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Traumatic brain injury (TBI) is associated with diffuse axonal injury (DAI), a primary
pathology linked to progressive neurodegeneration and neuroinflammation,
including chronic astrogliosis, which influences long-term post-TBI recovery
and morbidity. Sex-based differences in blood-brain barrier (BBB) permeability
increases the risk of accelerated brain aging and early-onset neurodegeneration.
However, few studies have evaluated chronic time course of astrocytic responses
around cerebrovascular in the context of aging after TBI and sex dependence. We
observed increased glial fibrillary acidic protein (GFAP)-labeled accessory
processes branching near and connecting with GFAP-ensheathed cortical
vessels, suggesting a critical nuance in astrocyte-vessel interactions after TBI.
To quantify this observation, male and female Sprague Dawley rats (~3 months
old, n = 5–6/group) underwent either sham surgery or midline fluid percussion
injury. Using immunohistochemical analysis, we quantified GFAP-labeled
astrocyte primary and accessory processes that contacted GFAP-ensheathed
vessels in the somatosensory barrel cortex at 7, 56, and 168 days post-injury (DPI).
TBI significantly increased GFAP-positive primary processes at 7 DPI (P < 0.01) in
both sexes. At 56 DPI, these vessel-process interactions remained significantly
increased exclusively in males (P < 0.05). At 168 DPI, both sexes showed a
significant reduction in vessel-process interactions compared to 7 DPI (P < 0.05);
however, a modest but significant injury effect reemerged in females (P < 0.05). A
similar sex-dependent pattern in the number of accessory processes provides
novel evidence of long-term temporal changes in astrocyte-vessel interactions.
TBI-induced changes in astrocyte-vessel interactions may indicate chronic BBB
vulnerability and processes responsible for early onset vascular and
neurodegenerative pathology.
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1 Introduction

Traumatic brain injury (TBI) presents one of the most complex
neurological insults. Each year, millions of individuals suffer from TBI,
raising significant concern about the long-term health effects (Mayer
et al., 2017). Chronic consequences of TBI accelerate brain aging, where
predicted brain age differences were 5 years greater than controls
(Dennis et al., 2024). TBI is also associated with an increased long-
term risk of early-onset cardiovascular diseases, stroke, dementia, and
neurodegenerative diseases (Kiraly and Kiraly, 2007; Stewart et al., 2022;
Schneider et al., 2023). Diffuse axonal injury (DAI) is one of the most
common and potentially most insidious pathological features due to its
involvement in chronic pathogenesis, where themagnitude ofDAI links
with symptom severity in clinical and preclinical studies (Johnson et al.,
2013; Smith et al., 2013; Blennow et al., 2016). Traumatic DAI initiates
chronic neurodegeneration, neuroinflammation, and oxidative stress,
leading to chronic blood-brain barrier (BBB) dysfunction and
maladaptive vascular remodeling, all of which are implicated in
accelerating brain aging (Faden and Loane, 2015; Cash and Theus,
2020; Lin et al., 2022; Lu et al., 2023). These TBI-induced changes
accelerate brain aging, resulting in cerebrovascular impairment, an early
indicator of cognitive decline and a hallmark of age-related
neurodegenerative diseases (Senatorov et al., 2019; Barisano et al.,
2022; Knox et al., 2022; Sulimai et al., 2023).

