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Introduction: Acute coronary syndrome (ACS) is one of the leading causes of
death from cardiovascular diseases worldwide, with ST-segment elevation
myocardial infarction (STEMI) representing a severe form of ACS that exhibits
high prevalence and mortality rates. This study proposes a new method for
accurately diagnosing STEMI and categorizing the infarction area in detail, based
on 12-lead electrocardiogram (ECG) data using a deep learning-based artificial
intelligence (AI) algorithm.

Methods: Utilizing an ECG database consisting of 888 myocardial infarction (MI)
patients, this study enhanced the generalization ability of the AI model through
five-fold cross-validation. The developed ST-segment elevation (STE) detector
accurately identified STE across all 12 leads, which is a crucial indicator for the
clinical ECG diagnosis of STEMI. This detector was employed in the AI model to
differentiate between STEMI and non-ST-segment elevation myocardial
infarction (NSTEMI).

Results: In the process of distinguishing between STEMI and NSTEMI, the average
area under the receiver operating characteristic curve (AUROC) was 0.939, and
the area under the precision-recall curve (AUPRC) was 0.977, demonstrating
significant results. Furthermore, this detector exhibited the ability to accurately
differentiate between various infarction territories in the ECG, including anterior
myocardial infarction (AMI), inferior myocardial infarction (IMI), lateral myocardial
infarction (LMI), and suspected left main disease.

Discussion: These results suggest that integrating clinical domains into AI
technology for ECG diagnosis can play a crucial role in the rapid treatment
and improved prognosis of STEMI patients. This study provides an innovative

OPEN ACCESS

EDITED BY

Rajesh Kumar Tripathy,
Birla Institute of Technology and Science, India

REVIEWED BY

Yuan Lu,
The Affiliated Hospital of Xuzhou Medical
University, China
Ato Kapfo,
Indian Institute of Technology Guwahati, India
Viorel Mihalef,
Siemens Healthcare, United States

*CORRESPONDENCE

Sungmoon Jeong,
jeongsm00@gmail.com

Se Yong Jang,
seyongjang@knu.ac.kr

†These authors have contributed equally to this
work and share first authorship

RECEIVED 16 July 2024
ACCEPTED 19 September 2024
PUBLISHED 07 October 2024

CITATION

Kim J, Shon B, Kim S, Cho J, Seo J-J, Jang SY
and Jeong S (2024) ECG data analysis to
determine ST-segment elevation myocardial
infarction and infarction territory type: an
integrative approach of artificial intelligence and
clinical guidelines.
Front. Physiol. 15:1462847.
doi: 10.3389/fphys.2024.1462847

COPYRIGHT

© 2024 Kim, Shon, Kim, Cho, Seo, Jang and
Jeong. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 07 October 2024
DOI 10.3389/fphys.2024.1462847

https://www.frontiersin.org/articles/10.3389/fphys.2024.1462847/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1462847/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1462847/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1462847/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1462847/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1462847/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2024.1462847&domain=pdf&date_stamp=2024-10-07
mailto:jeongsm00@gmail.com
mailto:jeongsm00@gmail.com
mailto:seyongjang@knu.ac.kr
mailto:seyongjang@knu.ac.kr
https://doi.org/10.3389/fphys.2024.1462847
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2024.1462847


approach for the diagnosis of cardiovascular diseases and contributes to enhancing
the practical applicability of AI-based diagnostic tools in clinical settings.

KEYWORDS

ST-segment elevation detection, deep learning-based artificial intelligence, ST-segment
elevation myocardial infarction, 12-lead electrocardiogram, infarction territory

