channels,
and variants in this gene have been identified as being linked to
short QT syndrome (Garg et al., 2018; El-Battrawy et al., 2021). The
SQT5-line’s isogenic control UMGi129-A-1, the SQT5corr-line, was
generated after correcting the variant in the CACNB2 gene using
ribonucleoprotein-based CRISPR/Cas9. Both the SQT5-line and
SQT5corr-line were generated in a prior study (El-Battrawy et al.,
2021) and delivered in frozen cryotubes for this research. The
iPSC lines were then differentiated into spontaneously beating
CMs, following a protocol established in the previous study (El-
Battrawy et al., 2021). Additionally, commercially available CMs,
differentiated from healthy donor iPSCs and referred to as iCell
Cardiomyocytes, were purchased from Fujifilm Cellular Dynamics
International (Madison, Wisconsin, United States). The culturing
of these cells was performed according to the manufacturer’s
guidelines.

Cell plating and activity measurement on
the HD-MEA

To record the activity of CMs, we used HD-MEAs (Ballini et al.,
2014), which were equipped with 26,400 microelectrodes and 1,024
readout channels. These HD-MEAs were used to measure both
intracellular-like and extracellular signals from CMs (Lee et al.,
2022). Intracellular-like signals, obtained through the HD-MEAs
after electroporation (Lee et al., 2022), featured action potential
(AP) waveforms similar to those recorded by current-clamp
patch measurements. In contrast, the signal amplitude was
considerably lower (Lee et al., 2022). The shape similarity facilitated
the extraction of AP wave features, including the action potential
duration (APD). Before plating the CMs, the HD-MEAs underwent
sterilization through immersion in 70% ethanol, followed by
thorough rinsing with deionized water and drying under a laminar
flow hood. The electrode array, with a size of approximately 4 ×
2 mm2, was prepared by coating it with human fibronectin solution
(Cat. FC010, Merck KgaA, Darmstadt, Germany) at a concentration
of 50 μg/mL. This coating process involved incubation at 37°C for
an hour, providing optimal conditions for cellular adhesion, thereby
enhancing the quality of the captured signals.
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TABLE 1 Overview of the feature types and names, along with detailed descriptions of the respective computational processes involved in their
derivation.

Feature type Feature name Description

Extracellular signal features

R_amplitude Difference between the maximum and minimum voltage values of the R spike

R_width Width of the R spike, between the positive and negative peak

FPD Distance between the R spike and the T wave signal peak

conduction_speed Mean of local conduction speeds computed at each electrode location

rec_duration Total recording duration in seconds

rec_proc_duration Duration of the processed recording segment

n_beats Number of synchronous beats

n_electrodes_sync Number of electrodes that captured synchronous activity

active_area_in_percent Percentage of electrodes that captured synchronous activity

mean_nni Mean of RR-intervals

sdnn Standard deviation of RR-intervals

sdsd Standard deviation of differences between adjacent RR-intervals

rmssd Square root of the mean of the sum of the squared differences between adjacent RR-intervals

median_nni Median absolute values of successive differences between RR-intervals

nni_50 Number of interval differences of successive RR-intervals larger than 50 m

pnni_50 Proportion derived by dividing nni_50 by the total number of RR-intervals

nni_20 Number of interval differences of successive RR-intervals larger than 20 m

pnni_20 Proportion derived by dividing nni_20 by the total number of RR-intervals

range_nni Difference between the maximum and minimum RR-intervals

cvsd rmssd divided by mean_nni

cvnni Ratio of sdnn divided by mean_nni

mean_hr Mean heart rate

max_hr Maximum heart rate

min_hr Minimum heart rate

std_hr Standard deviation of the heart rate

Intracellular signal features

AP_amplitude Difference between the maximum and the lowest dip of the AP wave

depolarization_time Time from the beginning of the upstroke until the potential reaches the maximum amplitude

APD50 Time from the beginning of the upstroke until the potential reaches 50% repolarization

APD90 Time from the beginning of the upstroke until the potential reaches 90% repolarization

Recording information

gain Gain settings used for the recording

cell_line Name of the cell line

compound Name of the drug, if the recording was made during drug experiments

file_path File path where the recording file was stored
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FIGURE 2
Illustrations of (A) field potential (FP) wave features, (B) action potential (AP) wave features, and (C) conduction speed estimation. FP waves are obtained
from extracellular measurements and AP waves from intracellular or intracellular-like measurements. Field potential duration (FPD) is the time
difference between the R spike and the T wave. Action potential duration (APD) is the time taken from the onset of depolarization until 50%
repolarization (APD50) or 90% repolarization (APD90). (C) To estimate the conduction speed, data points (red color), collected from FP recordings,
were fitted to a cone-shaped surface (blue color). Each red dot represents FP data from one electrode.

Following the plating ofCMson theHD-MEAs, the deviceswere
placed in a humidified incubator with 5% CO2 to allow for recovery
and optimal growth. This environment was maintained for over
7 days until spontaneous beatingwas observed, indicating successful
cellular adaptation and functioning. The cell culture medium was
refreshed three times a week to maintain cell health and vitality
during measurements. In this study, the term “culture” denotes an
ensemble of cells plated on the same HD-MEA chip or in the same
well sharing the same culture medium.

