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Fasting is a common dietary intervention known for its protective effects against
metabolic and cardiovascular diseases. While its effects are mostly systemic,
understanding tissue-specific changes in the heart is crucial for the identification
of themechanisms underlying fasting-induced cardioprotection. In this study, we
performed a proteomic analysis of the fasting heart and attempted to clarify the
molecular basis of fasting-induced cardioprotection. Our investigation identified
a total of 4,652 proteins, with 127 exhibiting downregulation and 118 showing
upregulation after fasting. Annotation analysis highlighted significant changes in
processes such as lipid metabolism, the peroxisome pathway, and reactive
oxygen species metabolism. Notably, the HIF-1 signaling pathway emerged as
one of the focal points, with various HIF-1 targets exhibiting differential responses
to fasting. Further experiments demonstrated downregulation of HIF-1α at both
transcript and protein levels. Intriguingly, while gene expression of Egln3
decreased, its protein product PHD3 remained unaffected by fasting. The
unchanged levels of pro-inflammatory cytokines indicated that the observed
reduction inHif1a expression did not stem from a decrease in basal inflammation.
These findings underscore the complex regulation of the well-established
cardioprotective HIF-1 signaling within the heart during 3-day fasting.
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1 Introduction

Ischemic heart disease is the leading cause of death worldwide, highlighting a critical
area of concern in public health (WHO, 2020). Given this context, investigating the
molecular basis of unconventional cardioprotective interventions, such as fasting, becomes
increasingly relevant.

The 3-day fasting is an experimental cardioprotectivemodel that protected rat hearts against
major endpoints of acute ischemia-reperfusion injury. This intervention was also associated with
increased ketogenesis represented by an elevated concentration of 3-hydroxybutyrate (BHB) and
BHB/acetoacetate ratio in the myocardium (Snorek et al., 2012). Moreover, our previous
experiments showed that transcripts of genes linked with cytoprotective pathways of ketone
bodies exhibited altered RNA modifications in the heart post-fasting (Benak et al., 2024a),
suggesting the involvement of epitranscriptomic regulation in fasting-induced cardioprotection
(Benak et al., 2023). Remarkably, hypoxia-inducible factor 1α (HIF-1α), a renowned
transcription factor known for its cardioprotective properties (Cai et al., 2008; Neckar et al.,
2018), is also one of the transcripts bearing epitranscriptomic modifications (Shmakova et al.,
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2021), and conversely, it also influences the expression of numerous
epitranscriptomic regulators (Thalhammer et al., 2011).

The protective role of HIF-1α has been described in many
cardioprotective interventions, such as adaptation to chronic
hypoxia (Alanova et al., 2024; Ostadal et al., 2021) or ischemic
conditioning (Cai et al., 2008). However, the role of the HIF-1
pathway in fasting-induced cardioprotection is far from being
understood.

Given this context, the objective of our study was to investigate
the cardiac proteome of rats subjected to 3-day fasting to better
understand the molecular basis of fasting-induced cardioprotection,
with a focus on the regulation of the well-known cardioprotective
HIF-1 pathway.

2 Materials and methods

2.1 Animals and experimental protocol

Adult (12-week-old) male Wistar rats were used in this study.
All animals were housed in a controlled environment with a stable
temperature (23°C) and a 12-h light-dark cycle (light from 6:00 a.m.)
(Alanova et al., 2017). Rats in the experimental group were deprived
of food for 3 days but had unrestricted access to water (Benak et al.,
2024a). The control group had access to the standard chow diet ad
libitum. The use of animals was approved and supervised by the
Animal Care and Use Committee of the Institute of Physiology of
the Czech Academy of Sciences (No. 66/2021).

2.2 Tissue processing

Rats were sacrificed by cervical dislocation. After swift excision
of the hearts and washing in the cold (0°C) saline, hearts were
dissected, and left ventricles (LV) were collected (Balkova et al.,
2009). LV samples were weighted, frozen, and stored in liquid
nitrogen until use.

