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Introduction: Treating extensive burn injury requires an individually tailored
resuscitation protocol that includes hourly-titrated intravenous fluid infusion
to avert both hypovolemic shock and edema. Due to the complexity of burn
pathophysiology and significant variability in treatment protocols, there is an
ongoing effort to optimize burn resuscitation. The goal of this work is to
contribute to this effort by developing a mathematical model of burn
pathophysiology and resuscitation for in silico testing of burn resuscitation
protocols and decision-support systems.

Methods: In our previous work, we developed and validated a mathematical
model consisting of volume kinetics, burn-induced perturbations, and kidney
function. In this work, we expanded our previous mathematical model to
incorporate novel mathematical models of cardiovascular system and
hormonal system (renin-angiotensin-aldosterone (RAAS) system and
antidiuretic hormone) which affect blood volume and pressure regulation. We
also developed a detailed mathematical model of kidney function to regulate
blood volume, pressure, and sodium levels, including components for glomerular
filtration rate, reabsorption rates in nephron tubules, Tubuglomerular feedback,
and myogenic mechanisms. We trained and validated the expanded
mathematical model using experimental data from 15 pigs and 9 sheep with
extensive burns to quantitatively evaluate its prediction accuracy for hematocrit,
cardiac output, mean arterial pressure, central venous pressure, serum sodium
levels, and urinary output. We then trained and tested the mathematical model
using a clinical dataset of 233 human burn patients with demographic data and
urinary output measurements.

Results: The mathematical model could predict all tested variables very well,
while internal variables and estimated parameters were consistent with the
literature.

Discussion: To the best of our knowledge, this is the first mathematical model of
burn injury and resuscitation which is extensively validated to replicate actual
burn patients. Hence, this in silico platform may complement large animal pre-
clinical testing of burn resuscitation protocols. Beyond its primary purpose, the
mathematical model can be used as a training tool for healthcare providers
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delivering insight into the pathophysiology of burn shock, and offering novel
mathematical models of human physiology which can be independently used
for other purposes and contexts.
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1 Introduction

Patients with extensive burn injuries typically require substantial
amounts of intravenous (IV) fluid to maintain vital organ perfusion
and restore homeostasis. While many types of traumas require IV
fluid replacement, fluid replacement treatment is uniquely
challenging in the case of burn injury due to the multifactorial
inflammation and endotheliopathy which results in a large amount
of plasma shifting from the intravascular space into the tissues
(Cartotto et al., 2022). Hence, a considerable fraction of the IV fluid
given to replace the lost blood volume (BV) could likewise leak into
the burnt and intact tissues, resulting in massive edema. To avoid
both hypovolemia and hypervolemia as well as to minimize the risk
of complications, e.g., hypovolemic shock, abdominal compartment
syndrome, pulmonary edema, and organ failure, it is essential to
optimize the dose of fluid given to a patient using clinical endpoints
suited to guide the resuscitation based on patient response
(i.e., precision medicine).

In burn centers, resuscitation often starts with an established
burn resuscitation protocol such as the Parkland or modified Brooke
formulas, which recommends an initial fluid dose based on weight
(W) and total burned surface area (TBSA). The dose is then
frequently titrated in an ad hoc fashion to clinical endpoints of
choice. A commonly used endpoint is urinary output (UO), which is
viewed as a proxy for intravascular BV. In this case, the goal is to
maintain UO in the therapeutic target range of 30–50 mL/h or
0.5–1.0 mL/kg.hr (Schaefer and Nunez Lopez, 2023;
Greenhalgh, 2010).

Regardless, existing burn resuscitation protocols exhibit large
variability in treatment efficacy, due to many factors such as patient-
to-patient variation in pre-existing comorbidities and in
resuscitation response, incomplete and limited knowledge of burn
pathophysiology, and challenges associated with the decision-
making process involved in manual adjustment of fluid dose.
Hence, the optimization and individualization of burn
resuscitation protocols through the development of new decision-
support algorithms and systems are an active area of research. This
poses new challenges, since each protocol must be thoroughly
evaluated before it can be clinically adopted. It is unethical to
test a new treatment with unproven efficacy and safety profile in
critically-ill burn patients. Additionally, large-scale pre-clinical tests
on large mammals, such as sheep and pigs, likewise pose financial
and ethical costs.

In this context, a credible and comprehensive mechanistic
mathematical model of burn injury and resuscitation offers many
benefits. Most relevantly, it can serve as a valuable platform for in
silico evaluation of resuscitation protocols by virtue of its ability to
provide insights into burn injury and resuscitation through the
prediction of variables that are not measurable (Arabidarrehdor

et al., 2021a). In addition, such a mechanistic mathematical model
can be used as a training tool for healthcare professionals, which,
given the complexity of burn resuscitation decision-making, is a
notable advantage.

In our prior work, we developed a mathematical model of burn
injury and resuscitation (Arabidarrehdor et al., 2021a;
Arabidarrehdor et al., 2021b). The mathematical model consisted
of three main components: (i) volume kinetics (VK), a mechanistic
three-compartment mathematical model of water and albumin
kinetics; (ii) a hybrid mechanistic phenomenological model of
kidney function; and (iii) a phenomenological model of the
disruptions inflicted on the body by burns and the ensuing
inflammatory storm. We validated our mathematical model using
data from sheep (N = 16) and humans (N = 233) with extensive burn
injuries, which showed that it may predict VK and kidney function
response to a range of burn injury severities and resuscitation
fluid doses.

Although the predictions of the original mathematical model
were consistent with the experimental data as well as the existing
knowledge in the literature, there were opportunities to further
improve the mathematical model especially in the context of
enhancing physical transparency and clinical relevance. An aspect
of particular interest was to expand the mathematical model so that
it can embed the intricate interconnections between the regulation
of BV, blood pressure (BP), and electrolyte balance in the body,
given their role in maintaining adequate fluid perfusion.

In our prior work, we mainly focused on VK after burn injury.
Yet, from a clinical standpoint, cardiovascular (CV) variables such
as cardiac output (CO), mean arterial pressure (MAP), and central
venous pressure (CVP) are of great importance. The primary
objective of resuscitation in burn injury and many other forms of
shock-inducing trauma is to restore end organ perfusion, which is
often determined by CO, or a combination of vital signs including
CO and MAP (Meng et al., 2015; Hasanin et al., 2017; Carr, 2012).
Although UO is used to guide burn resuscitation in >94% of burn
centers due to its convenience and non-invasiveness, its limitations
in estimating tissue perfusion by itself are well-known, as indicated
by a recent interest in combining hemodynamic monitoring and
other endpoints with UO for optimal burn resuscitation (Paratz
et al., 2014; Dries and Waxman, 1991; Caruso and Matthews, 2016).
Considering that the ability to accurately predict CV variables
(namely, CO, MAP, and CVP) in addition to UO and VK could
be valuable to the clinical impact of a mathematical model intended
for simulating burn injury and resuscitation, we expanded our prior
mathematical model by incorporating CV physiology including
autonomic nervous system as well as by integrating renin-
angiotensin-aldosterone system (RAAS), which together influence
short-term and long-term regulation of BV, electrolyte, and BP in
the body. Note that expanding the ability of the mathematical model
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to simulate a more extensive set of variables also helps lift a few
simplifying assumptions made in the original mathematical model,
especially those associated with the kidney function. First, a
mathematical model of RAAS enables a physiologically
transparent mechanistic description of the sodium dynamics in
the body. Second, a mathematical model of CV physiology
enables the estimation of upstream and downstream renal arterial
pressures. We take advantage of these opportunities by developing a
more accurate, mechanistic mathematical model of the kidney
function in this work.