Astrocytes are major glial cells that establish direct structural
and functional contact with vasculature to regulate BBB
permeability, blood flow, energy uptake, and waste clearance
(Koehler et al., 2009; Mathiisen et al., 2010; Baldwin et al., 2023).
Astrocyte endfeet directly interact with the cerebral vessels,
particularly endothelial cells, the basement membrane, and
pericytes, and are critical for the formation and maintenance of
the BBB (Cabezas et al., 2014). In pathological conditions, astrocyte
reactivity increases the expression of glial fibrillary acidic protein
(GFAP), which is associated with hypertrophy, proliferation, and
changes in function, making it a standard and widely utilized marker
for studying the response to TBI and the influence of interventions.
It is important to note that astrocyte pathophysiology is an emerging
field with a growing number of phenotypes and classifications
(Verkhratsky et al., 2023). This manuscript will use the term
“reactive astrocytes” as a generalized descriptor for increased
GFAP-expressing astrocytes. Chronic astrocyte reactivity after
TBI, reported in clinical and preclinical studies, presents a
diversity of phenotypes that can contribute directly to vascular
pathology (George et al., 2022). Astrocyte endfeet ensheath the
vasculature, and disruptions to this dynamic interaction affect
global neurological function (Mills et al., 2022). Astrocyte
reactivity after TBI results in morphological and functional
changes that may be either beneficial (supporting homeostasis
and BBB repair) or detrimental (promoting BBB permeability
and impaired blood flow) (Burda et al., 2016; Munoz-Ballester
and Robel, 2023). Chronic astrocytic reactivity is a key player in
pathology progression, contributing to vascular damage and the
development of inflammatory cascades (Kempuraj et al., 2021).
Morphological remodeling of reactive astrocytes leads to loss of
gliovascular interaction, which can influence the barrier properties
after TBI (Villapol et al., 2014). Additionally, vascular aging disrupts
astrocyte associations with blood vessels, further increasing barrier
permeability (Dunn et al., 2021). These processes are implicated in

long-term recovery and morbidity, significantly affecting BBB
permeability and increasing the risk of accelerated brain aging
and neurodegenerative diseases.

Sex differences in healthy and disease-associated cerebrovascular
aging, astrocyte reactivity, and vascular cognitive impairment have been
well-documented in the literature (Robison et al., 2019). TBI accelerates
brain aging partly due to BBB dysfunction, with astrocytes playing a
crucial role in cerebrovascular pathology. Notable sex differences exist
in astrocytic responses to TBI, yet astrocyte-vascular interactions and
how they differ by sex over time have not been fully evaluated,
highlighting the importance of sex-specific research to address
distinct impacts on vascular health and neurodegenerative risks
(Chisholm and Sohrabji, 2016; Honarpisheh and McCullough, 2019;
Hubbard et al., 2022; Cantone et al., 2023; Zhang et al., 2023). This gap
underscores the need to evaluate astrocytic responses over time,
particularly their interactions with blood vessels, as several studies
have shown their implications in both the short- and long-term
effects of TBI (Mira et al., 2021). However, the findings are often
inconsistent due to variations in injury types, evaluation time points,
inclusion of female subjects, and outcome measures (Burda et al., 2016;
Munoz-Ballester and Robel, 2023; Verkhratsky et al., 2023). Most
existing profiles are limited to evaluations under 2 months post-
injury, focus predominantly on males, and often involve penetrating
injuries associated with glial scar formation (Villapol et al., 2014). The
use of diverse outcome measures and differences in the duration of
astrocyte reactivity and molecular profiles add to the complexity,
making interpretation across different preclinical models and time
points challenging. To date, few studies have extended temporal
assessments of astrocyte-vessel interactions to 6 months post-injury
with sex as a biological variable using a highly reproducible DAI model
without cavitation. The few supporting reports confirm unique
astrocyte phenotypes associated with chronic BBB dysfunction
(George et al., 2022). Temporal profiles of astrocyte-vessel
interactions after DAI are needed to address these gaps for a
comprehensive understanding of astrocytic roles in TBI and their
contributions to accelerated brain aging (Badaut and Bix, 2014;
Díaz-Castro et al., 2023).