The activity measurements on the HD-MEAs were consistently
conducted within a humidified incubator set at 37°C with 5%
CO2. The controlled environment ensured reproducibility and
reliability of our cellular activitymeasurements. For the extracellular
measurements, cellular activity was screened over the entire
electrode array area using the MaxLive Software (version 19.2.27,
MaxWell Biosystems AG, Zurich, Switzerland). Thereafter, 1,020
electrodes featuring the largest signal amplitudes were selected. A
similar process was applied to the intracellular measurements, with
cellular activity screened and 200 electrodes with the largest signal
amplitudes selected. We then performed electroporation on these
200 electrodes to measure intracellular-like signals according to the
procedure that has been previously described (Lee et al., 2022) and
is also abstracted in Supplementary Method 1.

Drug testing protocols

Dimethyl sulfoxide (DMSO, Cat. D4540), quinidine (Cat.
22600), nifedipine (N7634), flecainide (Cat. F0120000), amiodarone
(Cat. A8423), sotalol (Cat. S0278), and disopyramide (Cat.
D2920000) were purchased from Merck KGaA (Darmstadt,
Germany). Ivabradine (Cat. HY-B0162A) and ranolazine (Cat.
HY-B0280) were purchased from Lucerna-Chem AG (Lucerne,
Switzerland). All drug solutions, except ivabradine and sotalol, were
prepared in a two-step procedure. The initial dissolution of the
compounds was carried out in DMSO, followed by a subsequent

dilution in the culture medium. This procedure was specifically
designed to ensure that the DMSO concentration remained
below 0.1% during drug testing. Ivabradine and sotalol were
dissolved directly in the culture medium. For the SQT5-line, drug
concentrations in the HD-MEAs were gradually increased using an
additive approach to investigate the effects of escalating doses.

We explored the influence of quinidine, flecainide, disopyramide,
ivabradine, amiodarone, sotalol, and ranolazine on CMs differentiated
from the SQT5-line iPSCs. The baseline recordings, which were
performed before the administration of drugs, weremeasuredmultiple
times in the same culture. This procedure was aimed at ruling out the
possibility that the electrophysiological perturbations observed after
drugadministrationweredueto intrinsicchanges inthecardiomyocytes
rather than the effects of the drugs. After baseline measurements, the
drug concentration was sequentially increased as specified in Table 2,
with each increment separated by 45-minute intervals, unless otherwise
specified in respective figures. Extracellular signals were recorded
at each concentration level and stored in standard HDF5 format
using the MaxLive Software.

We also investigated the impact of nifedipine, quinidine,
and sotalol on the intracellular signals of iCell Cardiomyocytes
using electroporation. The applied drug concentrations are
specified in Table 2. After establishing three baseline measurements
at one-hour intervals, a pre-diluted drug solution was administered
to the HD-MEA 30 min after the latest baseline measurement to
reach the respective concentration. Intracellular-like signals were
subsequently recorded 30 min after the addition of drugs.

Results and discussion

Modular and structured data analysis
pipeline

We developed a data analysis platform, named “CardioMEA”,
using the Kedro framework to process and analyze data collected
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TABLE 2 List of drugs and their concentrations used in the drug testing experiments.

Recording type Cell line Drug Concentration(s) (µM)

Extracellular recording SQT5-line

Quinidine 0.1, 0.3, 1, 3, 10

Flecainide 0.03, 0.1, 0.3, 1, 3

Disopyramide 3, 13, 43

Ivabradine 0.3, 1, 3

Amiodarone 0.03, 0.1, 0.3, 1, 3

Sotalol 3, 10, 30, 100, 300

Ranolazine 0.3, 1, 3

Intracellular-like recording iCell Cardiomyocytes

Nifedipine 0.1

Quinidine 1

Sotalol 30

from CMs on HD-MEAs. The highly modular nature of our data
processing pipeline ensures that each step (node) is clear and easy
to understand. The code uses the nodes as building blocks arranged
in a specific order to generate the pipeline (Kedro framework). All
pipelines developed within this study are listed in the file “pipeline_
registry.py”. This comprehensive record is intended to provide easy
access to each pipeline, simplifying navigation and usage throughout
the data analysis.

Details pertaining to input and output data, such as the paths to
their respective storage locations and configurations for data loading
and saving, are cataloged in a dedicated file, called “catalog.yml”.
This arrangement is particularly advantageous, as it simplifies the
management of inputs and outputs without the need to navigate
through the entire code.

CardioMEA is publicly accessible on GitHub via the following
link: https://github.com/leejheth/CardioMEA. To use CardioMEA,
the initial requirement is to install GNU make, a program that
simplifies the execution of command sets. Setting up the working
environment is straightforward, requiring only the execution of
the ‘make setup’ command in the terminal. This command will
automatically generate a new virtual environment and install all
necessary dependencies within it. Additionally, the repository
includes a troubleshooting guide to assist researchers in setting up
the virtual environment, as well as in processing and visualizing
the data. This user-friendly setup ensures easy access to our
sophisticated data-processing tools for a broad community of
researchers.