We validated the mathematical model of burn injury and
resuscitation extended as described above using two experimental
datasets collected from 15 pigs and 9 sheep with extensive burn
injuries that were resuscitated toward varying ends and,
subsequently, a real clinical dataset of 233 patients with a wide
range of burn severity and treatment outcomes. To the best of our
knowledge, this is the first mechanistic mathematical model of burn
injury and resuscitation which has been rigorously validated using
diverse datasets.

This paper is organized as follows. In Section 2.1, we provide an
overview of the mathematical model and the components therein.
Section 2.2 explains the datasets as well as training and validation
methods. Section 3 presents and discusses the results. Section 4
concludes the paper with a summary of contributions.

2 Material and methods

2.1 Mathematical model development

Figure 1 shows the schematic of the mathematical model of burn
injury and resuscitation. It consists of: (i) VK and burn-induced
perturbations developed in our prior work, (ii) a mathematical

model of CV system relevant to burn injury and resuscitation,
(iii) a mathematical model of kidney function which can simulate
glomerular filtration rate (GFR) as well as water and sodium
reabsorption rates, and (iv) a mathematical model of hormonal
systems including RAAS and antidiuretic hormone (ADH), which
altogether modulate the regulation of water, sodium, and BP.
Conceptual explanations on these components and how they are
interconnected with each other are provided in this paper, while all
the mathematical details (namely, the governing equations) are
provided in Supplementary Material. All the variables and
abbreviations are defined in Supplementary Table S1 in
Supplementary Material. All the parameter values are
summarized in Supplementary Table S2 in Supplementary Material.

2.1.1 Volume kinetics and burn-induced
perturbations

We used a mathematical model of VK and burn-induced
perturbations developed in our prior work (Arabidarrehdor et al.,
2021a; Arabidarrehdor et al., 2021b), which includes three
compartments: the intravascular space (i.e., plasma), burned
tissues (skin), and intact tissues (including intact skin, muscle
tissues, and the rest of interstitial space). The mathematical
model of VK and perturbation encompasses 7 states in the form
of ordinary differential equations (ODEs) which fully describe the
distribution of the following elements in the body: plasma water
volume (VP), plasma albumin content (AP), water volumes in burnt
and intact tissues (VBT and VIT), albumin contents in burnt and
intact tissues (ABT and AIT), and extracellular sodium content
(Na+ECF). The initial values of all these states are determined by
W and TBSA.

VP, VBT, and VIT are primarily modulated by capillary filtration
of fluid and lymphatic drainage. Capillary filtration perfuses the
interstitium at a rate determined by membrane properties and the

FIGURE 1
Schematic of the mathematical model of burn injury and resuscitation. It consists of (i): volume kinetics (VK) and burn-induced perturbation
developed in our prior work, (ii), a mathematical model of CV system relevant to burn injury and resuscitation, (iii), a mathematical model of kidney
function which can simulate glomerular filtration rate (GFR) and the reabsorption rates for water and sodium, and (iv) a mathematical model of hormonal
systems including RAAS and antidiuretic hormone (ADH), which altogether modulate the regulation of water, sodium, and BP. The inputs to the
mathematical model are TBSA, W, and fluid dose, all inputted into VK and the mathematical model of burn-induced perturbation.
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pressure gradients between plasma and tissue, which we modeled
using the Starling equations. We represented the hydrostatic
pressure-volume relationships in the intravascular

compartment and the interstitial tissues as linear and
nonlinear mechanistic mathematical models, respectively. In
addition, we likewise used linear mathematical models to
estimate the colloid oncotic pressure from the albumin
concentration in each compartment. The lymphatic network
drains the excess fluid from the tissues and returns it back to
plasma to maintain homeostasis. We modeled the lymphatic flow
rate as a sigmoid function of the tissue hydrostatic pressure. VP is
also dependent on UO (JUO), which is predicted by a
mathematical model of kidney function (see Section 2.1.3),
and the IV fluid dose (JI). VBT and VIT are not directly
affected by fluid dose and UO, but are affected by dermal fluid
loss in the form of evaporation from the skin and exudation from
the wound, both modeled using empirical equations.

AP, ABT, and AIT are mainly determined by the capillary
filtration of albumin, estimated using the coupled diffusion-
convection equation (Chapple et al., 1993; Bresler and Groome,
1981) and the free transport of albumin in the lymphatic flow. AP is
additionally affected by the albumin introduced via IV fluid (QI,
zero in case of the lactate ringers (LR)), and ABT by the protein
denaturation in the burnt tissue as a result of heat.

Since the fluid exchange pertaining to both capillary filtration
and lymphatic flow are isotonic, Na+ECF is solely influenced by the
sodium gain through fluid infusion (FI) and sodium loss through
UO (FUO).

Extensive burns introduce perturbations in burnt tissues
(including capillary destruction, protein denaturation, negative
pressure in burnt tissue, and dermal fluid loss) as well as in
systemic circulation (including increased capillary pore size,
vasodilation, and systemic vasoconstriction). These disruptions
lead to a significant increase in capillary filtration, which can
cause hypovolemia and edema. We described these perturbations

FIGURE 2
Schematic of the mathematical model of cardiovascular system. (A)MSP is estimated from VB furnished by the mathematical model of VK using an
exponential relationship. (B) TPR is estimated from [Ang II] furnished by the mathematical model of hormonal system using a sigmoidal relationship. (C)
CO is estimated from VR and CVP using a combination of the Frank-Starling law and Guyton’s CO-VR curves. (D) MAP is calculated from CO, TPR, and
MMAP furnished by the mathematical model of burn-induced perturbations.

FIGURE 3
Schematic of the mathematical model of glomerular filtration
and renal plasma flow regulation. Adapted with permission of Elsevier
Science & Technology Journals, from Guyton and Hall, 2011a;
permission conveyed through Copyright Clearance Center, Inc.
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by an array of phenomenological models whose effects last
transiently and disappear. The severity and time courses of these
disruptions are calibrated based on individual responses, by
specifying subject-specific parameters pertaining to each
perturbation. In addition to the intensity aspect of the injury
severity (which is represented by the perturbation parameters),
injury severity is also represented by specifying the size of the
burned tissues according to the subject’s W and TBSA. This
approach captures the “extent” aspect of the injury severity. Full
details and equations on the mathematical model of VK and burn-
induced perturbations are described in our prior work and in Section
S1 in Supplementary Material.

In sum, the mathematical model of VK and burn-induced
perturbations receives as inputs (i) W, TBSA, baseline hematocrit
(HCT), and fluid dose from the dataset; and (ii) UO (JUO and
([Na+]UO) predicted by the mathematical model of kidney function
(Figure 1). Then, it furnishes (i) VP, VBT, VIT, and plasma sodium
concentration ([Na+]) to the mathematical model of hormonal
system; (ii) BV (VB) and the magnitude of vasoconstriction (MMAP)
to the mathematical model of CV system; and (iii) ([Na+] and the
capillary colloid oncotic pressure (πC) to the mathematical model of
kidney function (Figure 1).

2.1.2 Cardiovascular physiology
Mathematical modeling of the CV system has been an attractive

research topic for a long time due to its incredible complexity and
multiscale nature. Among the myriad mechanistic and data-driven
mathematical models in the literature (Tivay et al., 2020; Quarteroni
et al., 2017; Kappel and Peer, 1993; Abdolrazaghi et al., 2010; D’Orsi
et al., 2021; Kislova et al., 2006; Karavaev et al., 2016; Bozkurtid,
2019), we adopted and extended the mathematical model of CV
system proposed by Uttamsingh et al. (1985), primarily motivated
by its simplicity and its ability to predict long-term fluctuations in
the CV system.