2.3 Proteomic analysis

The proteomic analysis was performed by the Proteomics
service laboratory as described previously (Benak et al., 2024a).
Briefly, heart samples were pulverized in liquid nitrogen, solubilized
in 1% SDS, and processed according to the SP4 no-glass bead
protocol. About 500 ng of tryptic peptides were separated on a
50 cm C18 column using a 2.5 h elution gradient and were analyzed
in data-independent acquisition (DIA) mode on an Orbitrap
Exploris 480 (Thermo Fisher Scientific, United States) mass
spectrometer equipped with a FAIMS unit. Raw files were
processed in Spectronaut 14 (Biognosys, Switzerland) using the
library created from data-dependent acquisition (DDA) runs of
all samples and pooled sample fractionated to eight fractions by
Pierce High pH Reversed-Phase Peptide Fractionation Kit (Thermo
Fisher Scientific, United States). UniProt UP000002494_10116. fasta
release 2021_01 proteome file was used.

Statistical comparison of protein expression was performed in
fasting versus control groups in R environment (version 4.3.2.) using

the package MSstats (version 4.10.0 (Kohler et al., 2023)). For
estimation of variability between the tested groups, principal
component analysis (PCA) was done with PCAtools R package.
MSstats pipeline was run with settings recommended for DIA data
analysis. Proteins with one expressed peptide were removed from
the analysis prior to the linear model-based group comparison.
Imputation of missing values was performed per peptide using
accelerated failure time model. Imputation failed for peptides
when a whole protein was missing in a run (Kohler et al., 2023).
Median normalization approach and the Tukey’s polish method
were used for the data normalization and summarization,
respectively. Differentially expressed (DE) proteins fitting the soft
cut-off of absolute log2 fold change (log2FC) 0.5 and the p-value less
than 0.05 were selected for further analysis. Features with less than
3 replicates per group were excluded. An R package clusterProfiler
(Wu et al., 2021) with over-representation analysis (ORA) and data
from Gene Ontology (https://geneontology.org/), KEGG (www.
kegg.jp), and Reactome (https://reactome.org/) databases were
utilized for annotation of DE proteins.

Western blot analysis was used to verify proteomic findings by
focusing on two key proteins involved in cardiac energy metabolism:
pyruvate dehydrogenase kinase 4 (PDK4) and hexokinase 2 (HK2).
PDK4 was selected due to its role in promoting fatty acid oxidation
by inhibiting the pyruvate dehydrogenase complex, a metabolic shift
typical during fasting. HK2, a key glycolytic enzyme, was chosen
because its downregulation reflects reduced glucose utilization.
Western blot results confirmed the upregulation of PDK4 and
downregulation of HK2 in the hearts of fasting rats
(Supplementary Figure S1), consistent with the results of the
proteomic analysis.

2.4 RT-qPCR

RNA isolation, cDNA synthesis, and RT-qPCR were performed
as described earlier (Holzerova et al., 2015). In short, the total RNA
was extracted from each LV sample using RNAzol® RT according to
the manufacturer’s instructions. One μg of total RNA and random
primers were used for cDNA synthesis with RevertAid H Minus
First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, United
States) according to the manufacturer’s protocol. RT-qPCR was
performed in 20 μL reaction volume on a LightCycler® 480 (Roche
Diagnostics, Switzerland) using TaqMan Gene Expression Assays
(Thermo Fisher Scientific; listed in the supplements) and 5x HOT
FIREPol Probe qPCR Mix Plus (NO ROX) (Solis Biodyne, Estonia)
according to the manufacturer’s instructions with the following
temperature profile: initial enzyme activation (15 min at 95°C)
followed by 45 cycles of amplification (15 s at 95°C, 1 min at
60°C). For proper normalization of results (Benak et al., 2019),
Tyrosin-3-monooxygenase/tryptophan 5monooxygenase activation
protein zeta (Ywhaz) and DNA topoisomerase I (Top1) were
selected as suitable reference genes (Benak et al., 2024a).