Feature extraction from multiple data files
in parallel

Experiments often result in a multitude of recording files
requiring specific processing. Undertaking this task for each file
can be cumbersome and time-consuming. Therefore, we designed
CardioMEA with the capability to handle and process multiple data

files concurrently, using multiple CPUs. Users can predetermine
the number of CPUs to scale the process, depending on the
resource availability of their workstations or high-performance
computing clusters.

Initially, the user needs to supply a CSV file containing a list of
directories housing the recording files, alongwith corresponding cell
line names, compounds (drugs), and additional notes as applicable.
These notes may include any relevant experiment details, such
as compound concentrations or experiment IDs. Subsequently, by
executing the “create_list” pipeline, a complete list of recording
files, stored in the specified directories, can be identified and listed
in a newly created CSV file. The recording files, listed in this
CSV file, are then processed in batches, with the batch size being
equivalent to the number of CPUs predetermined by the user. This
approach allows for efficient parallel processing and significantly
reduces the time required to process large data volumes, as compared
to previously published data analysis platforms that process data
sequentially (Supplementary Figure S1).

The subsequent stage involves feature extraction from the
recording files. The feature extraction pipelines for extracellular
and intracellular data are illustrated in Figure 3. The information
for the extracellular data is extracted from the recording file,
followedby identifying the spike timepoints.Then, FPwave features,
conduction speed, and HRV features are computed. Similarly,
intracellular data extraction occurs from the recording file, which is
then followed by the calculation of AP wave features. All extracted
feature values, coupled with a timestamp indicating when the
processing was completed, are uploaded to a PostgreSQL database.
Two distinct SQL tables are utilized, each for extracellular and
intracellular data. Each processing result is inserted as a row in the
SQL table accompanied by a timestamp, allowing for comprehensive
data history preservation within the database. This feature proves
particularly beneficial in scenarios where processing steps need to be
modified or altered. It enables the tracking of previously processed
data, thereby ensuring traceability of all data transformations.
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FIGURE 3
Illustration of the data processing pipelines for extracellular and intracellular data obtained using HD-MEAs. Numerous recording files can be processed
in parallel using multiple CPUs, which significantly decreases computation time and enhances efficiency.

The authors of Cardio PyMEA - a previously published Python-
based platform - reported a performance issue, i.e., that the graphical
user interface would freeze during data processing due to Python’s
global interpreter lock (GIL). As demonstrated in this study, we
effectively addressed this problem in CardioMEA by separating
the data processing and visualization pipelines and by using a
database to store the processed data. Additionally, we resolved
the data processing speed issue noted by Cardio PyMEA’s authors
by implementing multiprocessing in CardioMEA, which allows
for parallelized data processing. Table 3 includes a comparison
of open-source data analysis platforms for cardiac data obtained
fromMEAs.

Feature correlations between different
types of HD-MEA data and whole-cell
current-clamp patch measurement data

As CardioMEA cannot only process extracellular signals but
also intracellular-like signals from iPSC-derived CMs, researchers
can study the relationship between these two types of electrical
signals (extracellular and intracellular-like) recorded by the very
same electrodes and originating from the same cells. Such
an analysis offers a unique perspective on the relationship
between extracellular and intracellular or intracellular-like signal
and waveform features. We conducted a correlation analysis
between features derived from the two different data types.
Utilizing data from 29 CM cultures (iCell Cardiomyocytes), we
analyzed signals obtained from a total of 3,987 electrodes, which
captured both extracellular and intracellular-like signals. Figure 4
presents the correlations between features extracted from the two
signal types.

In Figure 4, we see weak positive correlations between R-wave
spike width and depolarization time, APD50, and APD90. The R-
wave spike appears in the depolarization phase of an AP, which
supports a correlation between the R-wave spike width and the
AP’s depolarization time. Both APD50 and APD90 are measured
from the start of depolarization and are, therefore, connected to
the R-wave spike width. Among the FP features shown in Figure 4,
the R-wave spike amplitude is the only feature expressed in
terms of voltage; in contrast, R-wave spike width and FPD are
time-based measures. Regarding the R-wave spike amplitude, we
noticed that R-wave spikes were clipped in some channels due
to their high signal magnitude. While the gain may be reduced
during recordings to address this clipping issue, it entails the
risk of diminishing the T-wave amplitude, which is already small.
Consequently, the R-wave spike amplitude is not an ideal feature for
correlation analysis.

Interestingly, FPD did not strongly correlate with either APD50
or APD90, even though we anticipated a relationship with these
two parameters. In fact, FPD, in our correlation analysis, showed
minimal correlation with all AP-related features. This could be
attributed to the noise levels in the FPD data that occasionally
obscured the detection of the T-wave.We noted that the T-wave and
its exact timing often could not be precisely determined, especially
for extracellular signals of iCell Cardiomyocytes featuring very
small T-wave amplitudes. Therefore, extracting FPD values and
calculating their correlations to other features is challenging.

Next, we derived intracellular-like features from HD-MEA
data and whole-cell current clamp patch data to examine the
correlation between the respective feature values. For this analysis,
we used recordings by patch clamp and intracellular-like recordings
by the HD-MEA, which were obtained simultaneously from
the same cells. The data were published (Lee et al., 2022)
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TABLE 3 Comparison of open-source data analysis platforms for cardiac data obtained through MEAs.