This mathematical model is principally developed based on
Guyton’s famous CO-venous return (VR) curve and empirical
equations derived from clinical studies. The Guyton’s CO-VR
curve has no closed-form solutions and requires an iterative
numerical approach for its solution which is inefficient in long-
term simulations. In addition, the empirical equations are built upon
clinical data predating 1985. Thus, some of them may be outdated
relative to the contemporary knowledge in the literature. Further,
the empirical equations may not be universally valid in the three
species used in this work. Hence, we enhanced the robustness and
adaptability of this mathematical model according to our context of

FIGURE 4
A node-schematic of the mathematical model of renal reabsorption. Water and sodium flow into Bowman’s capsule and then into nephron tubules,
where they are reabsorbed back into the circulation through renal vein at different rates along the way, while the remaining filtrate is excreted as urinary
output (UO). Tubuloglomerular feedback (TGF) is activated by sodium concentration atmacula densa (MD). JXY and FXY : water flow and sodium flow from
node X to node Y. JXV and FXV : water flow and sodium flow from node X to the renal vein (V), i.e., back to the circulation (reabsorption). rX and pX :
reabsorption fraction of water and sodium at node X.

TABLE 1 Experimental and clinical datasets for mathematical model training and testing.

Pigs Sheep Humans

Training Testing

Subject Number 15 8 120 133

TBSA [%] 40 40 42 ± 18 38 ± 18

W [kg] 31.7 ± 4.2 40 85 ± 18 86 ± 22

Resuscitation Paradigm [P1] No IV fluids
[P2] UO: 1–1.5 mL/kg/h
[P3] Over-resuscitation

UO: 1–2 mL/kg/h UO: 30–50 mL/h

Measurements UO, MAP, CO, CVP[Na+] HCT
MAP, CO, CVP

UO

UO
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use, by (i) numerically solving the CO-VR curve using simplified
assumptions drawn from the existing literature, (ii) incorporating
recent experimental findings to update the empirical equations in
the mathematical model, and (iii) tailoring the equations to enable
the selection of diverse initial conditions and responses to
accommodate the heterogeneity in our datasets.

A decrease in BV lowers the pressure within the veins, i.e., the
mean systemic pressure (MSP), which reduces the upstream
pressure determining VR and subsequently diminishes CO and
MAP. The RAAS responds to the decline in MAP by releasing
renin and increasing plasma angiotensin II (Ang II) concentration
([Ang II]), which elicits vasoconstriction. The constricted arterioles

raise total peripheral resistance (TPR), which ultimately increases
MAP and CO until normal conditions are restored. We have
modeled this sequence of events and the complex relationships
between these CV variables using four components illustrated in
Figure 2. The component (A) receives VB as an input from the
mathematical model of VK and estimates MSP using an exponential
function in agreement with a recent study (W et al., 1974). The
component (B) receives [Ang II] as an input from the mathematical
model of hormonal system and estimates TPR using a sigmoidal
relationship. The component (C) dictates how VR changes as a
linear function of CVP, with the slope of the linear function
determined by MSP and TPR received as inputs from (A) and

FIGURE 5
Verification of kidney function regulatorymechanisms. (A) Sodium concentration at nodes of the nephrons with respect to renal arterial pressure. (B)
Nominal sodium concentration at nodes of the nephrons in comparison to simulations in Layton and Layton (Layton and Layton, 2019). (C) Variation in UO
and GFR with respect to renal arterial pressure. (D) Renin release rate with respect to renal arterial pressure.

TABLE 2 Accuracy metrics for goodness of fit, calculated on an individual basis, pertaining to the mathematical model trained using the pig dataset. The
metrics include normalized mean absolute error (NMAE; reported as median (IQR)), Pearson’s correlation coefficient (r), and Bland-Altman limits of
agreement (LoA) reported as bias ± 2 × SD.

CVP [mmHg] CO [lpm] MAP [mmHg] UO [mL/h] [Na+] [mEq/L]

NMAE [%] 14.2 (5.1) 16.4 (10) 14.43 (6.8) 15.11 (6.5) 15.61 (11)

r 0.86 0.79 0.84 0.74 0.81

LoA −0.14 ± 3.05 0.04 ± 0.90 −0.91 ± 16.53 3.08 ± 32.34 0.21 ± 3.04
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(B). In addition, the component (C) represents CO as a dose-
response function of CVP. Here, we utilize the Frank-Starling
law to find the true value of CO as the intersection point of CO
curve and VR curve (known as circulatory equilibrium). Finally, in
the component (D), MAP is calculated using CO, TPR, and MMAP

furnished by the mathematical model of burn-induced
perturbations. Full details and equations on the mathematical

model of CV system are summarized in Section S2 in
Supplementary Material.

In sum, the mathematical model of CV system receives as inputs
(i) VB from the mathematical model of VK, (ii) MMAP from the
mathematical model of burn-induced perturbations, and (iii)
[Ang II] from the mathematical model of hormonal system.
Then, it furnishes (i) CO to the mathematical model of

FIGURE 6
Validation in a total of six pig subjects. Each row represents an individual subject. (A, B): Two subjects in un-resuscitated group (P1). (C, D): Two
subjects in adequately resuscitated group (P2). (E, F): Two subjects in over-resuscitated group (P3). Solid blue line represents mathematical model
prediction. Gold circles represent data.
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hormonal system and (ii) MAP and CVP to the mathematical
model of kidney function (Figure 1).

2.1.3 Kidney function
Figure 3 shows a high-level schematic of the kidney function

relevant to GFR and renal plasma flow (RPF) regulation. Plasma
flows into the kidneys through renal arteries, which branch into
capillaries running along millions of parallel nephrons. In every
nephron, fluid passes through afferent arterioles into the glomerular
space, where approximately 20% of the fluid (called the filtrate) is
filtered into Bowman’s capsule. The remaining 80% flows through
efferent arterioles, peritubular capillaries, and eventually, renal

venules. Along this path, fluid is joined by the majority of the
filtrate as it is reabsorbed from the nephron tubules back into
circulation. Eventually, approximately just 1% of RPF is excreted
as UO under normal conditions. RPF, GFR, and UO are
meticulously regulated by a complex set of interconnected
mechanisms in the body, including components from VK, CV,
and hormonal systems. To cast this sophisticated kidney function
into a simple mathematical model, we first assumed that all
nephrons are homogeneous in both characteristics and
resistances. Then, we developed a mathematical model to predict
the collective flows in the kidneys to represent the dynamics of the
entire kidneys.

FIGURE 7
Validation in pigs: averagedmathematical model simulations. In each plot, red solid line shows the average prediction for the un-resuscitated group
(P1), green dashed line shows the average prediction for the adequately-resuscitated group (P2), and blue dash-dotted line shows the average prediction
for the over-resuscitated group (P3). The shaded areas represent standard errors. Fluid dose: scaled hourly infusion given to the animals. Δ: percentage
deviation from the baseline value. rW: total water reabsorption fraction. rNa: total sodium reabsorption fraction.

TABLE 3 Accuracy metrics for goodness of fit, calculated on an individual basis, pertaining to the mathematical model trained using the sheep dataset. The
metrics include normalized mean absolute error (NMAE; reported as median (IQR)), Pearson’s correlation coefficient (r), and Bland-Altman limits of
agreement (LoA) reported as bias±2 × SD.