2.5 Western blot

Tissue homogenization, protein separation, and
immunodetection were performed as described previously with
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FIGURE 1
The effect of 3-day fasting on the proteome and HIF-1α and PHD3 (Egln3) levels. (A) Volcano plot of all 4,652 proteins detected by the proteomic
analysis. (B) PCA (principal component analysis). (C) Heat map of the 50 top significantly changed proteins. (D) KEGG Annotation heat map of the main
pathways affected by fasting (E) Gene expression levels of Hif1a and Egln3 assessed by RT-qPCR. (F) Protein levels of HIF-1α and PHD3 assessed by
Western blot and representative Western blot membranes. The average of the control values is set to 1. Values are means ± SD; n = 5–8; *p < 0.05,
****p < 0.0001 (t-test). C – control; F – fasting; Egln3/PHD3 – prolyl hydroxylase 3; HIF-1α – hypoxia-inducible factor 1α.
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slight modifications (Pokorna et al., 2019). In short, protein loadings
were 60 μg (HIF-1α), 20 μg (PHD3), 10 μg (PDK4, HK2). The
membranes were incubated with primary and secondary antibodies:
anti-HIF-1α (Novus Biologicals; NB100-479; 1:1,500; overnight),
anti-PHD3 (Abcam; ab184714; 1:1,000; overnight), anti-PDK4
(Abcam; ab214938; 1:1000; overnight), anti-HK2 (Abcam;
ab209847; 1:1000; overnight), and anti-rabbit (Bio-Rad;
170–6515; 1:10,000; 1 h). Chemiluminescence was measured by
the ChemiDoc™ System (Bio-Rad, United States). Ponceau staining
(Sigma-Aldrich; P7170) was used for normalization of Western blot
data (Semenovykh et al., 2022), a method preferred over the use of
housekeeping proteins as loading controls (Moritz, 2017).

2.6 Determination of
proinflammatory cytokines

Enzyme-linked immunosorbent assay (ELISA) commercial kits
were used to determine IL-6 (Invitrogen; BMS625) and TNFα
(Invitrogen; BMS622) levels in LV homogenates (50 µL)
according to the manufacturer’s instructions.

2.7 Statistics

The proteomic analysis included 5 biological replicates per
group. Other experiments included 5–13 biological replicates per
group. Statistical analyses were performed using GraphPad Prism 8
(GraphPad Software, Inc.). An unpaired two-sided Student’s t-test
was used for the assessment of the statistical significance. The data
were obtained from at least three experiments and are displayed as
means ± standard deviation (SD). Results were recognized as
statistically significant when the p-value reached < 0.05.

3 Results

The DIA mass spectrometry analysis, providing higher
sensitivity and protein coverage than the classic DDA, assessed
the effect of 3-day fasting on the proteome in cardiac tissue. In total,
4,652 proteins were detected by proteomic analysis (low abundant
proteins were masked by highly abundant contractile proteins). The
total results of the DE analysis were visualized with a volcano plot
(Figure 1A). The PCA (Figure 1B) showed a clear separation
between fasting and control rat samples with 18% of explained
variance, reflecting distinct proteomic profiles associated with the
fasting state. A heatmap was prepared for the top 50 significant DE
proteins selected by fold change (Figure 1C). Due to moderate
variance between groups, DE proteins were selected according to
soft cut-offs.

Out of the 4,652 proteins detected, 127 exhibited
downregulation and 118 demonstrated upregulation after fasting.
The initial annotation analysis of DE proteins revealed that the most
striking changes occurred in lipid metabolism and peroxisome
pathways (Table 1; Figure 1D), consistent with previous findings
(Arumugam et al., 2023). These processes included up to 24 affected
proteins (lipid metabolic process). Notably, also 5 proteins from the
HIF-1 signaling pathway were altered: serpin family E member 1

(SERPINE1) and cyclin-dependent kinase inhibitor 1B (CDKN1B)
were significantly upregulated in fasting hearts, while transferrin
(TF), HK2, and transferrin receptor (TFRC) were significantly
downregulated. Besides the HIF-1 signaling KEGG pathway,
PDK4 and BCL2 interacting protein 3 (BNIP3), which are also
targets of HIF-1, exhibited a significant increase in the hearts of
fasting rats.