CardioMDA
(Pradhapan et al.,
2013)

MultiElec
(Georgiadis et al.,
2015)

Cardio PyMEA
(Dunham et al.,
2022)

CardioMEA (this
study)

Programming language MATLAB MATLAB Python Python

Graphical user interface (GUI) MATLAB-based GUI MATLAB-based GUI Python-based GUI Web-based GUI

Execution of data processing
pipelines

Sequential Sequential Sequential Parallel

Comparison of different
experiment conditions (i.e.,
cell lines, drug concentrations)
in the GUI

Available Not available Not available Available

Wave propagation analysis Not available Available Available Available

Intracellular-like data analysis Not available Not available Not available Available

Data processing and GUI Single pipeline Single pipeline Single pipeline Split into separate pipelines

FIGURE 4
Correlations between extracellular field potential (FP) and intracellular-like action potential (AP) features. Each value represents the Spearman rank
correlation coefficient. FPD, field potential duration; APD50, action potential duration at 50% repolarization; APD90, action potential duration at 90%
repolarization.

in a previous study (cell A, Supplementary Figure S2A; cell B;
Supplementary Figure S2B). Figure 5 shows the correlation between
features extracted from 60 AP waveforms over a span of 124 s (cell
A) and from 23 AP waveforms over a span of 36 s (cell B) that have
been captured through simultaneous patch clamp and HD-MEA
recordings.

Figure 5 shows that AP amplitudes of the patch clamp and the
HD-MEA data are negatively correlated. This negative correlation
is, however, a consequence of the fact that both signals are
simultaneously measured from the same cell(s). As discussed in our

previous study (Lee et al., 2022), ion and current leakage through
nanopores, which are generated transiently by the electroporation,
reduce the patch clamp signal. The poration-induced leakage
decreases over time as the cell membrane reseals. The resealing of
the cell membrane increases the AP amplitude of the patch clamp
recording, while the AP amplitude in the HD-MEA measurement
is concurrently decreasing (Supplementary Figure S2). APD50 and
APD90 exhibited strong positive correlations between patch clamp
and HD-MEA measurements, indicating that the two recording
methods capture consistent APD patterns over time and while
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FIGURE 5
Correlations between intracellular features obtained with patch clamp measurements in current-clamp mode and features of intracellular-like data
obtained by HD-MEAs in simultaneous measurements from the same cells. A total of 83 AP waveforms collected from 2 cells (cell A, cell B) were used
to compute the correlation scores. Each value represents the Spearman rank correlation coefficient. APD50, action potential duration at 50%
repolarization; APD90, action potential duration at 90% repolarization.

the cell membrane reseals. Depolarization times, on the other
hand, were only weakly correlated between the two recording
methods.This findingmay be due to differences inwaveform shapes,
as shown in Supplementary Figure S2, Figure 6. In particular, the
AP waveforms, captured by HD-MEA measurements, exhibit
a gradual increase of the voltage before the rapid upstroke
(before Phase 0) which is much less pronounced in the AP
waveform captured by the patch clamp measurement. As the
data are collected simultaneously from the same cells, this
marked difference may be attributed to the difference in the two
recording settings, most prominently the electrode configuration
(penetrating patch pipette and outside Pt-black coated planar
electrode).

Interestingly, the AP waveforms captured by the HD-MEA
closely resemble those from previous studies (Hayes et al., 2019;
Jans et al., 2017; Edwards et al., 2018) that reported electroporation-
mediated intracellular-like recordings with planar electrodes
on MEAs. Conversely, when sharp 3D nanostructures were
employed for intracellular-like measurements, AP waveforms
obtained through MEAs more closely resembled those of
patch clamp measurements (Jahed et al., 2022; Lin et al.,
2017). These observations suggest that the difference in
AP waveform shapes between patch-clamp and HD-MEA
recordings may be attributed to differences in electrode
shape and arrangement, which likely influence the correlation
between depolarization time values (Figure 5) obtained from
both methods.

FIGURE 6
Overlay of amplitude-normalized AP waveforms, averaged across 60
consecutively recorded waveforms (cell A) and obtained from
patch-clamp and HD-MEA measurements.

As becoming evident from this section, CardioMEA’s unique
features and unprecedented capability of processing and analyzing
both extracellular and intracellular-like signals, captured by HD-
MEAs, offer invaluable insights. These insights enhance our
understanding of cardiac electrophysiology and facilitate correlation
analyses between different data types.
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Interactive dashboard for exploratory data
analysis and visualization

After data processing, the availability of an interactive tool
that enables scientists to visualize the processed data and conduct
exploratory data analysis is essential for data-driven analysis.
Therefore, we have incorporated a web-based interactive dashboard
within CardioMEA, termed “CardioMEA Dashboard”. This user-
friendly interface facilitates the visualization of data in the SQL
database, further investigations of features, and downloading
the resulting figures. Furthermore, the web-based nature of
the CardioMEA Dashboard makes it a very accessible tool.
Unlike traditional GUI-based software, the CardioMEA Dashboard
does not require specific installation, thereby offering enhanced
compatibility with a broad range of user operating systems.
This feature ensures universal applicability and ease of use,
rendering the CardioMEA Dashboard a reliable and convenient
tool for biomedical researchers working in diverse computational
environments.