We previously demonstrated that GFAP density was
significantly increased in the primary somatosensory cortex
(S1BF; Figure 1B) at 7- and 56-days post-injury (DPI) and that
GFAP intensity increased in shams over 6 months post-surgery
(Sabetta et al., 2023). GFAP positive (+) astrocyte processes
ensheathed vessels were clearly distinguished by their larger
diameter and perpendicular or lateral trajectory to the brain
surface, cylindrical shape, and clear lumen, with apparent
changes in astrocyte-vessel interactions (Figure 1A). At 100×
magnification, we predominantly observed GFAP-primary
processes with no obvious process branches proximal to the
GFAP ensheathed vessels (black arrow Figure 1C). At a subacute
time point post-injury, we detected an increased number of accessory
processes branching proximal to the vessels and contacting the
GFAP + ensheathment around the vessel (orange arrow in
Figure 1C), indicating a novel nuance in astrocyte-vessel
interactions. We sought to determine the changes in primary and
accessory GFAP + processes that interact with vessels to assess if a
single TBI chronically disrupts astrocyte-vessel interactions
indicative of chronic BBB vulnerability in male and female rats at
7-, 56-, and 168-days post-injury in a rat model of diffuse TBI.
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2 Methods

2.1 Animals

A total of 64 young adult age-matched male and naturally
cycling female Sprague-Dawley rats (3–4 months old; males
367 ± 3 g and females 235 ± 1.5 g; n = 5–6/group; Inotiv
(formerly Envigo), Indianapolis, IN, United States of America)
from the same study were used in these experiments. Rats were
housed in temperature (68°F–79°F) and humidity-regulated 12:12 h
light:dark cycle room with free access to food (Teklad 2918) and
water (Innovive, San Diego, CA, United States of America) and
acclimatized for at least 1 week before experiments. All procedures
were conducted in compliance with ARRIVE guidelines and
consistent with the National Institutes of Health (NIH)
Guidelines for the Care and Use of Laboratory Animals approved
by the Institutional Animal Care and Use Committee (protocol #18-
384) at the University of Arizona College of Medicine-Phoenix.

2.2 Surgeries

Midline fluid percussion injury (FPI) induces DAI without
cavitation or contusion (Lifshitz et al., 2016). The surgery was
performed similarly to our previous publications (Bromberg
et al., 2020; Krishna et al., 2020; Sabetta et al., 2023). Cages of
rats (2/cage) were randomized to either FPI or sham groups. Briefly,

rats were anesthetized with isoflurane (5% in 100% oxygen for
5 min) prepared for aseptic surgery and placed into a stereotaxic
frame (Kopf Instruments, Tujunga, CA) and anesthesia maintained
at 2.5% for the procedure’s duration. A 4.8 mm circular craniectomy
was centered on the sagittal suture midway between bregma and
lambda, and the skull flap was removed carefully, ensuring the
underlying dura and superior sagittal sinus remained intact. An
injury hub was fixed directly over the craniectomy using
cyanoacrylate gel and methyl-methacrylate (Hygenic Corp.,
Akron, OH) and filled with 0.9% sterile saline. The incision was
then partially sutured closed on the anterior and posterior edges
with 4.0 Ethilon sutures. Topical lidocaine and antibiotic ointment
were applied. Rats were returned to a pre-warmed holding cage post-
surgery and monitored until ambulatory.

2.3 Midline FPI

Two hours following surgical procedures and the return of
ambulation, rats were re-anesthetized, the hub was filled with
0.9% sterile saline, and attached to the male end of a fluid
percussion device (Custom Design and Fabrication, Richmond,
VA). After the return of a pedal withdrawal response, an injury
averaging 1.8–2.0 atmospheric pressure (atm) for males and
1.7–1.9 atm for females was administered by releasing the
pendulum (from 16° for males and 15.5° for females) onto the
fluid-filled cylinder. Shams were attached to the device, but the