1 Introduction

Acute coronary syndrome (ACS) is a very common cause of
morbidity and mortality in the United States, with an estimated
1.5 million hospitalizations and costs of more than USD 150 billion
annually, according to the American Heart Association (Kolansky,
2009). ACS includes unstable angina, non-ST-segment elevation
myocardial infarction (NSTEMI), and ST-segment elevation
myocardial infarction (STEMI). The pathogenesis of acute
myocardial infarction involves rupture or erosion of an
atherosclerotic plaque (Arbustini et al., 1999), and NSTEMI
occurs in the setting of partial occlusion of the culprit coronary
artery (Bhat et al., 2016). In contrast, STEMI is caused by complete
occlusion of the culprit coronary artery. Thus, STEMI is more
symptomatic, has a more rapid disease progression, and a higher
mortality rate than NSTEMI (Rodríguez-Padial et al., 2021; Meyers
et al., 2021). As such, STEMI is one of the major cardiovascular
diseases with high prevalence and mortality (Benjamin et al., 2018),
and timely diagnosis of STEMI is critical to reducing the risk of
sudden death through prompt treatment (Murray et al., 2015).
Coronary angiography (CAG) is the gold standard diagnostic
method for STEMI (Wu et al., 2022). Percutaneous coronary
intervention (PCI), performed through this procedure, is an
effective treatment that limits the infarction size after a
myocardial infarction and reduces the risk of complications and
heart failure (Mehta et al., 2010; Bulluck et al., 2016). Additionally,
biomarkers, cardiac imaging technologies, and electrocardiographic
methods, used as auxiliary diagnostic tools, play a crucial role in
diagnosing myocardial infarction (Thygesen et al., 2012). Among
emergency treatment options, non-invasive ECG is the most cost-
effective and irreplaceable method, allowing for continuous and
remote monitoring (Siontis et al., 2021). Continuous ECG
monitoring provides useful prognostic information and
determines reperfusion or re-occlusion status (Thygesen et al.,
2018). Therefore, it is an essential diagnostic step for suspected
patients in the ambulance or hospital. Furthermore, a 12-lead ECG
can be used to understand the pathogenesis of MI better and to
accurately determine the location of the occluded coronary artery
and myocardial infarction. Specific ECG leads can reflect various
locations of the heart’s electrical activity and can distinguish
different types of MI according to the area of myocardial necrosis
(Meek and Morris, 2002). For example, ST-segment elevations
(STEs) in leads V1, V2, V3, and V4 suggest anterior wall
myocardial infarction (AMI), while STEs in leads II, III, and aVF
suggest inferior wall myocardial infarction (IMI). Considering these
factors, the 12-lead ECGs serve as the standard diagnostic tool for
diagnosing ACS. In the clinical setting, in addition to the distinction
between STEMI and NSTEMI, ECGs of STEMI patients require
rapid and accurate interpretation. However, interpreting a STEMI
from ECG images is challenging for ambulance paramedics,

emergency physicians, and sometimes cardiologists (Debrabant
et al., 2021). In previous ECG artificial intelligence (AI) studies,
significant efforts were made to enhance the accuracy of STEMI and
other abnormality diagnoses by leveraging deep learning for 12-lead
ECG analysis (Liu et al., 2021; Ribeiro et al., 2020). These model
designs are supported by evidence that AI techniques based on deep
learning not only compete with but often surpass human
performance in many areas, such as medical diagnostics, image
and speech recognition, natural language processing, strategic game
playing, algorithm discovery, and structure prediction of
biomolecular interactions (Silver et al., 2016; Brown et al., 2020;
Mankowitz et al., 2023; Kaufmann et al., 2023; Abramson et al.,
2024). Consequently, those studies attempting to diagnose heart
diseases have demonstrated that these techniques yield meaningful
results in practical 12-lead ECG settings. However, these existing
studies have only conducted experiments on 1-dimensional digital
ECG sequence data directly obtained from devices and not ECG
images derived from printed papers, although printed versions are
often considered the universal format for ECGs. In contrast, the
literature on conventional image processing techniques for ECGs
from printed papers includes numerous efforts to digitize these
images into sequences, apply geometric transformations, and
recognize specific patterns (Lence et al., 2023; Badilini et al.,
2005; Waits and Soliman, 2017). However, most of these
approaches struggle with noise sources such as printing errors,
poor skin-electrode contact, and other interferences, resulting in
insufficient accuracy and performance that is not competitive with
human professionals, such as emergency medicine residents or
cardiologists. Given the complexity of these noises and the real-
world contexts, the data-driven, end-to-end learning capabilities of
deep learning-based AI are essential. The conventional deep learning
approach to perform STEMI classification is illustrated in Figure 1A.
To our knowledge, no study has yet demonstrated the clinical
significance of interpreting and classifying STEMI through deep
learning in 12-lead ECG images. This study presents a clinically-
grounded and interpretable AI model for STEMI ECG analysis. This
AI model aims to distinguish between STEMI and NSTEMI and
accurately predict infarction territory on STEMI ECGs, serving as an
auxiliary tool for clinicians to facilitate rapid diagnosis and
treatment. Figure 1B illustrates the structure of the proposed
model. Initially, it uses a deep learning-based algorithm to detect
ST-segment elevations in each lead of the 12-lead ECG image
through supervised learning (Rashidi et al., 2019), providing
clinical evidence for further analysis. It then distinguishes
between STEMI and NSTEMI and, if classified as STEMI,
identifies the infarction territory based on the detected STEs. The
detailed process is provided in the Materials and Methods section.
The Experiments and Results section evaluates the effectiveness of
our approach and compares its performance to conventional deep
learning approaches, illustrated in Figure 1A.
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2 Materials and methods

