Skip to main content

ORIGINAL RESEARCH article

Front. Physiol.
Sec. Invertebrate Physiology
Volume 15 - 2024 | doi: 10.3389/fphys.2024.1464989

Identification and expression profiling of neuropeptides and neuropeptide receptor genes in a natural enemy, Coccinella septempunctata

Provisionally accepted
Shunda Han Shunda Han 1,2Junjie Chen Junjie Chen 2Zhaohan Liu Zhaohan Liu 2MaoSen Zhang MaoSen Zhang 2Penghui guo Penghui guo 2XiaoXiao Liu XiaoXiao Liu 2Longrui Wang Longrui Wang 2zhongjian shen zhongjian shen 2Lisheng Zhang Lisheng Zhang 2*
  • 1 Tianjin Agricultural University, Tianjin, Tianjin Municipality, China
  • 2 Chinese Academy of Agricultural Sciences (CAAS), Beijing, China

The final, formatted version of the article will be published soon.

    Neuropeptides and their receptors constitute diverse and abundant signal molecules in insects, primarily synthesized and released primarily from neurosecretory cells within the central nervous system (CNS). Neuropeptides act as neurohormones and neuromodulators, regulating insect behavior, lifecycle, and physiology by binding to receptors on cell surface. As a typical natural predator of agricultural pests, the lady beetle, Coccinella septempunctata, has been commercially mass-cultured and widely employed in pest management. Insect diapause is a physiological and ecological adaptative strategy acquired in adverse environments. In biological control programs, knowledge about diapause regulation in natural enemy insects provides important insight for improving long-term storage, transportation, and field adoption of these biological control agents.However, little is known about the function of neuropeptides and their receptors in controlling reproductive diapause of C. septempunctata. It is unclear which neuropeptides affect diapause of C. septempunctata. In this study, RNA-seq technology and bioinformatics were utilized to investigate genes encoding neuropeptides and their receptors in female adults of C. septempunctata.Quantitative real-time PCR (qRT-PCR) analysis was employed to examine gene expression across different development/diapause stages. A total of 16 neuropeptide precursor genes and 9 neuropeptide receptor genes were identified, implicated in regulating various behaviors such as feeding, reproduction, and diapause. Prediction of partial mature neuropeptides from precursor sequences was also performed using available information about these peptides from other species, conserved domains and motifs. During diapause induction, the mRNA abundance of AKH was notably higher on the 10th day compared to non-diapause females, but decreased by the 20th day. In contrast, GPHA showed lower expression levels on the 5th day of diapause induction compared to non-diapause females, but increased significantly by the 15th and 20th days. NPF was higher expressed in head and midgut while DH showed higher expression in the fat body and midgut. This study represents the first sequencing, identification, and expression analysis of neuropeptides and neuropeptide receptor genes in C. septempunctata. Our results could provide a foundational framework for further investigations into the presence, functions, and potential targets of neuropeptides and their receptors, particularly in devising novel strategies for diapause regulation in C. septempunctata.

    Keywords: Neuropeptides, Transcriptome, phylogenetic tree, expression analysis, Coccinella septempunctata

    Received: 30 Jul 2024; Accepted: 09 Sep 2024.

    Copyright: © 2024 Han, Chen, Liu, Zhang, guo, Liu, Wang, shen and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Lisheng Zhang, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.