FIGURE 1
Astrocyte interaction with blood vessels after TBI. (A) Representative images of GFAP immunohistochemistry in the S1BF acquired at 40×
magnification. Black arrows indicate GFAP-ensheathed vasculature. At 7 DPI, astrocytes displayed reactive morphology with an increased number of
cells, larger cell bodies, and more pronounced processes. Scale bar = 100 (B) 3D schematic showing the S1BF, where images of vessels were captured
within cortical layer IV (green areas). Brain region defined by the Waxholm Space Atlas of the Sprague Dawley rat brain (v4) (Papp et al., 2014). White
scale bar = 3 mm; red, blue, and green lines represent x, y, and z directions, respectively. (C) A scaled-up image of GFAP + processes ensheathing a
cortical vessel. The black arrow indicates a primary process directly from the astrocyte, and the orange arrow indicates an accessory process branching
proximal to GFAP + ensheathment. Scale Bar = 25 µm.
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pendulum was not released after a positive pedal withdrawal
response. Immediately after administration of the injury, the
fencing response, apnea, seizures, and the return of righting
reflex were recorded for brain-injured animals, and the hub was
removed en bloc (McIntosh et al., 1987; Hosseini and Lifshitz, 2009).
Inclusion criteria required that injured rats have a righting reflex
time ranging from 6 to 10 min and a fencing response indicative of
mild-to-moderate TBI. Rats were re-anesthetized, the surgery site
inspected for herniation and dural integrity, the incision was closed,
and topical lidocaine and antibiotic ointment were applied. Rats
were then placed in a pre-warmed holding cage for recovery. Post-
operative monitoring was performed for 5 days by physical
evaluation. Rats were pair-housed in the same room according to
injury status and sex throughout the study. All cohorts were time
post-injury matched, with age- and sex-matched shams at each
time point.

2.4 Histology

Brains were collected at 7-, 56-, and 168 days post-injury (DPI),
rinsed with ice-cold phosphate-buffered saline (PBS), hemisected,
and one hemisphere post-fixed in 4% paraformaldehyde for 24 h,
transferred to fresh PBS with sodium azide, and shipped to
Neuroscience Associates Inc. (Knoxville, TN). Brains were coded
and randomized into two gelatin blocks (MultiBrain® Technology,
NeuroScience Associates, Knoxville, TN) to be batch-processed for
simultaneous histological and immunohistochemical staining.
40 μm thick sections were taken in the coronal plane, stained
with glial fibrillary acidic protein (GFAP); primary Ab: Dako,
Z0334, 1:75,000; secondary Ab: Vector, BA-1000) using the free-
floating technique and visualized using 3,3′-
Diaminobenzidine (DAB).

2.5 Imaging and analysis

Image capture and analysis was completed by investigators
blinded to injury status, days post-injury, and sex. Images were
acquired on an upright Zeiss Axio Imager 2 equipped with a
Hamamatsu ORCA-flash 4.0 digital camera (catalog #C13440).
An oil-immersion 100×/1.2 C-Apochromat lens was used to
capture one image in the S1BF localized to layer 4 per 3 adjacent
sections per animal using Paxinos and Watson atlas (Figure 1B)
(Paxinos and Watson, 2007). A total of 192 images were taken for
GFAP-positive stained astrocytes connected to the GFAP-
ensheathed cerebral vasculature using Neurolucida software
(MBF) and exported to ImageJ (National Institutes of Health)
software. The number of primary astrocyte processes connecting
to GFAP-ensheathed vessels and accessory branches near the vessels
were quantified to assess astrocyte contributions to the BBB
(Figure 1C). Vessel length was measured using the line tool in
ImageJ software scaled in micrometers to normalize process counts
to the vessel length as a quantitative metric for comparison
(Abramoff et al., 2004). The average vessel length was similar
between all groups, with an overall average of 132.5 ± 1.54 µm.
Measurements from the 3 adjacent sections were averaged (per rat)
for statistical analysis. Image analysis was carried out by two

investigators. Data were analyzed to address the following
questions for each sex: (1) Effect of FPI: Was there an impact of
FPI? (2) Effect of time post-FPI: Did the timing post-FPI indicate
aging with injury, and if so, when? (3) Effect in shams over time:
Were there changes in sham groups over time (3 months at time of
injury, 9 months at 168 DPI)? If so, when? (4) Sex-related effects or
interactions: Was there evidence of any potential effects or
interactions related to sex?