2.1 Data collection

2.1.1 Dataset
A standard supine 12-lead ECG of 25 mm/s and 10 mm/mVwas

used. We selected the first ECG for patients with MI when they

visited the emergency department for the MI ECG. The Philips ECG
system (Philips Medical System, PageWriter TC30, TC70) was used
for the baseline ECG data. The dataset consists of ECG images, of
which the ECG region consists of a grid-shaped background and a
signal portion, as shown in Figure 2A. The signal part of the ECG
area comprises thin lines. We collected ECG images of 888 MI
patients, including 677 ST-segment elevation myocardial infarction

FIGURE 1
AI system process for ECG analysis from a 12-lead ECG image. (A) Conventional end-to-end learning approach. (B) Proposed model utilizing
clinical evidence.

FIGURE 2
(A) Example of a digitized 12-lead ECG image. (B) Hand-drawn STE (red) and lesser STE (blue) box annotations on a 12-lead ECG image.

Frontiers in Physiology frontiersin.org03

Kim et al. 10.3389/fphys.2024.1462847

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1462847


(STEMI) patients and 211 non-ST-segment elevation myocardial
infarction (NSTEMI) patients, recorded in the emergency
department of Kyungpook National University Hospital from
January 2011 to December 2019. Table 1 provides the
distribution of samples for STEMI and NSTEMI datasets. It
should be noted that the total number of samples for infarction
territory (872) exceeds the number of STEMI samples (677). This
discrepancy is because a single STEMI patient can have multiple
coronary occlusions. The KNUH Institutional Review Board
approved the use of this dataset (2020-12-022-011).

2.1.2 Data annotation
This study performed model learning using a supervised

learning approach. For the 12-lead ECG images, the STEMI and
NSTEMI diagnostic labeling was classified based on medical records
and the clinical judgment of physicians. In addition to ST-segment
elevation, we annotated areas of mild ST elevation (i.e., lesser STE)
to consider these abnormalities as potential indicators to distinguish
STEMI and NSTEMI cases in ECGs. To generate ground truth
labels, human encoders manually annotated the STE (a box where
the ST segment rises more than 1 mm, including the QRS complex)
and lesser STE (a box where the ST segment rises 1 mm or lesser,
including the QRS complex) for each lead of the 12-lead ECG images
using a Python package called labelImg (GitHub, 2015) (Figure 2B).
The criteria for ST elevation at the J point was based on the
American College of Cardiology/American Heart Association
STEMI guidelines, defined as an elevation of 1 mm or more
above the baseline at the J point. All labels and annotations in
the STEMI and NSTEMI ECG annotation dataset were performed
using the gold standard of three board-certified cardiologists who
agreed on the annotation placement through discussion. This study
was retrospective and did not require informed consent.

2.2 Data preprocessing

The original ECG data were available in printed papers, and the
scanned ECG region had a resolution of 1,228 × 2,460. While we
used 12-lead ECGs, there are 13 different figures because lead II (L2)
has one more recording of longer duration, whereas the other
channels have only short recordings, as shown in Figure 2A. For
simplicity, we split the long L2 recording into four evenly divided
subregions and detected ST elevations separately in each subregion.
We did not use other clinical information, such as sex or age, which
can be obtained from the ECG reports.

2.3 Model architecture

In this study, we first detect regions of STE and lesser STE
patterns from the given ECG, and two inference procedures were
conducted based on the detection result: STEMI classification and
prediction of infarction territory. The brief architecture of the model
is illustrated in Figure 1.