The dashboard’s data panel, illustrated in Figure 7, displays all
cell lines and compounds found in the existing SQL database, either
from the extracellular or intracellular data table. Upon choosing
specific cell lines and compounds, data corresponding to the selected
criteria will be presented in the ‘List of processed files’ table. Users
can then select multiple files of interest, which will be displayed at
the bottom of the data panel. This arrangement empowers users to
navigate the SQL database and interactively select data for analysis
without the need of proficiency in SQL.

Located beneath the data panel is a visualization and analysis
panel divided into three tabs (see also Supplementary Figure S11).
The first tab, titled “Data distribution”, contains a set of figures
visualizing the data. As an example for extracellular data analysis,
Figure 8 represents the evolution of the R-wave spike amplitude,
the R-wave spike width, FPD, and the conduction speed during an
increment of quinidine concentration dosed to CMs, differentiated
from SQT5-line iPSCs, after four baselinemeasurements. Quinidine
is a Class Ia antiarrhythmic drug that is known to prolong
cardiac repolarization (Zwi et al., 2009; Millard et al., 2018).
In clinical investigations involving short-QT-syndrome patients,
quinidine effectively prolonged the QT interval (Wolpert et al.,
2005; Gaita et al., 2004). Other studies have reported that quinidine
prolonged APDs of CMs derived from short-QT-syndrome type-
1 patients (El-Battrawy et al., 2018; Shinnawi et al., 2019).
When quinidine was applied to CMs derived from an SQT5
patient, we observed an increase in FPD with increasing quinidine
concentration (Figure 8), which is in agreement with findings from
a previous study (El-Battrawy et al., 2021), suggesting that quinidine
may also effectively prolong the QT interval of SQT5 patients.
Additionally, a decrease in signal-conduction speed was observed as
the quinidine concentration increased.This reduction in conduction
velocity can be attributed to quinidine’s blocking effect on Na+

channels. By limiting the influx of Na+ ions into the cell, quinidine
may indirectly slow down the diffusion of Na+ ions to adjacent cells
that are interconnected through gap junctions.

We subsequently assessed the responses of SQT5-line
CMs, subjected to other drugs listed in Table 2, while
focusing on the drugs’ efficacy in prolonging the FPD.
Both compounds, disopyramide (Supplementary Figure S3)

and sotalol (Supplementary Figure S4), caused a dose-
dependent prolongation of FPDs in CMs derived
from SQT5 patients. On the other hand, flecainide
(Supplementary Figure S5), ivabradine (Supplementary Figure S6),
amiodarone (Supplementary Figure S7), and ranolazine
(Supplementary Figure S8) did not or only minimally affect
the FPD. These observations indicate that disopyramide
and sotalol could be explored as alternative therapeutic
options for treating arrhythmias in SQT5 patients,
especially when quinidine proves ineffective or is
unavailable.

Next, in the Intracellular Analysis panel of the CardioMEA
Dashboard, we delved into the drug-induced modulations observed
in the features of intracellular-like signals. Figure 9 illustrates the
evolution of AP amplitude, depolarization time, APD50, and APD90
measured from iCell Cardiomyocytes, when the cells were exposed
to nifedipine following three baseline measurements. Nifedipine
is a Ca2+ channel blocker that shortens APDs (Scheel et al.,
2014). As anticipated, nifedipine did not result in any substantial
alteration of the AP amplitude or depolarization time. However,
it significantly shortened APD50 and APD90, as evident from the
visualization panel. A reduction in Ca2+ current renders the K+

current dominating during cardiac repolarization, leading to an
abbreviated APD.

We further explored the effects of quinidine and sotalol
on the AP features of iCell Cardiomyocytes. As shown in
Supplementary Figure S9, exposure of CMs to 1 µM of quinidine
increased depolarization time and APD90. The Na+ channel-
blocking capability of quinidine and its effects on FPD
prolongation have been previously documented (Zwi et al.,
2009; Millard et al., 2018). When subjected to 30 µM of sotalol
(Supplementary Figure S10), there was negligible change in
depolarization time (Dobrev et al., 2012), but we noted a notable
rise in both APD50 and APD90. These observations are consistent
with sotalol’s properties as a Class III, K+ channel blocker. As
demonstrated by the analysis of the effects of seven clinically used
drugs on extracellular signals and of three drugs on intracellular-like
signals, CardioMEA holds promise as a versatile platform for data
analysis and visualization in the field of MEA-based drug testing.

The second tab of the visualization and analysis panel,
‘Recording Info’, displays a table showing recording information and
other features of the selected data files (Supplementary Figure S11).
The third tab, exclusively available for the Extracellular Analysis
panel and titled ‘Feature Analysis’, will be discussed in the
subsequent section.