2.6 Statistics

Group sizes were determined from previous publications,
primarily using male rats at 28 DPI (Hoffman et al., 2017;
Thomas et al., 2018; Beitchman et al., 2019; Bromberg et al.,
2020), where an n = 5 per group was shown to provide >90%
power to detect a significant increase in GFAP intensity after FPI
with a representative effect size of d = 3.4 (Thomas et al., 2018).
However, due to the exploratory nature of this study, including
chronic time points and the inclusion of females, data were
analyzed separately for each sex to ensure appropriate power. A
two-way ANOVA was initially conducted with factors of injury
(FPI vs. sham) and days post-injury (DPI; 7 vs. 56 vs. 168). To
explore potential sex differences, a subsequent three-way ANOVA
was performed with sex (male vs. female) as an additional factor. If
significant effects or interactions involving sex were identified (at
P < 0.05), they are reported in the results section. Normality was
assessed using the Kolmogorov-Smirnov test, and homogeneity of
variances was evaluated using the Brown-Forsythe test. When
these assumptions were violated, data were log-transformed to
meet the criteria. Reported statistics include results from
transformed data, though raw data are presented in all graphs
for clarity. Tukey’s post hoc tests were performed to clarify
significant main effects and interactions identified by ANOVA,
(P < 0.05). Data are presented as mean + SEM. Outliers were
identified using ROUT analysis (Q = 1%), and 1 outlier was
detected (male 7 days sham). Shams were compared across
MultiBrain® blocks and time points to detect potential block or
cohort effects, and no significant differences were detected. All
statistical analyses were performed using GraphPad Prism
(version 10.2.2).

3 Results

3.1 DAI caused an increased number of
GFAP-positive primary processes per vessel
length at 7 DPI with sex-dependent
long-term trajectories

Representative 100× photomicrographs of GFAP-positive
processes ensheath vessels in the S1BF (Figure 2A). As shown in
Figure 2B, two-way ANOVA revealed a significant effect of FPI
(F1,25 = 11.87, P = 0.002) and DPI (F2,25 = 5.34, P = 0.012) in males.
Post-hoc analysis reveals significant differences between FPI and
sham at 7 DPI (P < 0.01) and 56 DPI (P < 0.05), with the number of
processes in FPI animals returning to sham levels by 168 DPI.
In females, primary process numbers varied as a function of FPI
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(F1, 26 = 23.96, P < 0.0001) and FPI × DPI interaction (F2, 26 = 4.16,
P = 0.027). The follow-up comparisons indicated that FPI increased
the primary processes at 7 DPI compared to shams (P < 0.0001).
While processes significantly decreased between 7 DPI and 168 DPI
(P < 0.05), a small but significant effect was present between sham
and FPI at 168 DPI (Figure 2C). We measured no changes in sham
rats as a function of time. A three-way ANOVA indicated no sex
differences or sex interactions.

3.2 FPI increases in GFAP-positive accessory
processes parallel FPI-induced increases in
primary processes

Representative photomicrographs of GFAP-positive accessory
processes ending contributing to GFAP-ensheathed vessels in the
S1BF (Figure 3A). In males, an effect of FPI was measured (F1, 25 =
7.76; P = 0.010), where a post hoc analysis identified significance
between FPI and sham at 56 DPI (P < 0.05; see Figure 3B). As shown
in Figure 3C, in females, an effect of FPI was also measured (F1, 26 =
6.95; P = 0.014), where a post hoc analysis identified significance
between FPI and sham at 7 DPI (P < 0.05). Sham rats did not change
as a function of time. A three-way ANOVA indicated no sex
differences or interactions.