2.3.1 Detection of ST-segment elevations
As described in subsection 2.2, the only preprocessing required

is the manual separation of image regions for each ECG lead,

performed once before data processing begins. These clipped
images from the original ECG serve as input for our detector
models. To detect STEs, we trained a Faster R-CNN model (Ren
et al., 2016) with ResNet-50 (He et al., 2016) serving as the backbone
network. Faster R-CNN is an object detection algorithm and its
Region Proposal Network (RPN) is responsible for generating region
proposals for detections. The algorithm begins by processing the
input image through a Convolutional Neural Network (CNN) to
generate feature maps, which capture important visual information
from the image. Next, Faster R-CNN employs a RPN to suggest
potential object locations. The RPN predicts the likelihood of an
object being present in each proposed region and provides the
coordinates of the corresponding bounding boxes. During this
process, Faster R-CNN performs bounding box regression to
refine these proposals, aiming to accurately predict the locations
of objects by minimizing the difference between the predicted
bounding boxes and the actual ground truth boxes. Finally, for
each refined bounding box, the algorithm predicts the object class,
resulting in the final detection output. Through this integrated
approach, Faster R-CNN achieves high accuracy and speed in
object detection. Thus, Faster R-CNN is notable for its efficient
region proposal mechanism and its focus on accurately predicting
both the locations and classes of objects within an image. As we
described earlier, we utilized pre-trained model weights of ResNet-
50 for constructing the convolutional feature maps of the Faster
R-CNN, instead of random initialization. In this study, the RPN of
Faster R-CNN applies a 3 × 3 convolutional filter to generate region
proposals using anchor boxes of various sizes. ResNet-50, the
backbone network for Faster R-CNN, consists of 50 layers and
employs residual (shortcut) connections that skip over one or more
layers. During the training phase of Faster R-CNN, ground-truth
bounding boxes of STEs and lesser STEs, annotated by cardiologists,
are provided as labels. Using these annotations, the model is trained,
enabling it to generate accurate bounding boxes during inference.
During bounding box regression of Faster R-CNN (Ren et al., 2016),
bounding box information is encoded as shown in Equation 1.

tx � x − xa

wa
, ty � y − ya

ha
, tw � log

w

wa
, th � log

h

ha
, (1)

where x, y, w, and h represent x-y coordinates of the center of a
bounding box and its width and height, respectively, while a denotes
the anchor index. Outputs of Faster R-CNN detectors are predicted
bounding boxes of detected objects (STE and lesser STE). Since the
raw outputs of the Faster R-CNN detector often include multiple

TABLE 1 Distribution of samples for STEMI and NSTEMI datasets.

Description Counts

STEMI 677

Anterior MI 467

Lateral MI 233

Inferior MI 123

Suspected left main disease 49

NSTEMI 211

Total 888
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overlapping bounding boxes that are not semantically distinct, to
refine these results, we additionally apply soft non-maximal
suppression (soft NMS) (Bodla et al., 2017). We determined
optimal threshold values for soft NMS filtering by systematically
evaluating Intersection over Union (IoU) and score threshold values
from 0.0 to 1.0 in increments of 0.1. Finally, an IoU threshold of
0.5 and a score threshold of 0.7 were selected as they provided the
best results on the validation dataset. The procedure of the STE
detection is illustrated in Figure 3. Notably, our approach can
directly identify STE and lesser STE regions from scanned ECG
paper images, eliminating the need for additional preprocessing
steps like grid removal or smoothing.

2.3.2 Classification of STEMI
For automated classification of STEMI, various methods exist to

encode information detected from an image. In this study, we
employed the following information encodings: (1) the counts of
detected STEs and lesser STEs from the given image; (2) the counts
of detected STEs for each lead; (3) the counts of detected STEs and
lesser STEs for each lead; (4) the presence of detected STEs and lesser
STEs from the given image; (5) the presence of detected STEs for
each lead; (6) the presence of detected STEs and lesser STEs for each
lead. We denote these six feature encoding schemes, as shown in
Table 2. For example, if four STEs and one lesser STE are detected at
the first lead, and two lesser STEs are at the second lead, then the
representations will be: (Image-Detailed Count) [4, 3]; (Lead-STE
Count) [4, 0, 0, . . ., 0]; (Lead-Detailed Count) [4, 1, 0, 2, 0, 0, . . ., 0];
(Image-Detailed Presence) [1, 1]; (Lead-STE Presence) [1, 0, 0, . . .,
0]; and (Lead-Detailed Presence) [1, 1, 0, 1, 0, 0, . . ., 0]. For these six
cases, classification performances are separately evaluated in the
results for comparison. As a classification model, weighted ensemble
models (Erickson et al., 2020) were trained to classify STEMI from
the STE detection result. Although we tested classifiers such as
Support Vector Machines and Random Forests, the weighted
ensemble model consistently outperformed the others. Therefore,
we selected the weighted ensemble model for STEMI classification.
The weighted ensemble model consists of k-nearest neighbors,
LightGBM, CatBoost, XGBoost, RandomForest, ExtraTrees, and
Multi-layer Perceptron. Comparisons of the encodings are
presented in Table 5 in the Results subsection.

2.3.3 Prediction of infarction territory
In this subsection, we describe a method for identifying

infarction territory in patients with STEMI. Using detection
results of STEs on 12 leads as features, we used a weighted
ensemble model to predict vascular problems. The areas of
infarction were classified into four regions: anterior, lateral,
inferior, and suspected left main disease. We referenced the
clinical criteria in Table 3 to identify infarction territory based on
ECG findings.