Feature analysis using automated machine
learning

To identify key electrophysiological phenotypes and disease
biomarkers that can be used to distinguish diseased cell lines from
healthy controls, it is crucial to determine which features have a
high predictive potential. To address this point, we incorporated
automated machine learning (AutoML) and feature-importance
analysis tools into CardioMEA, enabling users to run these complex
analyses through the dashboard without the need to write any code.
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FIGURE 7
CardioMEA Dashboard data panel. The cell lines stored in the SQL database appear at the top row of the data panel, while the compounds, used with
each selected cell line, are shown in the subsequent row. Users have the option to display either all historical processed data or limit the display to the
most recent data. Based on these settings, processed files are listed in the table, which allows for selecting specific data for visualization and
further analysis.

In the Feature Analysis tab, users can select a subset of features
from the data selected in the data panel with the assistance
of a correlation heatmap, multicollinearity plot, and similarity
cluster map (shown in Figure 10). Numerous features are extracted
during the feature extraction process, and it is crucial to select a
subset of these features before constructing classification models
to discern diseased and healthy cell lines. This selection process
is important, because some features may be highly correlated,
exhibit high collinearity, or may be similar to each other, which
may potentially interfere with the feature importance analysis. For
example, permutation analysis (Breiman, 2001), one of the essential
techniques for investigating feature importance (Petch et al.,
2022), could be affected, as collinear or similar features could
compensate for permuting a feature. As a result, classification
performance may not decline when one of the collinear features
is permuted.

To demonstrate the usage of Feature Analysis, we selected
recording data from all cultures without drug administration in the
data panel to investigate which features are crucial in distinguishing
SQT5-line and SQT5corr-line CMs. In total, 93 cultures of SQT5-
line CMs and 33 cultures of SQT5corr-line CMs were included for
feature importance analysis.

The criteria or thresholds for eliminating redundant features
in CardioMEA are customizable by the user, allowing for
flexibility based on specific needs or applications. In this study, we

demonstrated feature elimination by jointly assessing correlations,
multicollinearity, and feature similarity. Specifically, features were
removed if they exhibited absolute correlation coefficients greater
than 0.8, multicollinearity indices exceeding 5, or high similarity as
determined through visual inspection on the dashboard (Figure 10).
Users can adjust these thresholds according to their domain
knowledge and the particular requirements of their disease or drug-
related analyses. The CardioMEA Dashboard’s interactive plots
update in real-time, which enables users to immediately observe
the effects of feature selection on correlation, multicollinearity,
and similarity metrics. This dynamic feedback supports informed
decision-making during feature selection. Figure 10 presents a
screenshot of the dashboard showing the selected 9 features
after eliminating redundant features using a correlation heatmap,
multicollinearity plot, and similarity cluster map.

After the selection of features, the ensuing step involves
investigating their importance. Within CardioMEA, we have
integrated an AutoML functionality to identify the optimal model
for classification purposes. This functionality has been realized
by harnessing the AUTO-SKLEARN toolkit (Feurer et al., 2015),
an open-source library that facilitates an efficient and automated
approach to machine learning model selection and hyperparameter
tuning (Supplementary Method 2). The user is empowered to
determine how missing data is handled and to set the test data size,
the number of cross-validation folds, the time limit per fold, and the
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FIGURE 8
Compound analysis of signals of CMs derived from SQT5-line iPSCs using the Extracellular Analysis panel. Following four initial baseline measurements
(file_1 to file_4), the concentration of quinidine was sequentially increased in the following sequence: 0.1 µM (file_5), 0.3 µM (file_6), 1 µM (file_7), 3 µM
(file_8), 10 µM (file_9). Each data point in the provided figures corresponds to a value obtained from a single recording electrode. The horizontal and
vertical bars denote the mean values and standard deviations (mean ± standard deviation), respectively. In the R-wave spike amplitude plot, the clipped
data points represent 6.4% of the data in the first baseline measurement.

number of permutation repeats (Figure 11). By simply clicking ‘Run
AutoML’, the AutoML algorithm is triggered.

There are several risk factors to consider when applyingmachine
learning in data analysis. The best-known risk is overfitting, which
occurs when a model has been extensively fitted to the training
dataset, leading to poor generalization on unseen data (test data).
To address this issue, the AutoML pipeline used in this study
incorporates cross-validation, ensuring that the model has been
evaluated on different subsets of the data to better estimate its
generalizability. Additionally, although AUTO-SKLEARN offers
the option to build an ensemble of top-performing models to
enhance performance, we disabled this feature to avoid overfitting,
as complex models are more susceptible to overfitting. Another
issue in using machine learning is the “black box” nature of many
models, which can make interpretation difficult. To improve model
interpretability, we implemented feature permutation analysis, a
technique that assesses the contribution of each feature to the
model’s performance.

As shown in the lower left section of Figure 11, the AutoML
process yielded the result that the multi-layer perceptron (MLP)
classifier delivered the best performance for the provided dataset,
applying a 3-fold, stratified cross-validation (sCV) method. This
model achieved a classification accuracy of 98.9% for the training
dataset and 92.0% for the test dataset. We compared this result

with the outcomes of a baseline model, which classified the data
based on the most frequent labels. Upon conducting this procedure
10 times with a 5-fold sCV approach, the baseline model yielded
an accuracy of 71.8% ± 1.8% (mean ± standard deviation). Next,
employing the MLP classifier with its default parameters in the
SKLEARN library (Pedregosa et al., 2011) yielded 80.1% ± 5.3%
accuracy. The comparison between the baseline model and the
defaultMLP classifier with themodel constructed byAutoML shows
that AutoML identifies and fine-tunes an optimal model, thereby
enhancing performance.