HCT CVP [mmHg] CO [lpm] MAP [mmHg] UO [mL/h]

NMAE [%] 16.8 (13.4) 19.1 (8.7) 13.4 (8.6) 16.1 (8.4) 15.7 (6.1)

r 0.85 0.62 0.83 0.83 0.55

LoA 0.003 ± 0.05 −0.18 ± 2.5 0.1 ± 0.97 −1.96 ± 12.75 −3.8 ± 45

Frontiers in Physiology frontiersin.org08

ArabiDarrehDor et al. 10.3389/fphys.2024.1467351

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1467351


2.1.3.1 Glomerular filtration rate and renal plasma flow
regulation

RPF rate (JRPF) is calculated using the Poiseuille’s law, where it
is directly proportional to the pressure drop across kidney and
inversely proportional to total renal resistance. Renal arterial
pressure (PRA) and renal venous pressure are linear functions of
MAP and CVP, respectively, which are furnished by the
mathematical model of CV system (Figure 1). GFR (JGFR) is a
fast and highly pressurized capillary filtration and is calculated
from Starling forces formed by hydrostatic (PG) and colloid
oncotic (πG) pressures in the glomerulus. Higher input flow and
larger downstream resistance can increase hydrostatic pressure.
Hence, PG is assumed to be proportional to JRPF as well as to the
sum of renal efferent resistance (REff) and renal venous resistance
(RRV). πG is not uniform in the glomerulus since albumin
concentration is continuously increased by filtration of water
into the Bowman’s capsule. This phenomenon makes πG

dependent on GFR, as a larger GFR means a faster rate of
increase in πG. Despite the complexity of the kidney function
dynamics, if we assume that the equilibrium among the elements in
the Starling forces is eventually achieved somewhere along the
glomerular capillaries (Deen et al., 1972; Brenner et al., 1972), we
can estimate πG as a linear function of PG, PB, and πC which is
furnished by the mathematical model of VK.

To maintain kidney function, the kidneys have two intrinsic
mechanisms that modulate JRPF and JGFR by adjusting the renal
resistances: myogenic mechanism (MM) and tubuglomerular
feedback (TGF). In MM, the smooth muscle cells in the afferent
arterioles respond to changes in PRA by adjusting the diameter of the
arterioles, and consequently, the afferent resistance (RAff). TGF

responds to the variations in sodium concentration at macula densa
(MD) cells located in the distal tubules. Simply put, higher JGFR
delivers more sodium to MD, increasing its concentration therein
([Na+]MD). MD cells sense this elevation and send commands to
constrict afferent arterioles and lower input flow rates. Thus, the part
of RAff controlled by TGF (RTGF) is determined by a sigmoid
function of [Na+]MD. In addition, TGF has functions to regulate
MAP and JGFR in a longer-term fashion, where MD cells inhibit the
release of renin in response to an increase in [Na+]MD. In addition,
through amechanismwhich will be explained in Section 2.1.4.1, Ang
II release rate is also reduced, which dilates arterioles and reduces
MAP. The dilation of efferent arterioles in particular, reduces REff,
which in turn reduces JGFR.

In sum, the mathematical model of GFR and RPF regulation
receives as inputs (i) MAP and CVP from themathematical model of
CV system, πC from the mathematical model of VK, [Na+]MD from
the mathematical model of kidney reabsorption (to be explained in
Section 2.1.3.2), and plasma Ang II concentration from the
mathematical model of hormonal system (RAAS). Then, it
furnishes JGFR and [Na+]MD to the mathematical model of
hormonal system. Full details and equations on the mathematical
model of GFR and RPF regulation are summarized in Section S3.1 in
Supplementary Material.

2.1.3.2 Reabsorption of water and sodium
Figure 4 is a node schematic of the mathematical model of renal

reabsorption, which unravels the convoluted structure of nephrons.
Water and sodium are filtered from glomerular capillaries into
Bowman’s capsule at a rate of JGFR. Then, the filtrate flows
through different segments of nephron (nodes in Figure 4),

FIGURE 8
Validation in a total of four sheep subjects. Each row from (A) to (D) shows the predictions pertaining to a different sheep against its measured data.
Solid blue line represents the prediction. Gold circles represent data.
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i.e., proximal tubules, the loop of Henle and its two limbs, and distal
and collecting tubules, while it is reabsorbed back into the
circulation along the way. The remaining fluid empties through
collecting ducts into the ureter and the bladder, where it is excreted
as UO. The characteristics of reabsorption of water and sodium are
entirely different in these segments. Hence, it is imperative to
capture these differences in order to correctly implement TGF
and hormonal functions.

In this schematic, JXY and FXY represent water flow and sodium
flow from node X to node Y, while JXV and FXV represent water flow
and sodium flow from node X to the renal vein (V), i.e., back to the
circulation (reabsorption). At each node, rX and pX represent the

fraction of flow reabsorbed into the renal vein for water and sodium,
respectively.

At the proximal tubules (“P” in Figure 4), water and sodium are
reabsorbed together at the same rate as regulated by the
glomerulotubular balance and plasma aldosterone concentration
([ALD]). A dose-response relationship describes the relationship
between rP and [ALD] (Good, 2007; Salyer et al., 2013; Guyton,
1975), which acts to maintain the reabsorption fraction at its
baseline level of 65%–75% (Uttamsingh et al., 1985; Czerwin
et al., 2021; Moss and Thomas, 2014). The sodium reabsorption
rate in the proximal tubules is also influenced by Ang II. Given that
Ang II indirectly affects sodium reabsorption by enhancing
aldosterone production (see Section 2.1.4.1), we chose not to
model the direct effects of Ang II on the sodium reabsorption
rates at the proximal tubule in order to promote the simplicity of
the mathematical model.

The thin descending limb of Henle (“N” in Figure 4) is
impermeable to sodium. As a result, only water is reabsorbed
passively: slower flow (JPN) allows for increased reabsorption
(rN). This results in an inverse relationship between flow rate
and reabsorption fraction, which is one of the major players in
pressure diuresis. We captured this phenomenon by an inverse-
sigmoidal function between rN and JPN. The thick ascending limb of

FIGURE 9
Validation in sheep: averaged mathematical model simulations. Solid line shows average prediction. Shaded area shows standard error. Fluid dose:
scaled hourly infusion given to the animals. Δ: percentage deviation from the baseline value. rW : total water reabsorption fraction. rNa: total sodium
reabsorption fraction.

TABLE 4 Accuracy metrics for goodness of fit, calculated on an individual
basis, pertaining to the mathematical model trained using the human
dataset. The metrics include normalized mean absolute error (NMAE;
reported as median (IQR)), Pearson’s correlation coefficient (r), and Bland-
Altman limits of agreement (LoA) reported as bias ± 2 × SD.

Training (N = 120) Test (N = 113)

NMAE [%] 13.15 (5.5) 11.20 (6.0)

r 0.69 0.85

LoA 0.94 ± 43 0.34 ± 36
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Henle (“K” in Figure 4), on the other hand, is impermeable to water.
As a result, it actively reabsorbs approximately 60% of the sodium
inflow (FNK).

In the early distal tubules (“E” in Figure 4), we still have water
impermeability. However, its sodium reabsorption (pE) is passive,
having an inverse relationship with sodium flow rate (FKE). We used
an inverse-sigmoidal function of the sodium flow, similar to the thin
descending limb of Henle, to describe the relationship between pE and
FKE. Since there is nomore reabsorption between the early distal tubules
and MD, sodium concentration at this node is equal to [Na+]MD.