We applied these clinical criteria to the AI model, conducting a
process in which the STE Detector predicted infarction territory
based on anticipated annotations. The predicted results were then
compared and analyzed for similarity with the target labels
classified by the actual infarction territories. A classifier using
weighted ensembles learns the relationships between the
encodings of detected STEs (and lesser STEs) and the target
territories.

3 Experiments and results

3.1 Experiment setup

To implement the proposed system, we used deep learning
libraries and frameworks such as AutoGluon, MMDetection, and
PyTorch (Erickson et al., 2020; Chen et al., 2019; Paszke et al., 2019).
Specifically, we used MMDetection for Faster R-CNN
implementation, and PyTorch for the baseline models, including
ResNet-50, Inception-ResNet-v2 (Szegedy et al., 2017), and
ConvNeXt (Liu et al., 2022). For the classification of STEMI in
section 2.3.2, we used AutoGluon’s implementations of LightGBM,
CatBoost, XGBoost, RandomForest, ExtraTrees, and Multi-layer
Perceptron. A computing server with three NVIDIA A10 Tensor
Core GPUs with 24 GBmemory is used in the experiments. The total
training time for a model is approximately 9 h on the server, and a 5-
fold cross-validation process, which takes around 45 h. For
inference, processing a single ECG sample takes about
500 milliseconds. All performance metrics are obtained by
averaging the results from 5-fold cross-validation. To compare
the performance of the proposed method with end-to-end AI
models consisting of a single classification stage (i.e., without
explicit detection of STEs), we fine-tuned deep learning models
such as ResNet-50, Inception-ResNet-v2, and ConvNeXt using the
provided ECG dataset. The pre-training was conducted using the
Microsoft COCO dataset (Lin et al., 2014), a large-scale dataset
widely used for object detection and segmentation tasks. The
learning rate was set to 0.001 for 100 epochs of training, and an
early stopping criterion was applied to avoid overfitting.

3.2 Results

In this subsection, we present performance evaluations for the
detection of STE, the classification of STEMI, and the identification
of infarction territories.

In each ECG image, there were 16 subregions corresponding to
the leads. In each subregion, the detector attempts to generate
bounding boxes for STE or lesser STE patterns. The average
performance of detecting ST-segment elevations and their
standard deviations is presented in Table 4. The experiment was
conducted using a 5-fold cross-validation technique. Sensitivity
scores are slightly higher than precision, which is beneficial for
the detector, as false negatives are generally riskier in medical
situations.

Table 5 describes the STEMI detection performances with
various STE encoding schemes. As our initial assumption that
minor abnormalities, such as lesser STE, can also provide a hint
to STEMI, feature encodings with both STE and lesser STE
outperformed other encodings. However, the superior
performance of Presence encodings over Count encodings was
difficult to anticipate and requires further interpretation. This
outcome can be interpreted from the following perspective. In
the context of STEMI classification, the rich information
provided by Count encodings might not be as critical because
clinical decisions are generally unaffected by whether there are
five or six STEs. Instead, the simplicity of the feature space in
Presence encodings offers an advantage over the richness of Count
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encodings for training AI models, as a more complex feature space
typically requires more data samples to achieve similar
generalization performance. In this experiment, large-scale
training data were unavailable; therefore, for the STEMI
classification task, Presence encodings may be more effective
than Count encodings. As a result, the Lead-Detailed Presence
encoding proved to be the most effective encoding for STE
detection in the STEMI classification task.

To compare our approach with other deep learning models, we
conducted fine-tuning procedures for ResNet-50, Inception-
ResNet-v2, and ConvNeXt and evaluated their performance on
STEMI detection. These models perform end-to-end learning and
one-stage STEMI detection, meaning they do not explicitly detect
STE or lesser STE regions but instead provide a direct decision for
the given image. In contrast, our approach consists of a two-stage

process: explicit detection of STEs, followed by STEMI classification
based on the information from the detected STEs. By explicitly
detecting STEs, our model incorporates expert knowledge from
cardiologists during the model construction phase, resulting in
superior performance compared to one-stage deep learning
models, as shown in Table 6. Furthermore, in the inference
phase, our model provides explicit detection results to assist
medical clinicians in their decision-making process, enhancing
the explainability of the model and avoiding the limitations of a
black-box approach.

Based on the STE and lesser STE detection results, we trained
and tested weighted ensemble models, and Table 5 illustrates the
average and standard deviations of performances obtained from 5-
fold cross-validation. As shown in Table 7, the performance of
suspected LM prediction was much worse than predictions of other

TABLE 3 Clinical criteria for identifying infarction territories on the ECG.

