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Pulmonary hypertension is a progressive disease of the pulmonary arteries that
begins with increased pulmonary artery pressure, driven by progressive
remodeling of the small pulmonary arteries, and ultimately leads to right heart
failure and death. Vascular remodeling is the main pathological feature of
pulmonary hypertension, but treatments for pulmonary hypertension are
lacking. Determining the process of vascular proliferation and dysfunction
may be a way to decipher the pathogenesis of pulmonary hypertension. In
this review, we summarize the important pathways of pulmonary hypertension
pathogenesis. We show how these processes are integrated and emphasize the
benign role of aerobic exercise, which, as an adjunctive therapy, may be able to
modify vascular remodeling in pulmonary hypertension.
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Introduction

Pulmonary hypertension (PH) is a severe pulmonary vascular disease characterized by
excessive vascular cell proliferation, increased extracellular matrix deposition, and accumulation
of inflammatory cells within the walls of the pulmonary vasculature, which contribute to
increased pulmonary vascular resistance (Pullamsetti et al., 2017). During the pathologic
progression of PH, there is a progressive narrowing of the pulmonary lumen and an increase
in pulmonary artery pressure, which ultimately leads to right ventricular failure and death
(Humbert et al., 2019). The SeventhWorld Symposium on Pulmonary Hypertension has held in
Barcelona. It is endorsed by several patients’ organizations, the European Respiratory Society, the
International Society for Heart and Lung Transplantation, the Société de Pneumologie de Langue
Française and the European Reference Network for Rare Lung Diseases (ERN-LUNG). In recent
years, the European Commission has launched programmes for a higher level of research and
care in the field of rare diseases. Symbolically, the 2024 Symposium started for the first time with
the patients’ perspective, showing the respect and importance given to patients’ priorities. The
translational aspects of modern pulmonary vascular research have been highlighted by the
development of novel treatment approaches directly targeting the basic drivers of pulmonary
vascular remodeling through activin signaling inhibition (Humbert et al., 2023). Similarly, refined
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treatment approaches for PH highlighted the complementarity of the
different treatment modalities targeting different mechanisms of
the disease.

In previous studies, PH is classified according to the level of
pulmonary artery pressure; it was considered mild to moderate
when the pulmonary artery pressure is between 25 and 45 mmHg,
and severe PH when it exceeds 45–50 mmHg. The Sixth World
Symposium on PH recommended that the diagnosis be made by
setting the minimum mean pulmonary artery pressure from
25 mmHg to 20 mmHg (Simonneau et al., 2019). Growing
evidence that even a mean pulmonary artery pressure slightly
above this threshold is associated with an increased risk of death
(Maron et al., 2016; Assad et al., 2017; Douschan et al., 2018),
irrespective of the underlying causative factor. This provides more
opportunities and options for treating patients in the early stages of
the disease.

The previous of clinical treatments for PH remain vasodilators
(Goldenberg et al., 2019). Currently, drug development for
pulmonary hypertension is undergoing a dramatic shift, with the
advent of novel drugs such as tyrosine kinase inhibitors and activin
receptor ligand traps (including sotatercept, which was approved by
the FDA in March 2024 for the treatment of PH in adults).
Sotatercept is a fusion protein that traps activins and growth
differentiation factors involved in pulmonary arterial
hypertension. In patients with pulmonary arterial hypertension
who were receiving stable background therapy, sotatercept
resulted in a greater improvement in exercise capacity as assessed
by the 6-minute walk test (Hoeper et al., 2023). But, sotatercept-like
drugs might be detrimental effects in the heart.

The 3-year survival rate for patients with PH is 68%–70%
(Hurdman et al., 2012; Farber et al., 2015). Current therapies
mainly target pulmonary vasoconstriction and do not effectively
intervene or reverse pulmonary arterial vascular remodeling.
Therefore, there is an urgent need for new explorations to directly
address targeting pulmonary artery remodeling in this PH pathology.