Finally, at the collecting ducts (“C” in Figure 4), the reabsorption
of water and sodium is regulated by hormones, i.e., ADH for water
and aldosterone for sodium. We have used dose-response curves to
describe the relationship between rC and plasma ADH ([ADH]) as
well as pC and [ALD]. Any unabsorbed fluid at this stage proceeds
to the bladder for excretion as UO.

In sum, the mathematical model of renal reabsorption receives
as inputs (i) JGFR from the mathematical model of glomerular
filtration, (ii) [Na+] from the mathematical model of VK (to
estimate FGFR), and (iii) plasma concentrations of ADH and
aldosterone from the mathematical model of hormonal system.
Then, it furnishes (i) the fluctuations in [Na+]MD to the
mathematical models of glomerular filtration (thereby modulating
both afferent and efferent renal resistances through TGF) and
hormonal system (RAAS in particular) and (ii) JUO and urinary
sodium concentration [Na+]UO to the mathematical model of VK
(Figure 1). Our modeling of the reabsorption function incorporates
meticulous constraints and parameter bounds to ensure the
credibility of predictions while facilitating individualization. Full
details and equations on the mathematical model of renal
reabsorption are summarized in Section S3.2 in
Supplementary Material.

2.1.4 Hormonal system
2.1.4.1 Renin-angiotensin-aldosterone system

RAAS is a multi-factor mechanism for long-term regulation of
MAP, BV, and electrolytes. Renin is part of TGF. When MD cells
send signals to change the resistance of renal afferent arterioles in
response to a change in MD sodium load, they also send signals to
change the renin release rate. Specifically, a drop in BV and MAP as
a result of severe burn will reduce RPF (JRPF), GFR (JGFR), and
subsequently, [Na+]MD. There is an inverse relationship between
renin release rate and [Na+]MD [149]. Hence, a drop in GFR
eventually increases renin release rate. In the mathematical model
of RAAS system, the release of renin is linearly proportional to the
fractional variations in [Na+]MD, with its clearance facilitated
through transit in both the liver and the kidneys.

Renin converts its substrate, angiotensinogen, to angiotensin I, a
precursor for the vasoconstrictor hormone angiotensin II (Ang II)
(Guyton, 1975). Ang II constricts arterioles and increases TPR,
which ultimately increases MAP and GFR. In the mathematical
model, the release of Ang II is linearly associated with the fractional
changes in plasma renin concentration (with a delay), and its
clearance occurs through hepatic circulation.

Finally, Ang II increases aldosterone release rate, which leads to
sodium and water retention by the kidneys, thereby increasing BV
and partially compensating for blood loss (Guyton, 1975).
Aldosterone secretion is stimulated by two distinct sources: (i) it
has a negative linear relationship with [Na+] to reabsorb more
sodium in the collecting ducts when [Na+] decreases, and (ii) it has
a positive relationship with Ang II. We modeled these relationships
using a dose-response curve based on experiments conducted by
Uttamsingh et al. (1985); Blair-West et al. (1962), where total
aldosterone release is calculated as an exponential function of the
weighted sum of the two sources. Like renin, it is eliminated by both

FIGURE 10
Validation in humans: eight exemplary burn patients with diverse weights and burn injury severities. Each plot shows measured urinary output (UO)
responses associated with a burn patient vs. the UO responses predicted by the mathematical model. Solid blue line denotes prediction. Gold circles
denote data. The patient demographics are as follows: (A) TBSA 27% with 80 kg weight. (B) TBSA 36% with 66 kg weight. (C) TBSA 46%with 90 kg weight.
(D) TBSA 60%with 71 kg weight. (E) TBSA 24%with 81 kg weight. (F) TBSA 35%with 94 kg weight. (G) TBSA 50%with 89 kg weight. (H) TBSA 60%with
102 kg weight.
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hepatic and renal blood flows. The secretion rate of aldosterone is
also influenced by serum potassium levels, which we assume to be
constant in this study for the sake of simplicity.

In sum, the mathematical model of RAAS system receives as
inputs (i) [Na+]MD from the mathematical model of renal
reabsorption and (ii) [Na+] from the mathematical model of VK.
Then, it furnishes (i) Ang II to themathematical model of CV system
and (ii) [Ang II] and [ALD] to the mathematical model of kidney
function. Full details and equations on the mathematical model of
RAAS are summarized in Section S4.1 in Supplementary Material.

2.1.4.2 Antidiuretic hormone
The ADH content is modulated by signals from baroreceptor

(inversely related to the changes in VP) and osmoreceptor (directly
related to the changes in [Na+]). ADH affects the rate at which
pure water is reabsorbed at the collecting ducts (Guyton and Hall,
2011b; Voets and Maas, 2018) (see Eq. (S79) in Section S3.2 in
Supplementary Material). Specifically, when VP decreases, more
ADH is released to increase the pure water reabsorption and retain
more water in the body to compensate for the loss in plasma
volume. An increase in plasma sodium concentration has the same
effect, although with a larger sensitivity (Guyton and Hall, 2011b).
We expressed the dynamics of the ADH content by a

phenomenological model, where its secretion rate is an
exponential function of the weighted sum of fractional changes
in VP and [Na+], and its elimination is facilitated by its passage
through the liver and the kidneys (Guyton and Hall, 2011b; Voets
and Maas, 2018; Heller and Zaidi, 1957). In sum, the mathematical
model of ADH receives as inputs VP and [Na+] from the
mathematical model of VK. Then, it furnishes [ADH] to the
mathematical model of renal reabsorption. Full details and
equations on the mathematical model of ADH are summarized
in Section S4.2 in Supplementary Material.

2.2 Mathematical model training and testing

2.2.1 Experimental and clinical datasets
The data we used to train and validate our mathematical model

in this work comes from 3 species: pigs, sheep, and humans. Pigs and
sheep are widely used as a replacement for human subjects in pre-
clinical and exploratory experiments by virtue of their physiological
and anatomical similarity to humans (Walters and Prather, 2013;
Banstola and Reynolds, 2022). Utilizing both experimental and
clinical data allows for robust validation of the mathematical
model while granting access to physiological variables typically

FIGURE 11
Validation in humans: averaged mathematical model simulations (120 patients in the training dataset). Solid line shows average prediction. Shaded
area shows standard error. Fluid dose: scaled hourly infusion given to the patients. Δ: percentage deviation from the baseline value. rW : total water
reabsorption fraction. rNa: total sodium reabsorption fraction.
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unmeasured in patients due to ethical constraints. Table 1
summarizes the datasets. Details follow.

2.2.1.1 Pigs
We used a subset of data from a study where 21 female Yorkshire

swine were subject to 40% TBSA and randomly assigned to each of
the following resuscitation paradigms: (i) Paradigm 1 (P1): no IV
fluids to under-resuscitate the animals, (ii) Paradigm 2 (P2): IV
Lactated Ringers (LR) guided by UO according to the Burn
Navigator™ to maintain a target UO of 1–1.5 mL/kg, or (iii)
Paradigm 3 (P3): a high rate of ≥500 mL/h IV LR throughout
the protocol to deliberately over-resuscitate the animals. Details of
the protocol can be found in our previously published work
(ArabiDarrehDor et al., 2022; Kao et al., 2024). Animals were
monitored for 24 h post-injury, and had hourly measurements of
IV fluid rate and UO, and measurements of HCT, MAP, CO, CVP,
and [Na+] at hours 0, 1, 2, 3, 5, 9, 12, 18 and 24. We excluded HCT
from our anlysis because the animals were not splenectomized, since
pigs have a contractile spleen and is able to “autotransfuse”. We used
15 animals (5 from each paradigm) to train and internally validate
the mathematical model.

