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Objective: The aim of the study was to explore the influence of themeasurement
plane on regional lung function assessed via electrical impedance
tomography (EIT).

Methods: The forced vital capacity (FVC) maneuver was prospectively performed
in 30 healthy male volunteers. Simultaneously, EIT measurements were
conducted at the 3rd, 4th, and 5th intercostal spaces (ICS). The EIT-based
spirometry parameters are calculated in a similar manner to their original
definitions. The spatial and temporal distributions of the corresponding
functional imageswere assessed and compared among themeasurement planes.

Results: All subjects but one were able to perform the FVC maneuver according
to the guidelines. Significant differences were found in 67% (6 out of 9) of the EIT-
based parameters assessing the spatial and temporal distribution. The fEIT images
were most homogeneous at ICS 4 compared to the other two measurement
planes, except for the time required for 75% of FVC. The fEIT image FVCEIT

distributed toward dorsal regions when themeasurement planesmoved from ICS
3 to ICS 5, whereas the identified lung areas became smaller.

Conclusion: The spatial and temporal distribution of the regional lung function
measured via EIT was influenced by the measurement planes. We recommend
adhering to the same measurement plane for before–after comparison. ICS
4 was recommended for the sitting subjects performing lung function testing.
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Introduction

Patients with various diseases require pulmonary function testing (PFT). For common
obstructive lung diseases such as chronic obstructive pulmonary disease (COPD) and
asthma, the forced vital capacity (FVC) maneuver is often used for diagnosis and
monitoring (Halpin et al., 2021). Spatial non-uniformity is observed in bronchial
abnormalities, and regional information could help characterize disease progression.
Unfortunately, regional lung function cannot be assessed via spirometry (Gallardo
Estrella et al., 2017). Electrical impedance tomography (EIT) is a novel functional
radiation-free imaging technique (Frerichs et al., 2017). It measures the regional
ventilation distribution over time by calculating the impedance changes in the
corresponding areas. Previous studies showed that EIT can be used to measure the
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regional lung function during the FVC maneuver in patients with
obstructive lung disease (Vogt et al., 2016; Vogt et al., 2018; Vogt
et al., 2019).

During EIT measurement, 16 or 32 electrodes are attached
around the thorax, which forms a so-called measurement (or
electrode) plane. Insensible alternating currents are injected into
the thorax, and the corresponding voltages are measured. Because
the current path does not follow a straight line as an X-ray, air
content changes in the measurement plane contribute most of the
impedance changes measured by EIT, but off-plane effects also
contribute to the EIT images. The location of the measurement plane
impacts the volume–impedance ratio and may lead to
misinterpretation of the results (Krueger-Ziolek et al., 2015;
Karsten et al., 2016; Zhao et al., 2022). Until today, no one has
investigated whether a similar regional lung function would be
obtained at various measurement planes during EIT measurements.

This study aims to explore the influence of the measurement
plane on regional lung function assessed via EIT.

Methods

The prospective observational study was approved by the
Institutional Research and Ethics Committee of the Guangzhou
Medical University (2022-161). Informed consent was obtained
from all subjects prior to conduction of the study. A total of
30 lung healthy volunteers were prospectively examined via EIT
(male: female, 30:0; age, 25.9 ± 3.5 years; height, 177.6 ± 5.0 cm; and
weight, 75.9 ± 10.7 kg).

The subjects were spontaneously breathing in the sitting
position. A belt with 16 equidistantly fixed electrodes was placed
around the chest in one transverse plane (e.g., the level of the third
intercostal spaces (ICS) at the parasternal line). The FVC maneuver
was conducted at least 3 times according to the ATS 2019 standard
(Graham et al., 2019). The variation of the forced expiratory volume
at 1 s (FEV1) and FVC were within 0.15 L between the highest two
efforts (confirmed using a spirometer, HI-101; CHEST M.I., INC.,
Tokyo, Japan). After a brief break (~5 min), the electrode belt
position altered from the third ICS to the fourth ICS and then to
the fifth ICS (Figure 1). The FVC maneuver was repeated according
to the ATS guidelines. To avoid the influence of the breast on the
exact belt position, only male subjects were included in the study.
Raw EIT data were acquired using VenTom-100 (MidasMED

Biomedical technology, Suzhou, China) at a scan rate of
20 images/s using excitation currents of 1 mArms applied
through opposite electrodes. Image reconstruction was
accomplished by the GREIT algorithm (Adler et al., 2009). The
baseline for image reconstruction was obtained individually for each
subject during quiet tidal breathing before the FVC maneuver.

The EIT waveforms in each of image pixels were used for the
analysis of regional lung function parameters. In every waveform,
the beginning and the end of the forced full expiration were detected.