Subsequently, CardioMEA computes feature importance values
using the optimized model. This process involves a permutation of
the values of each feature individually and gauging the subsequent
decline in accuracy over a predefined set of iterations (Breiman,
2001). As depicted in Figure 11 in the lower right section, R-wave
spike width and FPD were identified as the top two significant
features. This finding suggests that these features play a pivotal
role in the classification of SQT5-line and SQT5corr-line cells
when utilizing the AutoML-trained model. It is crucial, however, to
emphasize that permutation importance indicates the significance of
a specific feature for a particular model, which is the MLP classifier
in this case, rather than representing its innate predictive power.
As demonstrated in the context of Figure 11, users can efficiently
construct optimal machine learning models using the dashboard,
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FIGURE 9
Compound analysis of signals of iCell Cardiomyocytes using the Intracellular Analysis panel. Following three initial baseline measurements (file_1 to
file_3), nifedipine was added to the culture to reach a concentration of 100 nM (file_4). Each data point in the provided figures corresponds to a value
obtained from a single recording electrode. The horizontal and vertical bars denote the mean value and standard deviation (mean ± standard
deviation), respectively.

bypassing the need to manually code the algorithms, which
significantly simplifies the process of identifying critical features for
distinguishing between diseased cell lines and healthy controls.

Feature permutation analysis includes to randomly vary the
values of one feature and observing the change in model
performance. A significant performance drop indicates that the
respective feature is important, while little or no drop suggests that
the feature is less important. However, due to the stochastic nature
of the process, this method inherently introduces variability.

Feature permutation analysis, as shown in Figure 11, exhibits
a few outliers (dots) in several features, such as min_hr, std_hr,
sdsd, and median_nni. One reason for the outliers could be the
presence of strong correlations between multiple features. When
one feature is permuted, this permutation can upset the respective
correlations as only the values of a specific feature are varied, which
then may lead to a significant accuracy drop. In this case, an outlier
may indicate a correlation effect rather than reflecting the feature’s
individual contribution. The outliers and high variance may also
indicate that the model is sensitive to certain features or subsets of
the data. If the data distribution is skewed or a feature is important
for only a subset of observations, permuting that feature could lead
to larger-than-expected performance drops.

To reduce the impact of outliers, repeating the permutation
analysis multiple timesmay help to smooth out random fluctuations
of the feature importance score. The number of repeats is

configurable by the user (“Permutation repeats” field in Figure 11).
This approach could help to reduce the impact of outliers and give a
more stable estimate of feature importance.

The aforementioned analysis can be conducted on the dashboard
with just a few mouse clicks. Users do not need to delve into
the intricate details of constructing machine learning models or
analyzing feature importance when exploring their HD-MEA data
collected from CMs.This feature demonstrates that the CardioMEA
Dashboard can serve as a user-friendly, “no-code” platform for
advanced data analysis and visualization.

We further investigated two features, which emerged as the top
two determinants in distinguishing between diseased and healthy
cell lines in our feature importance analysis, the R-wave spike width
and FPD. Given that the SQT5corr-line was generated by correcting
the CACNB2 gene of SQT5, the feature analysis suggests that the
mutation within the CACNB2 gene of the SQT5 cells may alter
the R-wave spike width and FPD values. A previous study (El-
Battrawy et al., 2021) revealed that CMs, differentiated from the
same SQT5-line iPSCs, exhibited decreased Na+ and L-type Ca2+

channel currents. Figure 12 shows a statistical comparison of these
feature values - R-wave spike width and FPD - between SQT5-line
and SQT5corr-line CM cultures.

As shown in Figure 12A, the observed median value of the R-
wave spike width was lower in SQT5 cultures than in SQT5corr
cultures. We had anticipated that the R-wave spike width would
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FIGURE 10
Feature analysis tab within the CardioMEA Dashboard, showing feature interdependency graphs. The correlation, multicollinearity, and similarity
between selected features were computed and displayed.

be larger in SQT5 than in SQT5corr cultures, given that reduced
INa should result in a slower depolarization. However, the range of
measured data points obtained from SQT5 cultures is significantly
larger than that of SQT5corr cultures. The large spread observed
within the SQT5 cultures in Figure 12 suggests substantial variability
among the cardiac cultures.This large spread of data points makes it
difficult to draw solid conclusions from statistical analysis. Although
the statistical analysis did not provide conclusive insights into the
relationship of R-wave spike width values between the SQT5 and
SQT5corr cultures, the feature importance analysis, carried out

via the CardioMEA Dashboard (Figure 11), indicated that the R-
wave spike width had the strongest impact on model performance
upon permutation. This finding suggests that the machine learning
model may identify patterns and interactions that conventional
statistical methods may have overlooked. Moreover, it evidences
the potentially significant role of the R-wave spike width in
distinguishing SQT5 cultures from their isogenic controls.