While proteomic analysis suggested regulation of the HIF-1
signaling pathway, neither HIF-1α itself nor PHD3, the prolyl
hydroxylase highly expressed in the heart, was captured by the
proteomic analysis. This discrepancy arises primarily from
methodological limitations rather than an intrinsic absence of
expression. In cardiac tissue, the detection of low-abundance
proteins such as HIF-1α can be masked by the presence of highly
abundant contractile proteins. To address this, we investigated the
gene expression and protein levels of HIF-1α and its degrading
enzyme PHD3 (Egln3) using RT-qPCR (Figure 1E) and Western
blot (Figure 1F). At the gene expression level, both transcripts were
downregulated – Hif1a by 23% and Egln3 by 46%. However, at the
protein level, only HIF-1α was affected by 3-day fasting (28%
decrease), while PHD3 remained stable.

Western blot experiments for verification of proteomic data
confirmed upregulation of PDK4 by 571% and downregulation of
HK2 by 16% (Supplementary Figure S1).

Additional RT-qPCR experiments revealed the gene expression
profiles of the following HIF-1 targets: Adora2b,Gapdh,Nos2,Nox4,
and Vegfa were not significantly affected by fasting; Pdk4 and
Hmox1 were upregulated by 722% and 138%, respectively; and
Hk2 with Gja1 were downregulated by 63% and 16%,
respectively (Supplementary Figure S2).

Considering the observed decrease in Hif1a expression and the
fact that: a) inflammation typically upregulates Hif1a expression
(Palazon et al., 2014), and b) fasting correlates with a decrease in the
basal levels of circulating pro-inflammatory cytokines (Aksungar
et al., 2007), we subsequently examined the protein levels of the pro-
inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis
factor-alpha (TNFα) in the myocardium. However, analysis revealed
no significant alterations in their levels (Supplementary Figure S3).

4 Discussion

The 3-day fasting is an established experimental model
inducing cardioprotection in rats (Snorek et al., 2012).
However, given the elevated metabolic rate and other
physiological differences in rats compared to humans (such as
protein turnover rate or relative life expectancy), drawing direct
comparison between fasting durations in the two species is
challenging. Nevertheless, this model can be roughly analogized
to an extended multi-week fast in humans (Wilhelmi de Toledo
et al., 2019). The severity of this model limits the relevance of our
findings for human physiology. However, the molecular
mechanisms underlying fasting-induced cardioprotection could
reveal potential therapeutic targets and lead to the development
of novel clinical strategies (such as new pharmacological
interventions) relevant to human health.

In our study, we revealed that the HIF-1 signaling pathway
was affected by 3-day fasting. HIF-1α was reduced on both
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mRNA and protein level. Moreover, several HIF-1 targets were
regulated as well (Figure 2): TF with TFRC (iron homeostasis),
Hk2/HK2 (energy metabolism), and Gja1 (cell communication
and signal transduction) were decreased, while Pdk4/PDK4

(energy metabolism), SERPINE1 (also known as PAI-1;
inflammation and immune response), CDKN1B (also known
as p27; cell cycle regulation), BNIP3 (apoptosis/autophagy),
and Hmox1 (oxidative stress) were increased. These data show

TABLE 1 Main pathways detected in relation to the differentially expressed proteins.

Database ID Pathway Protein coding genes

GO GO:0016042 lipid catabolic process Gpihbp1, Pla2g7, Acad11, Ehhadh, Lipe, Acox1, Abcd1, Scp2, Pnpla2, Abcd3, Hsd17b4, Apoa4, Acox3,
Apoc1, Apoe, Acaa1a, Phyh, Hsd17b11, Ech1, Cyp27a1, Lonp2, Acot7, Mgll, Cbr1

GO:0005777 peroxisome Acad11, Ehhadh, Acox1, Cat, Abcd1, Scp2, Abcd3, Hsd17b4, Acox3, Tmem135, Acbd5, Pex3, Acaa1a, Pex14,
Phyh, Pex12, Pxmp2, Pex11b, Ech1, Lonp2, Hmgcl

GO:0072593 ROS metabolic process Pdk4, Mpo, Hp, Acox1, Cat, Abcd1, Apoa4, Crp, Bnip3, Itgb2, App, Hk2, Cbr1