4 Discussion

We sought to evaluate temporal changes in astrocytes
interacting with the vasculature as a function of time post-injury
and sex. Our results demonstrate chronically increased number of
primary processes in contact with the GFAP + ensheathment
around blood vessels with proximal accessory branches tending
to co-occur at 7 DPI (both sexes), 56 DPI (in males), and 168 DPI (in
females). Despite measuring overall GFAP reactivity increased in
sham controls (Sabetta et al., 2023), the increase in proximal
accessory branches was unique to brain-injured rats. While
temporal profiles of the sexes have subtle differences, a posteriori
three-way ANOVAs did not detect significant effects of sex.

The S1BF was strategically chosen for this study due to its large
anatomical representation of the whisker barrel circuit, along with
dense and well-organized vascular network and distinct cortical
layers, offering greater reproducibility in measuring interactions
across animals. Larger diameter cortical vessels with a perpendicular
or lateral trajectory are characteristics of intracortical arterioles that
are the gateway of blood supply to the deeper brain structures.
Cortical arterioles are known to be compromised during aging and
neurodegenerative diseases, playing a critical role in maintaining
cerebral perfusion, with their dysfunction linked to cognitive decline
and dementia (Kress et al., 2014). Post-TBI vascular dysfunction

FIGURE 2
FPI caused an increased number of GFAP + primary processes per vessel length at 7 DPI that remained elevated longer in males. (A) Representative
100× GFAP immunostained images within layer IV of the S1BF region of sham and FPI rats at 7, 56, and 168 DPI of both sexes. (B) In males, an injury effect
was detected at 7 and 56DPI compared to age- and sex-matched shams. The number of processes decreased in FPI rats to sham levels by 168 days. (C) In
females, FPI increased primary processes at 7 DPI compared to sham. Process numbers significantly declined between 7 and 168 DPI, where an
effect of FPI was still present at 168 DPI N=5–6/sex. Data were analyzed by two-way ANOVA followed by Tukey’s multiple comparison tests. *P < 0.05,
**P < 0.01, and ****P < 0.0001. Error bars indicate + SEM. Scale bar = 50 µm.
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may bemore prominent at 6 months post-injury in the cortex, where
fluid percussion injury induces spreading depolarization, acute
hypoperfusion, and changes in neurovascular volume (Ziebell
et al., 2016; Balanca et al., 2017). Astrocytes in the S1BF show
increased GFAP immunodensity up to 2 months post-injury, where
the vast majority (>90%) are in direct vascular contact (Hösli et al.,
2022; Sabetta et al., 2023), potentially contributing to vascular
dysfunction. In this DAI model, the somatosensory cortex is
known for its highly reproducible late-onset and persistent
hypersensitivity to whisker stimulation, with several known glial,
neuronal, and functional changes over time (McNamara et al., 2010;
Thomas et al., 2012; Lafrenaye et al., 2014; Thomas et al., 2017;
Thomas et al., 2018; Krishna et al., 2020). Together, this information

can be expanded in future studies to comprehensively evaluate the
chronic impact of altered astrocyte-vessel interactions within
behaviorally relevant nuclei and white matter tracts, focusing on
how these changes affect vascular and circuit function in the
development of behavioral deficits or recovery post-TBI.

The BBB integrity depends on astrocyte coverage of the vascular
surface, with evidence indicating that the alterations in gliovascular
interactions are more prominent in neurological disorders and age-
related neurodegenerative diseases (Alvarez et al., 2013).
Disruptions of astrocyte-vascular interaction could lead to
impaired hemodynamic responses and loss of neurovascular
coupling, perpetuating pathology progression (Zlokovic, 2011).
The primary GFAP-positive processes are major long branches