From a biological perspective, the width of the R spike is
associated with the duration of cardiac depolarization. In SQT5
cultures, the heightened importance of the R-wave spike width
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FIGURE 11
The classification of CMs derived from SQT5-line and SQT5corr-line iPSCs, followed by an analysis of feature importance. With just a few mouse clicks,
users are empowered to perform automated machine learning to build the optimal classification model. The performance and details of the optimized
model are displayed in the lower left section, along with the outcomes of a feature importance analysis (lower right section). Given the respective ML
model, this analysis shows the predictive power of selected features for distinguishing between SQT5-line and SQT5corr-line CMs.

FIGURE 12
Statistical analysis to compare (A) R-wave spike width and (B) field potential duration (FPD) between diseased (SQT5) and healthy control (SQT5corr)
cell lines. Each data point (blue color) represents one CM culture. Red bars indicate median values and error bars (grey color) indicate interquartile
ranges. The p values were estimated using a two-sided Mann-Whitney U test.
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suggested that alterations in the duration of depolarization could
be a key characteristic of the disease in the in vitro model. The R-
wave spike width showed substantial variance, which rendered it
challenging to achieve statistical significance by using traditional
methods. Nevertheless, the feature importance analysis of the
machine learning approach evaluated each feature’s contribution
to the model’s predictive accuracy also considering intricate
interactions between features.

The distinction between statistical test and feature importance
evidenced the complementary roles of traditional statistical analysis
and machine learning approaches. Unlike traditional statistical
comparisons, the machine learning algorithm - an MLP classifier in
this case - utilized all provided features collectively to distinguish
between SQT5 and SQT5corr cultures. The results of the feature
analysis evidenced the potential of CardioMEA’s AutoML-driven
module to capture complex patterns in the data. This module could
improve the identification of novel disease phenotypes, an area
where standalone statistical analysis may fall short.

As shown in Figure 12B, FPD values were lower in the
SQT5 cultures compared to the SQT5corr cultures. Given the
established understanding that mutations in the CACNB2 gene
in the SQT5 cell line induce a loss of function in L-type
Ca2+ channels (El-Battrawy et al., 2021), this decrease of FPD in
SQT5 cultures was anticipated. Therefore, the FPD was identified
as the second most influential feature in identifying SQT5 cultures,
yielding a statistically significant difference between the SQT5 and
SQT5corr cultures.

Conclusion

The study of therapeutic efficacy and potential cardiotoxicity
of drugs in vitro is a crucial step of preclinical research. HD-
MEAs, with their high SNR and spatiotemporal resolution, are
instrumental in characterizing the electrophysiology of iPSC-
derived CMs. However, until now, there has been a lack of open-
source data analysis platforms that can cope with the large data
volumes generated by HD-MEA technology.

In this study, we presented CardioMEA, a comprehensive data
analysis platform with the ability to process and analyze large
volumes of CM data generated by HD-MEAs. CardioMEA offers
a complete analysis workflow, from data extraction to exploratory
analysis. The platform’s first component provides scalable data
processing for feature extraction across multiple data files, while
the second component consists of a user-friendly, interactive web-
based dashboard for advanced data visualization and analysis. Using
CardioMEA, we examined the efficacy of seven clinically used drugs
onCMsderived froman SQT5patient and the cardiotoxicity of three
drugs on healthy-donor-derived CMs.

The feature analysis tool within the CardioMEA Dashboard
assists users in feature selection and helps to reduce redundancy
and multicollinearity in the data. Furthermore, AutoML and
feature importance analysis provide insights into the predictive
power of features for discerning electrophysiological signatures of
diseased and healthy CMs. CardioMEA allows users to perform
complex analyses on their HD-MEA data without extensive coding
knowledge.

Another unique feature of CardioMEA is its ability to process
intracellular signals captured by HD-MEAs, which renders
CardioMEA the first of its kind among open-source platforms. The
possibility to process both extracellular and intracellular signals
renders the platform amenable to a wide range of researchers’
potential needs. CardioMEA offers the possibility to look at the
data distribution on the recording electrodes. For statistical analysis,
however, it is recommended to use electrode data from several wells
or HD-MEAs (biological replicates) to obtain meaningful results.

For future studies, CardioMEA can be augmented by integrating
additional modules for performing more detailed analyses of the
waveform shape (e.g., T-wave) and its features, or by adding
modules for processing and visualizing data obtained from cardiac
3D models, such as cardiac spheroids or engineered cardiac
tissues. These 3D models offer a physiologically more relevant
representation of the heart compared to traditional monolayer
cultures, thereby overcoming some of their inherent limitations.
Advances and new developments will be crucial for improving the
accuracy of disease modeling and the efficacy of drug testing.

In summary, CardioMEA constitutes a comprehensive and user-
friendly platform that significantly advances the analysis of CM
signals obtained by using HD-MEAs. The combination of parallel
data processing, interactive dashboard, and feature analysis tools
enables users to explore and analyze their data efficiently. The
platform is expected to advance studies of cardiac diseases and drug
testing and to democratize associated high-level data analysis.
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