Thereafter, the following EIT-derived parameters in each EIT
pixel were calculated:

(1) FEV1EIT, the difference between relative impedance changes
(rel.ΔZ) at total lung capacity (TLC) and the forced expiration
after 1 s.

(2) FVCEIT, the difference between rel.ΔZ at TLC and the end of
forced expiration.

(3) FEV1/FVC EIT ratio.
(4) The forced mid-expiratory flow (FEF25%–75% EIT), the

average rel.ΔZ/time between 25% and 75% of FVC.
(5) T75, the time required for 75% of FVC.

The abovementioned EIT-derived parameters formed the
corresponding functional EIT (fEIT) images. Based on the
fEIT images, the global inhomogeneity (GI) index was
calculated (Zhao et al., 2009) to assess the spatial non-
uniformity of the regional lung function. The lung regions
were identified as described previously (Zhao et al., 2010). The
size of lung regions in pixel was denoted as Alung. Compared to
the original GI index, the pixel-wise parameter values were used
instead of tidal variation (Frerichs et al., 2021). In addition, we
calculated a parameter similar to the center of ventilation
(Frerichs et al., 1998) to assess the balance of the volume
distribution for the FVC fEIT image (denoted as CoVFVC).
When the pixel FEV1/FVCEIT value was lower than 0.7, this
pixel region was considered abnormal. The number of abnormal
pixels over Alung was denoted as Rabnormal%.

Statistical analysis

Data analyses were performed using MATLAB R2023a (the
MathWorks Inc., Natick, United States). The Lilliefors test was

FIGURE 1
Illustration of the measurement plane positions. Left, third intercostal spaces; middle, fourth intercostal spaces; and right, fifth intercostal spaces.
The numbers on the electrode belt marked the position of the electrodes.
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used for normality testing. For normally distributed data, results
were expressed as mean ± standard deviation. One-way ANOVA
was used to compare the EIT-based parameters among different
measurement planes. p-value <0.05 was considered statistically
significant. For statistically significant parameters, paired t-test
was used to further compare the differences between two
measurement planes. Significance levels were corrected for
multiple comparisons using Holm’s sequential
Bonferroni method.

Results

All subjects but one were able to perform the FVC maneuver
according to the ATS guidelines 2019. Therefore, data from
29 subjects were collected and analyzed. The typical fEIT of FVC
and T75 of one subject is plotted in Figure 2. The shapes of the
identified lung regions were different. The EIT-based parameters
assessing the spatial and temporal distribution of the fEIT images are
presented in Table 1. Significant differences were found in 67%

FIGURE 2
Functional EIT images of FVC (top) and T75 (bottom) measured at various electrode planes. Column (A), third intercostal spaces; column (B), fourth
intercostal spaces; and column (C), fifth intercostal spaces.

TABLE 1 Comparison of EIT-based assessments at different measurement planes.

Parameter ICS3 ICS4 ICS5 p

GI FEV1 0.41 ± 0.04 0.38 ± 0.03 0.40 ± 0.03 <0.001 **

FVC 0.41 ± 0.05 0.38 ± 0.04 0.39 ± 0.03 0.01 *

FEV1/FVC 0.06 ± 0.05 0.04 ± 0.04 0.05 ± 0.03 0.77

FEF25%–75% 0.42 ± 0.05 0.38 ± 0.04 0.41 ± 0.03 0.006 *

T75 0.12 ± 0.05 0.12 ± 0.07 0.14 ± 0.07 0.41

CoVFVC (%) 44.0 ± 2.1 47.0 ± 2.9 49.5 ± 3.2 <0.001 **

Alung (no. of pixels) 449 ± 31 448 ± 33 426 ± 36 0.01 *

Rabnormal% (%) 1.50 ± 6.8 0.00 ± 0.70 0.00 ± 1.5 0.22

T75mean (s) 0.76 ± 0.16 0.68 ± 0.09 0.67 ± 0.13 0.02 *

GI, global inhomogeneity index; FEV1, forced expiratory volume at 1 s; FVC, forced vital capacity; FEF, forced expiratory flow; T75, time required for 75% of FVC; CoV, center of ventilation;

Alung, size of the lung areas in pixel; No, number; Rabnormal%, the percentage of abnormal regions; ICS, intercostal spaces.
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(6 out of 9) of the evaluated parameters. The individual differences
compared to that at ICS 4 are plotted in Figure 3. The fEIT images
were most homogeneous at ICS 4 compared to other two
measurement planes, except for T75EIT (Figure 3E). The fEIT
image FVCEIT distributed toward dorsal regions when the
measurement planes moved from ICS 3 to ICS 5 (CoVFVC,
Figure 3F), whereas the identified lung areas became smaller
(Alung, Figure 3G). The Rabnormal (Figure 3H) and T75 mean
(Figure 3I) were higher in ICS 3.