In addition to the extensive research on medication, little is
known about the impact of lifestyle on PH. Currently, complex
exercise rehabilitation interventions are being developed for patients
with pulmonary hypertension: the Supervised Pulmonary
Hypertension Exercise Rehabilitation (SPHERe) trial is also
underway (Ennis et al., 2023). Notably, aerobic exercise is
effective against skeletal and cardiac dysfunction in PH (Vieira
et al., 2020). Exercise rehabilitation training as an adjunct to
disease-specific treatments is often effective and safe for patients
with PH (Dong and Li, 2022). It can improve exercise capacity and
endurance, skeletal and respiratory muscle performance,
cardiorespiratory function and quality of life in patients with PH.
Therefore, the aim of this review is to investigate the pathways at the
level of pathomechanisms and to illustrate the efficacy and safety of
performing aerobic exercise in order to provide a theoretical basis
for the prevention and treatment of PH.

Pulmonary hypertension and
pulmonary artery remodeling

Vascular dysfunction and vascular remodeling are thought to be
central mechanisms in the development of high pulmonary arterial

pressure, which is chronically elevated by dysregulation of
functional vascular signaling pathways driven by relevant triggers.
This process leads to high afterload and failure of the right ventricle.
The process of pulmonary vascular remodeling involves all the
layers of the membrane structure of the vascular wall; the intima
consists of endothelial cells, the middle layer consists mainly of
smooth muscle cells (SMCs), and the tunica consists of fibroblasts. It
is complicated by the presence of cellular heterogeneity within the
compartments of the pulmonary artery wall.

Pulmonary artery endothelium

Most studies have concluded that the pulmonary artery
endothelium is the initial site of PH disease (Stenmark et al.,
2012; Kuebler et al., 2017). Pulmonary vasoconstriction occurs
early in PH pathology, in turn, vasoconstriction is closely related
to endothelial disfunction. The extent to which the endothelium is
compromised in PH is not fully understood. In one study, based on
cross-sectional analysis of the pulmonary arteries, the normal intima
accounted for approximately 10% of the total thickness. Idiopathic
PH, which is typical of severe PH, shows marked thickening and
disorganization of the intima; in severe PH disease, the intima of the
pulmonary arteries in PH shows an increase in thickness of about
three times compared to normal pulmonary arteries (Stacher et al.,
2012). The thickened intima leads to increased pulmonary vascular
resistance. Using the volume density parameter of alveolar septa as a
reference, PH is associated with a doubling of the intima compared
to more normal pulmonary arteries (Stacher et al., 2012). The types
of intimal thickening are diverse. They can be briefly categorized
according to the predominance of collagen and mucin, fibroblasts or
endothelial cells. Endothelial-like cells proliferate abnormally in a
disorganized and chaotic manner and are prone to develop lesions.
Studies have shown that high expression of angiogenic markers
including vascular endothelial growth factor (VEGF), VEGF
receptor and hypoxia inducible factor (HIF) are detected in these
diseased endothelial tissues (Bryant et al., 2012).

Hypoxia is also a major causative agent of PH, and hypoxia leads
to endothelial cell dysfunction through activation of receptor-γ
cofactor-1α by endothelial peroxisome proliferators, increased
formation of reactive oxygen species (ROS), mitochondrial
dysfunction, nuclear factor κB (NF-κB) activation, and
subsequent secretion of interleukin-6 (IL-6) and tumor necrosis
factor-α (TNF-α) (Ye et al., 2016). Endothelial dysfunction leads to
decreased production of vasodilators such as nitric oxide (NO) and
prostacyclin and increased production of vasoconstrictors such as
endothelin-1 (ET-1). ET-1 is a potent vasoconstrictor, and its
prolonged overexpression not only affects vascular tone but also
induces vascular remodeling. Therefore, it plays an important role in
the pathogenesis of PH. In addition, ET-1 is involved in lung
microvascular remodeling (Stam et al., 2018). There is substantial
evidence that the endothelium may play a key role as an
inflammatory cell signaling hub (Pugliese et al., 2015). As a
signaling hub, the endothelium maintains feed-forward
interactions between resident fibroblasts and macrophages. In
addition, prolonged hypoxia disabled the FIS1 deSUMOylation
by diminishing the availability of SENP1 in mitochondria via
inducing miR (microRNA)-138 and consequently resulted in
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mitochondrial dysfunction and metabolic reprogramming in
pulmonary endothelium (Zhou et al., 2023). The specific
mechanism(s) of the initiating stimulus(s) or injury(s) leading to
abnormal endothelial cell proliferation are not fully understood, but
may include hypoxia, shear stress, inflammation, or response to
drugs or toxins in the context of genetic susceptibility.