This dataset provided us with two unique advantages which we
could not have achieved with the other two datasets: (i) the [Na+]
measurements presented an opportunity to test the mathematical
model of sodium dynamics; and (ii) the diversity in the
resuscitation protocols allowed us to test the ability of the
mathematical model in predicting the outcomes of highly
diverse treatment scenarios, ranging from extreme under-
resuscitation to over-resuscitation.

2.2.1.2 Sheep
Experimental dataset associated with the sheep came from a

prior work (Elgjo et al., 2000), where adult sheep (N = 8) with the
median weight of 40 kg were induced with full-thickness burn injury
of 40% TBSA. Burn resuscitation by LR was initiated 1 h post-burn
and continued for 48 h. Resuscitation was performed to maintain a
target UO of 1–2mL/kg/h, which is considered normal in sheep. Key
measurements in the dataset used in this work include hourly
records of fluid infusion and UO, and more sparse measurements
of HCT, CVP, MAP, and CO.

2.2.1.3 Humans
To develop and validate our human mathematical model, we

integrated data from two clinical datasets described in a previous
study (Arabidarrehdor et al., 2021a). The first dataset involved
207 burn patients treated with the Burn Navigator™ in a burn
ICU, aiming for a target UO of 30–50 mL/h (Salinas et al., 2012;
Salinas et al., 2011). The second dataset included 53 burn patients,
with 29 under Burn Navigator™ treatment and 24 following
conventional protocols. Hourly data on UO, LR dose,
demographics (age, weight, and gender for the first dataset),
TBSA, and the time of arrival were collected. The patients in the
collective dataset had an average age of 47 ± 18 years, weight of 87 ±
22 kg, and TBSA of 40% ± 18%. The overall mortality rate was 30%.
In the first source, 77% of the patients were male, and 11% had
inhalation injuries. It is noteworthy that care providers were at
liberty of overriding Burn Navigator™ recommendations
at any time.

After excluding 27 subjects with <10 UO recordings, we
randomly divided the dataset into a training group (N = 120) for
internal validation and a test group (N = 113) to externally validate
the optimized mathematical model with reduced bias. Demographic
and injury severity comparisons between training and test groups
showed comparable values (age: 45 ± 19 years vs. 49 ± 18 years;
weight: 85 ± 18 kg vs. 86 ± 22 kg; TBSA: 41.5% ± 17.6% vs. 38 ± 18 in
training and test datasets, respectively).

2.2.2 Verification method
While in our dataset we have several measurements relevant to

validation of the mathematical models of VK and CV system,
quantitative validation of the kidney function is limited to UO
and [Na+]. To enhance the reliability of the mathematical model of
renal function, we simulated the mathematical models of renal
function and RAAS with typical human parameter values from
the literature across a range of renal arterial pressures and
investigated the predictions. Then, we investigated if the internal
regulatory mechanisms in the kidneys, including myogenic
mechanism, TGF, and glomerulotubular balance, are plausibly
implemented.

2.2.3 Validation method
The mathematical model has 98 parameters in total, among

which 12 can be found using constraints such as assumptions of
steady-state before injury, or directly from the datasets. To
determine the remaining 86 parameters, we first categorized
them into subject-invariant and subject-specific parameters.
Subject-specific (SS) parameters included (i) those whose values
are expected to exhibit large inter-individual variability; (ii) those
whose values have rarely been reported in the existing literature, or
(iii) those which are associated with phenomenological components
in the mathematical model. This resulted in a set of 46 SS
parameters. In the case of the clinical dataset (Section 2.2.1.3)
where we have limited data, we further reduced the number of
SS parameters as explained further below. The remaining
40 parameters are assumed to be subject-invariant and were
taken from literature (Supplementary Table S2).

For each subject within our three species, we determined the SS
parameter values by concurrently minimizing the difference
between all the measured physiological variables (listed in
Table 1) and their counterparts predicted by the mathematical
model. This was achieved by minimizing the following cost
function (Arabidarrehdor et al., 2021a; Tivay et al., 2019):

θi � argmin
θ

�Ji θ( ) � argmin
θ

�������������������������∑Mi

j�1
∑Dij

k�1

yd
ij tk( ) − yij tk, θ( )

∣∣∣∣∣ ∣∣∣∣∣
Yij

⎛⎝ ⎞⎠2
√√

(1)
Where θi is the vector of subject-specific parameters estimated

for subject i, Mi is the number of total physiological variables
measured in subject i during the experiment, Dij is the number
of measurements associated with the physiological variable j, yd

ij(tk)
is the value of the physiological variable j associated with the subject
imeasured at time tk, yij(tk, θ) is the value of the same physiological
variable at time tk predicted by the mathematical model equipped
with θ, and Yij is the normalization factor for the physiological
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variable j. We used the “globalsearch” command in MATLAB in
conjunction with the “fmincon” command to robustly estimate the
parameter values. In addition, we enforced tight parameter bounds
as constraints in Equation 1 to effectively guide the solution into a
mechanistically plausible parameter space.

To estimate 46 SS parameters for the pig subjects, we fit the
mathematical model predictions to UO, MAP, CO, CVP, and [Na+]
by minimizing the objective function in Equation 1 (Mi = 5). On the
average, each pig subject had 94 available data points to estimate the
46 unknown parameters. Subject W, TBSA, baseline measurements
of HCT, and hourly infusion rates were utilized from the dataset as
inputs to conduct simulations.

For sheep subjects, we used UO, HCT, CVP, MAP, and CO
(Mi = 5). It is worth noting that since sheep subjects had reliable
baseline measurements, the number of subject-specific parameters
was reduced to 44: we did not have to estimate the baseline CO and
MAP. On the average, every sheep subject had 112 available
datapoints to identify the 44 unknown parameters. Subject W,
TBSA, baseline measurements of HCT, CO, and MAP, and
hourly infusion rates were utilized from the dataset as inputs to
conduct simulations.

For humans, the training set of 120 subjects was used to estimate
unknown parameters by fitting the mathematical model to UO
(Mi = 1). Since the ratio of the number of unknown parameters to
data points was large (46–23 ± 2), we performed sensitivity analysis
using a regularized population-average mathematical model [similar
to our previous work (Arabidarrehdor et al., 2021a; Tivay et al.,
2019)] to determine non-sensitive parameters and fixed them to
population-average values, thereby preventing overfitting. Then, we
externally validated the mathematical model with smaller number of
SS parameters based on the test set subjects. Patient W, TBSA, and
hourly infusion rates were utilized from the dataset as inputs to
conduct simulations.

3 Results and discussion

3.1 Verification

Figure 5 shows the results for the verification analysis of the
kidney function regulatory mechanisms. Figure 5A shows how the
sodium concentrations at different nodes in the nephrons vary when
the renal arterial pressure deviates from a baseline value of
85 mmHg. The mathematical model predicted that sodium
concentration at node P remains the same as plasma sodium
concentration at node B across all renal arterial pressure levels,
which is plausible because sodium and water are reabsorbed together
at node B (see Section 2.1.3.2). At node N, the mathematical model
predicted that sodium concentration decreases as the renal pressure
increases, which is plausible because only water is reabsorbed at a
rate inversely proportional to GFR at node N. At node K, the
mathematical model predicted that sodium concentration
decreases at all renal pressure levels with the same proportion,
which is plausible because sodium reabsorption fraction is fixed
regardless of the flow rate while water is not permeable at node K. At
node E, whereMD is located, the mathematical model predicted that
faster flow is associated with less sodium reabsorption, and
accordingly, higher sodium concentration, which is plausible

because sodium reabsorption has an inversely proportional
relationship with the flow rate at node E.