Infarction territory Condition

Anterior More than one lead shows STE among V1, V2, V3, and V4

Lateral Two or more leads show STE among V5, V6, L1, and aVL

Inferior Two or more leads show STE among L2, L3, and aVF

Suspected left main disease STEs are observed in aVR

TABLE 2 Encoding method for STE detection results.

Encoding method Description

Image-Detailed Count Counts of detected STEs and lesser STEs from an image

Lead-STE Count Counts of detected STEs for each lead

Lead-Detailed Count Counts of detected STEs and lesser STEs for each lead

Image-Detailed Presence Presence of detected STEs and lesser STEs from an image

Lead-STE Presence Presence of detected STEs for each lead

Lead-Detailed Presence Presence of detected STEs and lesser STEs for each lead

FIGURE 3
ST-segment elevation detection procedure.

TABLE 4 STE detection performances from 5-fold cross-validations.

Target Ground truths Detections Sensitivity Average precision

STE 1,414.6 (75.9) 1,350.8 (76.2) 0.825 (0.020) 0.794 (0.020)

Lesser STE 1,441.2 (108.0) 1,570.8 (181.1) 0.814 (0.024) 0.734 (0.029)
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territories, and it is partly rooted in the fact that the suspected left
main disease has much fewer samples than the others, as described
in Table 1. We also visualized the images to enhance our
understanding of these experimental results, as shown in Figure 4.

4 Discussion

STEMI is classified as the most lethal form of coronary artery
disease. It is caused by a complete or near-complete blockage of a
coronary artery that supplies blood to the heart muscle, which can
lead to extensive damage to the myocardial tissue. Rapid and
accurate diagnosis of STEMI can significantly improve patient
survival and recovery. However, inappropriate and false-positive
activation in the cardiac catheterization laboratory was reported to
be as high as 2.7% and 20%, respectively (Rokos et al., 2010), which
was highlighted as a major problem in the diagnostic and treatment
process. Moreover, the uneven distribution of diagnostic levels and
medical resources increases the possibility of misdiagnosis and
missed diagnosis of STEMI, a major obstacle in providing
patients with optimal diagnostic and treatment strategies.
Electrocardiogram is an objective, cost-effective, and widely used

tool for diagnosing STEMI. An ECG records the electrical activity of
the heart, which allows for identifying signs of coronary artery
occlusion and myocardial damage. However, ECG interpretation is
highly dependent on the experience and judgment of the physician,
which can lead to a lack of diagnostic consistency, a time-consuming
and labor-intensive process.

An ECG-based STEMI diagnosis using artificial intelligence
technology represents a significant step forward in addressing these
issues. AI can learn patterns from large datasets and diagnose STEMI
quickly and accurately based on these patterns. This is important in
reducing the door-to-balloon (D2B) time, with shorter D2B time
associated with lower in-hospital mortality and 6-month mortality
(Nallamothu et al., 2015). Reducing D2B time helps to minimize
damage to the heart muscle, increase the possibility of recovery of
cardiac function, and improve long-term survival. The results of this
study suggest that AI, especially CNN deep learning models, can be
effectively used to analyze each lead by detection in a 12-lead ECG.
We built an ECG database of 888 MI patients in a real hospital
emergency department. We used 5-fold cross-validation in all
experiments to prevent the model from overfitting to the training
data and improve its generalization ability. We were able to use the
data efficiently because all data samples can be used for training and

TABLE 6 Comparison to other deep learning models.

Model AUROC AUPRC Accuracy Sensitivity Specificity Precision F1-score

ResNet-50 0.780 0.925 0.656 0.578 0.909 0.954 0.719

Inception-ResNet-v2 0.739 0.911 0.613 0.535 0.864 0.927 0.679

ConvNeXt 0.594 0.815 0.723 0.859 0.409 0.824 0.841

Our Work 0.939 0.977 0.895 0.894 0.897 0.965 0.927

TABLE 7 Infarction territory identification performances from 5-fold cross-validations.

Territory AUROC Accuracy Sensitivity Specificity Precision F1-score

Anterior 0.955 (0.015) 0.919 (0.023) 0.940 (0.025) 0.895 (0.045) 0.91 (0.032) 0.924 (0.021)

Lateral 0.925 (0.047) 0.898 (0.037) 0.874 (0.079) 0.906 (0.039) 0.769 (0.090) 0.816 (0.073)

Inferior 0.966 (0.039) 0.954 (0.022) 0.904 (0.103) 0.962 (0.029) 0.811 (0.108) 0.848 (0.064)

Suspected left main disease 0.838 (0.083) 0.924 (0.052) 0.767 (0.133) 0.934 (0.050) 0.450 (0.150) 0.559 (0.149)

TABLE 5 Performance of STEMI classification from 5-fold cross-validations.