Pulmonary artery mesentery

PH is a progressive disease that is typically characterized by an
abnormal proliferation of SMCs in the pulmonary artery mesentery,
thus leading to progressive apoptosis of the pulmonary arteries.
Numerous studies have shown that hypoxia causes pulmonary
vasoconstriction and vascular remodeling (Wilkins et al., 2015;
Huang et al., 2022). Prolonged exposure to hypoxia leads to
hypoxic PH. Due to the superimposed release of hypoxic and
growth factors, the pulmonary arteries undergo an excessive
muscularization process, with mesenchymal smooth muscle cell
remodeling as the main remodeling. Pulmonary artery smooth
muscle cells (PASMCs) are the predominant cell type in the
inner layer of the pulmonary arteries and contain contractile
proteins that are regulated by calcium and control vascular tone
(Lyle et al., 2017). When dysregulated, SMCs contract abnormally,
which in turn leads to sustained vasoconstriction, ultimately
triggering vascular smooth muscle remodeling, a disease
hallmark of PH.

PASMCs are a cell type without terminal differentiation and can
maintain significant plasticity (Gomez and Owens, 2012). Under
hypoxia, overproliferation and anti-apoptosis of PASMCs in small
pulmonary arteries can cause pulmonary artery remodeling to
occur. SMCs have been shown to transmit inflammatory signals
in lung tissue through their secretion of pro-inflammatory cytokines
(Dreymueller et al., 2014). In addition, the proliferative and quasi-
synthetic phenotypic switch observed in PASMCs under hypoxia is
mediated by hypoxia-inducible factor-1(HIF-1) driven expression of
miR-9-1 and miR-9-3 (Shan et al., 2014). HIF-2α is a homologue of
HIF-1α, chronic hypoxia enhances HIF-2α stability, which causes
increased arginase expression and dysregulates normal vascular NO
homeostasis, suggesting that HIF-2α contributes to the development
of hypoxic pulmonary vascular remodeling by upregulating these
vasoconstrictors through the endothelium. HIF-1-dependent
upregulation of miR-210 leads to anti-apoptosis in PASMCs by
targeting the transcription factor E2F3 (Gou et al., 2012). Hypoxia-
induced muscularization of non-muscularized pulmonary artery
vessels involves pre-existing smooth muscle cell progenitors that
undergo dedifferentiation, migration to distal vessels, proliferation
and redifferentiation (Sheikh et al., 2014). Thus, multiple
mechanisms act synergistically and ultimately contribute to the
pro-proliferative, pro-growth, and anti-apoptotic phenotypes of
PASMCs during the pathologic process of PH.

Pulmonary artery epicardium

As hypoxia activates ROS signaling, it stimulates the production
of α-smooth muscle actin (α-SMA), a classical marker of activated
fibroblasts (Barman et al., 2014). The work of Chai et al.

demonstrated that hypoxia induces the proliferation of
pulmonary artery adventitia fibroblast (PAAF), migration and
vascular remodeling, as observed in the pulmonary artery wall of
hypoxic rats in vivo, where hypoxia induced medial and lateral
thickening as well as excessive fibrin and collagen deposition (Chai
et al., 2018).