FIGURE 3
TBI promotes time-dependent changes in the number of GFAP-labeled accessory processes. (A) Representative GFAP immunostained images
within the S1BF region of sham and FPI rats at 7, 56, and 168 DPI from both sexes to highlight changes in accessory processes over time. The top row are
images captured at 100×. The bottom row images magnify the accessory process interactions with the vessel. (B) In males, an FPI increased accessory
processes at 56 DPI compared to age- and sex-matched shams. (C) In females, FPI increased primary processes at 7 DPI compared to shamN=5–6/
sex. Data were analyzed by a two-way ANOVA followed by Tukey’s multiple comparison tests. *P < 0.05 and **P < 0.01. Error bars indicate + SEM. Scale
bar = 50 µm.
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that emanate directly from the soma and continue to envelop
vasculature (Khakh and Sofroniew, 2015). Our previous work
showed increased GFAP immunoreactivity at 7 and 56 DPI in
the sensory cortex, which was similar between males and females
after experimental TBI (Sabetta et al., 2023). These data indicate
chronic changes in astrocyte vessel interactions with accessory
processes following a similar temporal profile as the TBI-induced
increase in primary processes, clearly indicating that an increase in
accessory processes is injury-mediated and an associated pathology
with increased astrocyte-vessel interactions. Considering our
previous outcomes, these data indicate that the distribution of
GFAP may differ between males and females over the measured
times post-injury. Further, this observation may indicate that
females have a differentially regulated astrocytic response due to
altered protective mechanisms, hormonal regulation, or
inflammatory responses. Estrogens can exert a protective action
on vascular surfaces by promoting recovery of endothelial cell loss
after vascular damage (Krasinski et al., 1997); however, well-
powered studies and more detailed examination of alternate
outcomes are needed to support this speculation.

Given that astrocytes undergo acute, subacute, and chronic
morphological and functional remodeling after TBI, this observation
is consistent with previous studies after lateral FPI demonstrating
increased arborization in A1 (GFAP+/C3+) astrocytes at 7 DPI
(Clark et al., 2019), indicating a pathological astrocyte phenotype;
albeit these were ipsilateral to a focal injury. Relatedly, astroglial
reactivity with the appearance of longer processes was also observed
at 1, 7, and 30 DPI in the somatosensory region of mice; however, these
changes were not associated with vascular interactions (Clément et al.,
2020). Alternatively, increased astrocyte processes observed at 7 DPI
after the diffuse TBI may indicate ongoing adaptive changes to facilitate
vascular repair by promoting BBB integrity, providing metabolic
support, synaptic activity, and controlling blood flow (Attwell et al.,
2010). Further investigation is needed to determine whether these
responses are beneficial or detrimental in the case of DAI.
Astrocytes extend highly branched processes that split into
secondary and tertiary accessory processes, which could be indicative
of increased endfeet in contact with blood vessels (Baldwin et al., 2023).
Experimental TBI studies have reported time-course changes in cortical
vascularization with the appearance of revascularization at 7 DPI
(Jullienne et al., 2018), which may explain the increase in astrocyte
processes. Aging is known to induce astrocytic gliosis, swelling of
endfeet, and loss of interaction with the vasculature, which may be
linked to neurodegeneration (Duncombe et al., 2017; Bors et al., 2018).
Differences in outcomes may be related to our 6-month post-injury
time point being in a relatively young rat (9 months old). Evaluating the
effects at 18+ months post-injury could provide a more comprehensive
understanding of the chronic consequences of DAI on astrocyte-vessel
interactions.

In terms of mechanisms, it was previously reported that acute
neurodegeneration may precede reactive astrogliosis, promoting
neurovascular reformation (Villapol et al., 2014). Our previous
publications indicate ongoing neurodegeneration in both male
and female rats, persisting up to at least 2 months in the S1BF
and 6 months in deeper nuclei after DAI (Lifshitz and Lisembee,
2012; Thomas et al., 2018; Sabetta et al., 2023). This
neurodegeneration can lead to prolonged phagocytosis driven by
activated microglia/macrophages, which are in bidirectional