GO:0007568 aging Mpo, Hp, Cat, Scp2, Igfals, Hsd17b4, Krt16, Crp, Ctsl, Apoe, Ppp1r9a, Serpinf1, Itgb2

Reactome R-RNO-
9609507

protein localization Abcd1, Pex16, Lonp2, Ehhadh, Pex12, Phyh, Ech1, Pex14, Acox1, Abcd3, Cat

R-RNO-
9033241

peroxisomal protein import Lonp2, Ehhadh, Pex12, Phyh, Ech1, Pex14, Acox1, Cat

R-RNO-
1474244

extracellular matrix
organization

P4ha2, Itgb2, Colgalt1, Plod3, Col3a1, Lum, Col1a1, Vtn, Prss1, Fgg

R-RNO-
8978868

fatty acid metabolism Tecrl, Abcd1, Acad11, Ehhadh, Phyh, Acox1, Abcc1, Cyp4b1

R-RNO-72312 rRNA processing Rps29-ps16, Rps29-ps17, Rps29-ps15, Rpl22l1, Rpl18a, Rps29

KEGG rno04146 peroxisome Pex14, Abcd1, Pex12, Cat, Acox1, Ehhadh, Abcd3, Phyh, Ech1, Pex14, Scp2, Hsd17b4, Acox3, Pex3, Acaa1a,
Hmgcl, Pxmp2, Pex11b

rno03320 PPAR signaling pathway Acox1, Ehhadh, Hmgcs2, Scp2, Acox3, Acaa1a, Cyp27a1

rno01212 fatty acid metabolism Acox1, Ehhadh, Scp2, Hsd17b, Acox3, Acaa1a

rno04066 HIF-1 signaling pathway Serpine1, Cdkn1b, Tf, Hk2, Tfrc

FIGURE 2
The effect of 3-day fasting on the HIF-1 signaling in the heart. Adora2b–adenosine A2b receptor; BNIP3 – BCL2 interacting protein 3; Egln3/
PHD3 – prolyl hydroxylase 3; Gapdh – glyceraldehyde-3-phosphate dehydrogenase; Gja1 – gap junction protein alpha 1; Hif1a/HIF-1α – hypoxia-
inducible factor 1α; Hk2/HK2 – hexokinase 2; Hmox1 – heme oxygenase 1; IL-6 – interleukin-6; LV – left ventricle; Nos2 – nitric oxide synthase 2;
Nox4 – NADPH oxidase 4; Pdk4 – pyruvate dehydrogenase kinase 4; TNFα – tumor necrosis factor α; Vegfa – vascular endothelial growth factor A.
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that the HIF-1 signaling in fasting hearts differ from the classical
protective HIF-1 signaling in hypoxic tissues (Kegg
pathway, 2021).

Our findings align with those of Arumugam et al. (2023) who
also reported the regulation of hypoxic signaling in fasting mice.
Their study investigated the effects of three long-term (6-month)
intermittent fasting protocols: 12-h daily fast, 16-h daily fast, and
alternate-day fasting. Among the 503 DE proteins in heart tissues
across all three dietary regimens, only 60 proteins consistently
overlapped. These results underscore the high sensitivity of the
cardiac proteome to the duration and type of fasting regimen.
Hence, the relatively low overlap with our results is not
surprising. Specifically, out of the proteins detected in the
HIF-1 signaling pathway after 3-day fasting, only
HK2 overlapped between the two studies. This protein was
significantly decreased in all fasting interventions. Notably, the
involvement of HK2 in cardioprotection has been demonstrated
(Halestrap et al., 2015).

Conflicting data regarding the relationship between fasting or
ketone bodies and HIF-1α are present in the literature. Fasting,
ketogenic diet, or administration of BHB was primarily associated
with increased HIF-1α levels due to the accumulation of succinate, a
known inhibitor of prolyl hydroxylases (Puchowicz et al., 2008). Yet,
treatment of mouse primary cardiomyocytes with high doses of BHB
significantly decreased HIF-1α levels under hypoxic (1% O2, 12 h)
conditions (Ma et al., 2022). Another study showed that HIF-1α
regulation might vary between different tissues depending on fasting
duration. Northern elephant seal pups (Mirounga angustirostris)
exhibited increased Hif1a mRNA levels in adipose tissue after
prolonged fasting (3, 5, and 7 weeks), whereas in muscle tissue,
Hif1a levels were unaffected after a 3-week fast, decreased after a
5-week fast, and increased after a 7-week fast (Sonanez-Organis et al.,
2013). In our experiments, we found downregulation of HIF-1α on
both transcript and protein levels.