Discussions

In the present study, we found that the spatial and temporal
distribution of the regional lung function measured via EIT was
influenced by the measurement planes. For before–after
comparison, the same measurement plane should be used. ICS
4 was recommended for sitting subjects.

The use of EIT to assess lung function can be dated back to the
1990s (Sahalos et al., 1992; Eyüboğlu et al., 1995). Chest EIT is based
on the assumption of a linear relationship between relative
impedance changes and lung volume changes during inspiration
and expiration. Since flow is calculated as the derivatives of volume,
the derivatives of relative impedance are considered to be
proportional to the inspiratory and expiratory flows. The EIT-
based spirometry parameters are calculated in a similar manner
to their original definitions, except that the regional impedance
change and corresponding derivatives are used as substitutes for the
volume and flow, respectively (Sang et al., 2020). The information of
the regional lung function or flow limitation was proposed to
monitor the disease progression [(Zhao et al., 2013; Lehmann
et al., 2016)], assess the treatment effects [(Ma et al., 2022;
Longhini et al., 2020)], or even guide the treatment program [(Li
et al., 2023)]. To guarantee the monitoring purpose, Reifferscheid
et al. explored the EIT data from the same subjects on different days
and confirmed the reproducibility (Reifferscheid et al., 2011). They

FIGURE 3
Individual differences of EIT-based parameters at intercostal spaces (ICS) 3 and 5 compared to that at ICS 4. The boxes mark the quartiles, while the
whiskers extend from the box out to themost extreme data value within 1.59, the interquartile range of the sample. Change in GI of fEIT FEV1 (A), FVC (B),
the ratio (C), FEF25-75 (D), and T75 (E); change in CoV (F), lung area (G), abnormal region (H) and the average time of T75 (I). Red pluses are the outliers. *P
= 0.01; **P = 0.001.
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also found that ventilation distribution was different on two
different measurement planes. Later, several studies systematically
demonstrated the influence of measurement planes on the
ventilation distribution (Krueger-Ziolek et al., 2015; Karsten
et al., 2016; Zhao et al., 2022). We found that the regional lung
function was also influenced by the measurement planes. However,
unlike the investigation of influence on the volume distribution, we
did not focus on the impedance–volume ratio. Instead, we analyzed
the clinical parameters that reflect the lung function. One reason was
that the subjects were all in an upright position, and we did not
extend the measurement plane to lower than the ICS 5, which was
still a recommended range (Frerichs et al., 2017). Nevertheless, the
influence of the diaphragm is not neglectable. CoVFVC showed a
clear trend toward the dorsal region as the measurement plane
moved toward the caudal direction (Figure 3F). At the same time,
the lung size was also influenced (Figure 3G).

The distribution heterogeneity (GI) of fEIT images FEV1EIT,
FVCEIT, and FEF25–75%EIT achieved the lowest value (most
homogeneous) at ICS 4 (Figures 3A–C). The GI calculation is
influenced by the identified lung region (Yang et al., 2021a).
Therefore, the change in Alung might have influenced the GI
values. In addition, the method we used in the present study to
identify lung regions mirrors the lung regions left to right (Zhao
et al., 2010). Any anatomical asymmetry (e.g., heart) will influence
the GI values as well. Although statistical significances were found,
the average differences of GI were smaller than 0.05 (Figures 3A–E).
In a previous study, the variation of GI for tidal ventilation was
explored (Yang et al., 2021b). A standard deviation of 0.04 was
found in a group of 75 healthy volunteers. Hence, it is unclear
whether the differences found in the present study were clinically
significant. Similarly, the mean difference of T75 was smaller than
0.1 s, which might also be ignorable clinically (~14% of the absolute
value ~0.7 s). The clinically significant levels of various lung diseases
have to be confirmed in future studies.

For the abnormal regions Rabnormal, some subjects exhibited 5%
regions with flow limitations. Although the study subjects were all
lung healthy volunteers with normal lung function assessed via
spirometry, the EIT parameters might be more sensitive for early
detection of the regional abnormal lung function. Another possible
reason was that the lung region identification method mirroring
left–right lungs might not be suitable for measurement plane ICS 3.
It is worth noting that in the original article, the method was
proposed for supine subjects and for the measurement plane
of ICS 5.

The limitations of the present study are acknowledged. The
study subjects were men. Due to the size of the breast, the exact
placement of the electrode plane on the female subjects would be
hard to control and might introduce bias. However, how
measurement planes affect regional lung function in women is
still unknown. The age of the tested subjects was between 20 and
35 years. Although the data quality of the FVC maneuver is in
general poor in children and adolescents, the FVC decreases as the
age increases in the elderly; whether the findings of the current study
can be extended to younger or older subject groups is unknown.

Conclusion

Measurement planes could influence the spatial and temporal
distribution of the regional lung function measured via EIT.
Although the differences were relatively small, the same
measurement plane should be used for intra-subject comparison.
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