communication with endothelial cells and release pro-
inflammatory factors (Dudvarski Stankovic et al., 2016). The
crosstalk between astrocytes and microglia/macrophages can alter
the astrocytic phenotype, influencing astrocyte-vessel interactions
that may promote BBB permeability, neurovascular remodeling,
neurovascular uncoupling, metabolic alterations, and changes in
astrocytic endfeet-enriched proteins (Abbott et al., 2006; Yi and
Hazell, 2006; Salehi et al., 2017; Matejuk and Ransohoff, 2020;
George et al., 2022). The culmination of these events could create
a feedback loop that exacerbates both neurodegeneration and
vascular dysfunction and thereby changes in astrocyte
morphology. However, it is also important to consider the
potential for protective mechanisms, such as the ongoing
clearance of debris, release of neurotrophic factors, and induction
of anti-inflammatory states, which can promote neuronal survival,
tissue repair, regenerative neuroplasticity, and BBB integrity (Simon
et al., 2017; Mira et al., 2021). The chronic presentation of accessory
processes could indicate enhanced coverage of the BBB and be
protective of functional impairment in the vascular
microenvironment. The load of neurodegeneration or promotion
of adaptive processes may shift the balance between chronic
pathophysiology and repair, determining whether the system
leans towards exacerbating or mitigating vascular dysfunction
(Thomas et al., 2015). Further investigation into the genotype
and phenotype of interacting astrocytes may elucidate their
functional roles, where these interactions may serve as
biomarkers to monitor traumatically induced vascular damage,
recovery, and response to interventions, particularly during the
subacute and chronic post-injury periods.

With the role of chronic astrocyte reactivity becoming increasingly
recognized as a contributor to vascular pathology following TBI, this
study is, to the best of our knowledge, the first to highlight novel sub-
acute and chronic astrocyte-vessel interactions that may have
significant implications for sex-dependent trajectories following
diffuse TBI (George et al., 2022; Díaz-Castro et al., 2023). While
these findings present intriguing biomarkers for future research, there
are limitations to be considered. Results were limited to the evaluation
of GFAP + processes, where additional markers could help identify
arterioles from venules to indicate if accessory processes are associated
with one or the other. Additional markers for endothelial cells,
pericytes, or the blood-brain barrier would provide more detail
about interactions with specific vascular components. Incorporating
markers of glymphatic clearance, hypoxia, and vascular integrity may
indicate functional impact. Results are not directly correlated with
behavior, however, the somatosensory cortex is the highly integrated
cortical relay responsible for the development of the reproducible late-
onset and persistent hypersensitivity to whisker stimulation previously
reported from our lab and others (McNamara et al., 2010; Thomas
et al., 2012; Lafrenaye et al., 2014; Thomas et al., 2017; Thomas et al.,
2018; Krishna et al., 2020). Behavioral assessments were intentionally
excluded from the experimental design due to indications of chronic
HPA axis dysregulation where perceived stressors could potentially
influence astrocyte morphology and confound data interpretation
(Rowe et al., 2016; Hoffman et al., 2017; Beitchman et al., 2019;
Bromberg et al., 2020; Rowe et al., 2020; Fulop et al., 2023; Valenza
et al., 2024). Additionally, examining the modulation of ovarian
hormones could further elucidate the observed sex-dependent
differences.
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5 Conclusion

Our work provides novel evidence of sex-dependent temporal
changes in astrocyte-vessel interactions post-TBI, highlighting
significant differences in how males and females respond to brain
injury over time. The observed increase in accessory astrocyte
processes and their connection with cortical vessels underscores the
critical role of astrocytes inmaintaining barrier integrity and the potential
implications for chronic BBB disruption. These findings suggest that
changes in astrocyte morphology may serve as valuable biomarkers for
assessing the impact of TBI on vascular function.Understanding nuanced
interactions offers a promising avenue for developing targeted treatments,
where early interventions and chronological assessment of physiological
and behavioral outcomes could provide insight into the functional roles
associatedwith increased interactions. Future research should continue to
explore the molecular mechanisms driving these changes and the
potential for sex-specific therapeutic strategies, ultimately contributing
to improved outcomes for TBI patients.
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