Regarding PHD3/Egln3, no changes in its gene expression
were reported after 16-h fasting in mouse hearts (Yoon et al.,
2020), which contrasts with our observation of decreased cardiac
levels of Egln3 after the 3-day fast. However, we also did not
observe any alterations at the protein level. Thus, HIF-1α
regulation in the fasting heart seems to be PHD3-independent.
Moreover, the expression of Hif1a was altered already at the
transcriptional stage. Since inflammation is known to positively
affect Hif1a expression (Gorlach, 2009), we hypothesized that the
decrease in Hif1a mRNA levels could be triggered by fasting-
induced decrease in basal inflammation, which has been
associated with fasting (Aksungar et al., 2007). However, stable
myocardial levels of pro-inflammatory cytokines IL-6 and TNFα
did not support this hypothesis. Thus, the reduction in Hif1a
mRNA levels is likely driven by other molecular mechanisms,
such as the action of other transcription factors, epigenetic or
epitranscriptomic modifications, regulation by non-coding RNAs,
etc. Notably, the emerging field of epitranscriptomics, which
explores RNA modifications that modulate gene expression
beyond the classical framework of the central dogma, presents
a promising avenue for future research (Benak et al., 2024b).
Several studies have already highlighted the reciprocal regulatory
interactions between N6-methyladenosine (m6A) modification
and HIF-1 (Shmakova et al., 2021; Thalhammer et al., 2011; Li

et al., 2021; An et al., 2023; Liang et al., 2022; Nan et al., 2023),
underscoring the potential significance of this mechanism in HIF-
1 regulation during fasting.

Overall, reduced HIF-1α levels were not accompanied by a
uniform downregulation of HIF-1 targets, suggesting a complex
interaction between HIF-1 signaling and other molecular pathways
during fasting. Thus, the precise role of HIF-1 regulation in fasting-
induced cardioprotection, its dynamics at specific stages of fasting,
and its interactions with other protective pathways remain key areas
for further exploration.

The consensus suggests that fasting confers cardioprotective
benefits. However, available data has highlighted a fine balance
between its positive and detrimental effects. For instance, a 3-day
fasting period exhibited cardioprotective effects in rats (Snorek
et al., 2012), whereas an 18-h fasting window was found to be
detrimental to rat heart health resulting in larger infarct size
(Liepinsh et al., 2014). Taken together, these conflicting results
highlight the need to investigate the interaction of fasting and
HIF-1 signaling in the heart. Its elucidation could help us
understand the complex molecular background of
cardioprotection and reduce the morbidity and mortality of
ischemic heart disease.

5 Conclusion

In this study, we explored the intricate dynamics of the fasting
heart’s proteome, particularly focusing on the regulation of the
HIF-1 pathway. Our proteomic analysis revealed significant
alterations in 245 proteins, underscoring the profound impact
of a 3-day fasting regimen on cardiac protein expression. Among
these, the modulation of the HIF-1 signaling pathway, a known
mediator of cardioprotection, was notably significant. This
modulation was characterized by a downregulation of HIF-1α at
both transcript and protein levels, suggesting a nuanced regulatory
mechanism in response to fasting. Furthermore, our findings on
the unchanged protein levels of PHD3, despite the decreased gene
expression of its encoding gene Egln3, added complexity to our
understanding of HIF-1α regulation during fasting. Stable levels of
pro-inflammatory cytokines suggested that the reduction in Hif1a
expression is not due to a decrease in basal inflammation.
Moreover, the HIF-1 targets were distinctly regulated,
suggesting a complex interplay between HIF-1 signaling and
other molecular pathways during fasting. These observations
provide insights into the tissue-specific adaptations of the heart
to fasting and highlight the potential of the HIF-1 signaling in this
cardioprotective intervention.
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