Figure 5B compares sodium concentration at different nodes at a
normal renal arterial pressure (i.e., at PRA � 85 mmHg) predicted by
the mathematical model to a simulation study by Layton and Layton
(Layton and Layton, 2019). Our predictions were comparable to
their predictions. In addition, our predictions were also comparable
to Czerwin et al. (2021).

Figure 5C shows how UO drastically changes in response to
renal arterial pressure variation, while GFR is relatively maintained
by TGF andMM. Figure 5C also shows that the mathematical model
can reproduce the phenomenon of pressure diuresis, e.g., for only a
50% increase in GFR, UO has a disproportionate increase of
approximately 250%.

Figure 5D shows how renin release rate changes in response to
renal arterial pressure variation. This nonlinear, inverse relationship
is very similar to the behavior described by Kurtz (2012), and shows
that renin secretion is inhibited in response to an increase in renal
arterial pressure, which in turn lowers angiotensin production, and
reverses the increase in renal arterial pressure and GFR.

3.2 Validation in pigs

Table 2 summarizes the accuracy metrics for CVP, CO, MAP,
UO, and [Na+] predictions. Even though we simultaneously
optimized the fit pertaining to five physiological variables (which
often exposes the multi-objective optimization problem to trade-
offs), all the predictions exhibited good tracking of their
corresponding measured counterparts in terms of NMAE,
correlation coefficient, and Bland-Altman limits of agreement
(LoA). In addition, >91% of predicted and measured UO resided
in the same operational range for pigs (<1 mL/h/kg, 1–1.5 mL/h/kg,
and >1.5 mL/h/kg).

Figure 6 provides visual examples of pig dataset and
mathematical model predictions. Even within the same paradigm,
there was substantial variability in how subjects responded to the
injury and subsequent resuscitation. The mathematical model
successfully replicated such variability. Figures 6A, B are two
examples of the animals resuscitated with P1. While both
animals showed signs of hypovolemia throughout the experiment
as reflected by declines in CVP, CO, MAP, and UO, the intensity of
the response to burn injury and the level of self-recovery offered by
the body’s safety factors against hypovolemia and edema were
different. For instance, the animal in Figure 6A experienced
sharper ebbs in CVP, CO, MAP, and UO. The sodium plasma
concentration trends also differed: continued decline in Figure 6A
vs. recovery in Figure 6B. Figures 6C, D are two examples of the
animals resuscitated with P2. While the animal in Figure 6C
recovered to its baseline by the end of the experiment, the
animal in Figure 6D showed signs of mild over-resuscitation.
Figures 6E, F are two examples of the animals resuscitated with
P3. Despite over-resuscitation, CVP in Figure 6E and CO in
Figure 6F suggest modestly hypovolemic to normovolemic
conditions toward the end of 24 h. The mathematical model
could not replicate these behaviors, primarily because the animals
were aggressively over-resuscitated with high doses of fluid, as
reflected in their UO measurements. The mathematical model is
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not equipped with any mechanism to explain why CO and CVP
were below normal levels in these animals. One possible explanation
for the drop in CO in the subjects could be lowered heart rate, which
the mathematical model is not equipped to predict. Another possible
explanation could be measurement inaccuracy, which is plausible
since CVP was measured with a central line, and CO via
thermodilution using a Swan-Ganz catheter. However, all in all,
the mathematical model successfully replicated most of the unique
animal-specific responses while maintaining the expected trends
associated with individual paradigms, as is evident from visual
inspection of the plots as well as Table 2.

The pig dataset provided us with an unprecedented opportunity
to train the mathematical model for large mammals resuscitated
with vastly different protocols and test its capability to reflect the
differences in burn resuscitation paradigms. To leverage this
opportunity, we averaged the mathematical model simulations
pertaining to each paradigm, and investigated the ability of the
mathematical model to capture the between-group differences. In
addition, to investigate the alignment of mathematical model
simulations with established knowledge of physiology and burn
pathophysiology, we likewise averaged the mathematical model
simulations associated with the internal variables on kidney
function and RAAS and examined their behaviors.

Figure 7 shows the averaged mathematical model simulations to
burn injury and resuscitation in pigs. Despite the large inter-subject
variability reflected by the width of standard errors (shown as
shaded areas) in some of the plots, the mathematical model was
able to distinguish the responses pertaining to the three paradigms
very well. Further, it could suggest possible physiological
mechanisms responsible for their differences. The HCT increased
immediately post-burn in all three paradigms, and while it stayed
above baseline in P1, indicating hypovolemia, it decreased in both
P2 and P3. In P2, the wide inter-subject variability in HCT (which
encompassed both above and below the baseline level) suggests that
while the average animal’s HCT was restored by the end of 24 h,
some animals were still hypovolemic (HCT above baseline) or even
ended up being over-resuscitated (HCT below baseline). The wide
range of resuscitation outcome was also reflected by CO and CVP in
P2. In P3, although the envelope was still wide, all the animals were
considered over-resuscitated as the entire HCT envelop was below
the baseline level, but with varying degrees of severity.

The mathematical model simulations of CO, CVP, ΔJGFR, and
UO for the three paradigms mirrored the behaviors expected from
the corresponding HCT trends. Specifically, their initial decline due
to hypovolemia (as HCT went up) continued to assume subnormal
values in P1, a range of recovery from hypo-to hypervolemia in P2,
and varying degrees of over-resuscitation in P3. The behavior of
MAP, however, was different. While MAP remained below normal
in P1, it could not distinguish P2 and P3 on its own, which agrees
with studies suggesting thatMAP is not a good stand-alone endpoint
for fluid resuscitation (Oda et al., 2006).

Figure 7 also offers a comprehensive understanding of typical
physiological responses to burn injury and resuscitation by virtue of
the ability of our mathematical model to predict a wealth of internal
physiological variables not typically available for routine
measurement. When trauma and resuscitation alter JGFR, both
afferent resistance (RAff) and efferent resistance (REff) vary to
regulate it. Despite the initial hypovolemia, JGFR initially increases

due to a transient increase in MAP (vasoconstriction). Then,
myogenic mechanism and TGF are triggered to counteract the
increase in JGF by increasing the afferent resistance and
decreasing the efferent resistance. As hypovolemia takes over in
P1 indicated by a decrease in MAP and JGFR, renin, angiotensin, and
aldosterone increase to (i) constrict the vessels and slow the decline
in MAP, (ii) increase the efferent resistance and preserve JGFR, and
(iii) increase the reabsorption fractions for sodium and water to
retain more water and salt and correct the hypovolemic state of the
body. ADH also increases in response to hypovolemia and
contributes to the increase in water reabsorption fraction. In
P2 and P3, these hormones and enzymes similarly increase
initially to correct the hypovolemia induced by burn, but then
decrease as the animals recover (P2) or get over-resuscitated
(P3). [Na+] shows a wide range of behaviors in P1 and P2, but
increases in P3 despite the decrease in aldosterone and total sodium
reabsorption fractions. This is because the pure water reabsorption
regulated by ADH decreases, which lowers total sodium
concentration in plasma. This observation is consistent with
Guyton’s finding that pure water reabsorption is a more effective
determinant of [Na+] than aldosterone (Guyton, 1975), despite the
fact that aldosterone is the direct actuator of sodium
reabsorption fraction.