Encoding AUROC AUPRC Accuracy Sensitivity Specificity Precision F1-score

Image-Detailed Count 0.878 0.940 0.891 0.925 0.782 0.930 0.927

Lead-STE Count 0.775 0.873 0.875 0.973 0.576 0.876 0.922

Lead-Detailed Count 0.907 0.953 0.899 0.916 0.841 0.948 0.931

Image-Detailed Presence 0.926 0.971 0.872 0.863 0.901 0.964 0.910

Lead-STE Presence 0.925 0.969 0.871 0.855 0.918 0.970 0.909

Lead-Detailed Presence 0.939 0.977 0.895 0.894 0.897 0.965 0.927
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validation. In addition, by evaluating the model using multiple data
sets, we increased the stability and reliability of the model, as the
performance of the model does not depend on a specific part of the
data. Our STE detector accurately detected STE and lesser STEwith an
average mAP of 0.76 in each of the 12 leads. When applied to the AI
model, it showed high classification performance with an average
AUROC of 0.939 and AUPRC of 0.977 for STEMI and NSTEMI,
respectively. In addition, the ECG showed a significantly high
sensitivity for the detection of anterior MI, recording an average
ACC (0.91), SEN (0.94), SPEC (0.89), F1-score (0.92), and AUROC
(0.95). Moreover, the AI model demonstrated accurate performance
even for lateral MI and inferior MI, which are more challenging to
interpret on ECG than anterior MI. The average scores were ACC
(0.89, 0.95), SEN (0.87, 0.90), SPEC (0.90, 0.96), F1-score (0.81, 0.84),
and AUROC (0.92, 0.96). Even for the relatively infrequent suspected
left main disease, it achieved high performance with ACC (0.92), SEN
(0.76), SPEC (0.93), and AUROC (0.83).

The main contribution of this study is to demonstrate that our AI
model excels in classifying STEMI and NSTEMI and identifying
infarct locations. Previous studies reported that the classification
performance of AI for STEMI had average AUROC, ACC, SEN,
and SPEC values of 0.99, 0.98, 0.95, and 0.99, respectively, highlighting
the superiority of AI models in classifying STEMI andNSTEMI ECGs
(Wu et al., 2022; Chen et al., 2022; Zhao et al., 2020). However, from a
patient care support perspective, the decisions made by AI did not
provide clear evidence for ST segment elevation, a critical indicator for
STEMI diagnosis in reliable ECGs. To address this issue, we utilized an
ST segment elevation (STE) detector to provide clinically interpretable
ECG analyses to clinicians, demonstrating the detector’s excellent
performance in identifying STE and lesser STE across 12 ECG leads.

Notably, while our STE detection based on clinical guidelines had the
AUROC, ACC, SEN, and SPEC values (0.939, 0.895, 0.894, 0.897)
relatively lower than those of previous AI models, it improved the
reliability of AI judgments by effectively distinguishing STEMI and
NSTEMI at a level comparable to that of cardiologists (Wu et al., 2022;
Zhao et al., 2020) and visualized the ability to classify infarct locations
similarly to cardiologists (Figure 4). Additionally, it provides more
detailed information about the anatomical key locations of ST
segment elevation myocardial infarction, which differentiates our
study from previous research.

The significance of this work goes beyond the advancement of
AI technology.We explored ways to improve the depth and accuracy
of clinical information that AI models can provide through ECG
analysis. Furthermore, this work demonstrates the potential of
medical evidence-based AI developed through close collaboration
between AI developers and healthcare professionals to be usefully
applied in real clinical settings. Such collaboration will make AI
technology a clinically interpretable and reliable tool for healthcare
professionals, ultimately leading to better patient outcomes.