Supplementary Table S2 in Supplementary Material provides
the mathematical model parameters for pigs. The estimated SS
parameters were comparable to the values in the literature (when
available), and therefore physiologically plausible.

3.3 Validation in sheep

Table 3 summarizes the goodness of fit metrics for HCT, CVP,
CO,MAP, and UO predictions. The mathematical model performed
consistently well, with small NMAE and strong correlations for all
the variables. UO has the lowest correlation with the experimental
data. Admittedly, 0.55 is only a moderate correlation. Yet, 76% of
predicted and measured UO resided in the same operational range
for sheep (<0.5 mL/h/kg, 0.5–1.0 mL/h/kg, and >1.0 mL/h/kg) on
the average. This is an encouraging performance given that current
burn resuscitation protocols adjust resuscitation dose based on UO
range rather than its absolute value. Further, the mathematical
model predicted all the variables while being characterized with
physiologically acceptable parameter values (Supplementary Table
S2 in Supplementary Material). Figure 8 visually depicts how the
mathematical model can predict HCT, CVP, CO, MAP, and UO
with reasonable accuracy and capture the inter-subject variability
among animals, even those subject to similar resuscitation protocols
and injury severity.

Figure 9 shows the averaged mathematical model simulations to
burn injury and resuscitation associated with CV, RAAS, and kidney
function variables. HCT increases immediately post-burn due to
hypovolemia, which is also reflected by a drop in CVP and CO. All
three variables recover to their respective baseline values, and even
show signs of over-resuscitation, which is consistent with the
experimental data (see Figure 8). In contrast, MAP increases
immediately post-burn despite the decrease in CO, which may be
due to the vasoactive effects of inflammatory agents. However, MAP
eventually decreases back to its baseline level on the average. The
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transient increase in MAP causes a transient increase in GFR and
UO. But, they almost immediately decrease down to sub-normal
values due to hypovolemia. Finally, they increase to supra-normal
values as the animals undergo mild over-resuscitation. GFR shows a
sustained increase compared to the other variables, because it is also
affected by plasma albumin dilution (Zdolsek et al., 2010). As a
result, the efferent resistance decreases while the afferent resistance
increases, which collectively restore GFR to its normal level. As
expected, all three elements of RAAS increase in response to the
initial decrease in GFR to aggressively retain water and sodium. But,
they eventually subside to remove excess water from the body and to
lower BP, which is reflected in the decrease in total sodium
reabsorption fraction. The decrease in total water reabsorption
fraction is a result of the decrease in both RAAS activity and
ADH level as the animals become slightly over-resuscitated. As a
result, UO increases and remains above its normal range.

3.4 Validation in humans

Based on the sensitivity analysis described in Section 2.3.3, we
determined 10 SS parameters (see Supplementary Table S2,
Supplementary Material). Then, we validated the mathematical
model using the training and test datasets.

Table 4 summarizes the goodness of fit metrics for UO
predictions, which show that the mathematical model predicted
UO in real burn patients very well in both training and test datasets.
For example, NMAE in the test dataset is almost one-third of the
prediction errors pertaining to a recent work based on a black box
model to predict UO (NMAE = 30 (Meng et al., 2015)%) (Luo et al.,
2015). This is a very encouraging improvement, especially
considering the fact that our mechanistic mathematical model
could predict many other internal physiological variables
consistently with the literature, and with plausible parameter
values (see Supplementary Table S2, Supplementary Material).
Figure 10 shows that the mathematical model, even after
restricting SS parameters to 10, could reproduce the inter-
individual variability among patients with very similar
demographics and injury severities. Each column in Figure 10
shows two patients whose weight and TBSA are almost identical.
Despite the similarities, the response to burn injury and
resuscitation were notably different. Yet, the mathematical model
could replicate the physiological differences.

Figure 11 shows the averaged mathematical model simulations
to burn injury and resuscitation pertaining to the training dataset.
On the average, the patients in the training dataset remained
hypovolemic at the end of the 24 h, which is reflected by supra-
baseline HCT values and sub-baseline value CVP and CO values.
MAP was predicted to be higher than baseline for the entire 24 h
due to vasoconstriction, which again demonstrates that it is not a
good indicator of fluid resuscitation on its own, in accordance with
the literature (Oda et al., 2006). Despite the decrease in CO, GFR
remained supra-normal due to the dilution of plasma albumin as
confirmed by experiments (Zdolsek et al., 2010). All three
components of the RAAS were still supra-normal at the end of
24 h. If we continue the simulation beyond this point, we will
observe a sustained decline in RAAS elements until a normal MAP
is restored. The total reabsorption fractions for water and sodium

increased and remained at supra-baseline levels to retain more
water and replace the lost PV. However, the plasma sodium
concentration was slightly sub-normal due to the increase in
water reabsorption.

4 Conclusion

Previously, we developed and extensively validated
mathematical models of burn injury and resuscitation using
experimental data obtained from sheep and human burn
patients. Here, we improved and extended the original
mathematical model, particularly for kidney function and
electrolyte dynamics by adding a detailed, mechanistic
mathematical model of the kidney’s intrinsic regulatory
mechanisms as well as reabsorption mechanisms. Additionally,
motivated by the recent interests in hemodynamic monitoring of
burn patients, we integrated CV system into the mathematical
model. We also added RAAS which is directly relevant to both
kidney function and CV system.

Using the experimental data collected from 15 pigs resuscitated
with 3 distinct protocols, 9 sheep, and 233 humans, all with extensive
burns, we validated the new components of the mathematical model
and showed that it could not only predict HCT, CVP, CO, MAP,
UO, and [Na+] with an adequate accuracy, but also provide insights
into the burn resuscitation effectiveness in restoring VK, CV, and
kidney function variables.

To the best of our knowledge, this is the first study to show the
potential to conduct hypothesis testing relevant to burn injury and
resuscitation using a mathematical model, which is extensively
validated for VK, CV, kidney function, and RAAS mechanisms
in a large and diverse set of burn patients with significant inter-
subject variability.

The validation of our mathematical model has several
limitations. First, validation of our human mathematical model
was limited to urinary output measurements. To address this
shortfall, we extensively investigated the plausibility of the
predicted variables against available literature. However, literature
cannot entirely substitute more comprehensive datasets. Second,
since all burn patients and experimental subjects in our dataset were
resuscitated with LR, the mathematical model may lack validated
predictions for other resuscitation fluids, such as colloids or
alternative crystalloids, limiting its applicability in diverse
clinical scenarios.

In the future, we may use the mathematical model to generate
cohorts of virtual patients suited to in silico testing of new burn
resuscitation protocols and decision support systems. In pre-clinical
settings based on large animals, we may use the mathematical
models trained and tested using pigs and sheep. These large
mammals are regularly used for pre-clinical in vivo testing due to
several advantages over rodents. However, all these experiments are
resource intensive, time-consuming and impose financial and
ethical costs (Burmeister et al., 2022). A credible and transparent
mathematical model could essentially complement large animal
experiments in the pre-clinical development and evaluation of
new resuscitation algorithms by way of its ability to furnish
plausible and realistic predictions of physiological variables in
response to burn injury and resuscitation.
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In addition to the intended use of the mathematical model as a
reliable in silico evaluation platform, the mathematical model may
offer additional benefits, including: (i) serving as a training tool for
healthcare providers, (ii) a scientific tool for garnering deep insight
into the pathophysiology of burn shock and resuscitation which
cannot be gathered from animal experiments and clinical studies,
and (iii) a mathematical tool to enable the simulation of CV system,
kidney function, and the RAAS targeted to purposes and contexts
beyond burn injury and resuscitation.
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