However, several obstacles need to be overcome before the
results of this study can be applied to actual clinical practice.
First, there is a need for data standardization between hospitals.
It is difficult to guarantee the compatibility of AI tools, as the data
format or structure varies depending on the type or manufacturer of
the ECG machine used in each hospital, making it difficult to apply
AI tools to the clinical field. It is necessary to ensure technical
compatibility through standardization of data between hospitals,
and system integration between medical institutions and
manufacturers is required for this. Secondly, enhancing the
understanding of AI technology among medical personnel

FIGURE 4
Cardiologists provided labels for infarction territories and annotated STE in 12-lead ECGs, and the AI model predicted the area of infarction and
detected STE in 12-lead ECGs. The color of the annotation boxes for STE (and lesser STE) is as follows: STE is red, lesser STE is blue.
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presents a significant challenge. Utilizing these tools can be difficult
for those with limited knowledge of AI. An initial solution might
involve carefully considering the UI design of these tools to
accommodate non-AI experts better. However, providing
additional promotion and education is crucial for medical
personnel to use AI tools effectively (Kim et al., 2024). Such
measures will encourage the adoption of AI tools across multiple
centers and promote a safer and more standardized medical
environment. Third, AI-based ECG diagnostic algorithms must
be rigorously validated across diverse racial groups to address
and minimize racial biases and ensure fairness and accuracy.
Fourth, the classification performance of AI should be thoroughly
assessed, including comparisons with a control group without a
history of acute coronary syndrome (ACS). This evaluation should
extend to detecting early phases of STEMI by including lesser ST
elevations alongside significant ones, Additionally, considering rare
cases that may be observed in STEMI, such as tall T waves and Q
wave abnormalities, would enhance the clinical effectiveness of the
proposed STEMI classification AI model, which requires further
exploration. Fifth, while this study’s retrospective single-center
design has provided initial insights, its generalizability is limited.
Despite rigorous internal validation through cross-validation,
additional studies involving external validation in varied settings
are essential to enhance reliability and applicability. Nevertheless,
this study employed ECG machines commonly used in clinical
practice and favored digitized ECG images over raw data to
improve the generalizability of the findings. However, there is
still potential to further enhance the method’s performance by
leveraging the extensive information available from the raw
digital signals recorded by these devices. As a part of our future
work, we aim to explore data augmentation using generative models
that facilitate domain transfers between raw signals and printed
ECG images. Additionally, we will consider detecting other visual
cues, such as peaks or QRS complexes, to enrich the feature space
(Ciusdel et al., 2020). For instance, heartbeat information derived
from peak detection could be incorporated into the feature vector or
used to calculate additional features, such as the STE ratio
normalized by cardiac cycles. Furthermore, although we
measured the performance of the methods using cross-validation,
there remains a need to investigate the effects of hyper-parameter
variations. To gain a deeper understanding and improve robustness
to hyper-parameters, we plan to conduct an ablation study. Lastly,
we will perform experiments to thoroughly test the robustness of the
proposed model, including its behavior in edge cases. For instance,
in some cases, an ECG plot may overlap with the region of another
lead, causing two signal lines to merge or become difficult to
distinguish. It is crucial to observe how the model responds to
such abnormal cases to ensure its applicability in real-
world scenarios.

In conclusion, effective use of AI for ECG interpretation
requires technical development, a supportive institutional
structure, and an educational system. This integrated approach
will guide future research directions in this study and play a crucial
role in expanding the use of AI in ECG analysis. Such
advancements will aid medical professionals by providing direct
support in clinical settings, boosting their confidence in the
performance of AI. The role of AI as a co-pilot in facilitating
quick and accurate diagnoses can be critical in saving lives,

especially in emergencies. Since the direct diagnosis is still
made after review by a cardiologist, patients will be free from
anxiety and prejudice about AI. This is expected to make a
significant contribution to the resolution of the uneven
distribution of medical resources and the improvement of
patient outcomes.

5 Conclusion

The present study evaluates an AI model for STEMI diagnosis
and identifying infarction territories from 12-lead ECG images,
integrating AI and clinical guidance. Two significant benefits are
obtained by explicitly guiding the detection of ST-segment
elevations.

First, it addresses the challenge of insufficient training data.
Without clinical guidance, the model would struggle to identify
effective features from large-scale data, which are often scarce and
expensive to acquire and annotate in medical data analysis. The
model can focus on relevant features even with a limited dataset by
incorporating clinical evidence during the training phase.

Second, the model offers explainability, aiding clinical
practitioners, including cardiologists, in understanding its
diagnostic process. By providing clinical evidence during the
inference phase, clinicians can make prompt decisions in urgent
situations and evaluate the reliability of the model’s outputs, such as
STEMI classification and identifying infarction territories.

The study demonstrates the model’s effectiveness in diagnosing
STEMI and identifying infarction territories. The proposed model
performs superiorly compared to conventional end-to-end learning
AI approaches.

In summary, this study highlights the potential of AI models
enhanced with clinical evidence and developed through close
collaboration between AI developers and cardiology specialists.
Such implementation ensures that AI technology becomes a
clinically interpretable and reliable tool, ultimately improving
patient outcomes.
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