Fibroblasts provide mechanical strength to tissues by
producing extracellular matrix and providing matrix support.
In addition, fibroblasts are able to respond to various stimuli such
as vasodilation or hypoxia (Stenmark et al., 2013). In response to
these stimuli, pulmonary artery endothelial fibroblasts exhibit a
distinct pro-inflammatory phenotype characterized by an
increase in chemokines, cytokines and adhesion molecules
(Kitamura et al., 2011). In addition, interactions between
fibroblasts and leukocytes at sites of chronic inflammation
appear to promote the continued survival and retention of
leukocytes, which in turn leads to a delay or disappearance of
the inflammatory lesion (Buckley, 2011).

Thus, pulmonary artery endothelial cells (PAECs), PASMCs,
and pulmonary artery adventitia fibroblasts (PAAFs) are able to
interact cooperatively with each other in response to stimuli
induced during the pathologic process of PH, such as altered
fluid shear stress, stretch, and hypoxia. Pulmonary artery
constriction, regulated by contraction and relaxation of
PASMCs, can be modulated by paracrine factors released by
PAECs. ECs release of the endothelium-derived constricting
factors (EDCF), ET-1, from PAEC causes pulmonary
vasoconstriction by activating ET receptors (e.g., ETA) and
thromboxane/prostaglandin endoperoxide (TP) receptors,
respectively, on the membrane of PASMC. Release of the
endothelium-derived relaxing factors (EDRF), NO and
prostacyclin (PGI2), and the endothelium-derived
hyperpolarizing factors (EDHF) from PAEC (Makino et al.,
2011). Serotonin synthesized by PAECs is transferred through
these gap junctions to PASMCs where it activates TGF-β1
signaling, which in turn induces a more differentiated
phenotype. Since TGF-β1 is an important regulator of
fibrosis, this is an important way in which PAECs and
PASMCs respond to PH (Gairhe et al., 2012).

Causes and mechanisms of pulmonary
hypertension

Pulmonary hypertension and hypoxia

In the pathological progression of PH, chronic hypoxia,
vasoconstriction, endothelial dysfunction, mitochondrial
abnormalities, and inflammation are among the many factors
that can activate the HIF signaling pathway, which in turn
triggers alterations in the intima-media, endothelium, and epima-
media of the pulmonary vasculature, inflammatory cells, and
cardiomyocytes, leading ultimately to pulmonary vascular
remodeling and right ventricular failure.

Hypoxic environments are widely used as a major stimulus for
proliferative vasculopathy in PH models prepared in small animals;
hypoxic environments also trigger reversible pulmonary vascular
remodeling when humans arrive to reach high altitudes (Sydykov
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et al., 2021). Cellular sensing of oxygen is multilayered and tissue-
specific, but the hypoxia-inducible transcription factors HIF-1α and
HIF-2α are key regulators of hypoxic adaptation in pulmonary
vascular cells (Semenza, 2012).

It has been shown that HIF-1α expression is upregulated in the
pulmonary arteries of patients with PH (Labrousse-Arias et al.,
2015). The cellular sources of increased HIF-1α expression in lung
tissues of patients with PH are pulmonary artery endothelial cells
(Bryant et al., 2016) and pulmonary artery SMCs (Kurosawa et al.,
2019; Marsboom et al., 2012). The proliferation and quasi-synthetic
phenotypic switch observed in PASMCs under hypoxia is mediated
by HIF-1 drive (Shan et al., 2014).

Pulmonary hypertension and inflammation

Clinical results have shown that the degree of perivascular
inflammation in PH patients correlates with pulmonary
hemodynamics and vascular remodeling (Stacher et al., 2012). In
lung biopsies from PH patients, almost all inflammatory cell lineages
were found in the vicinity of remodeled pulmonary vessels, such as
macrophages, mast cells, T lymphocytes, B lymphocytes, dendritic
cells, and neutrophils (Savai et al., 2012).

Inflammatory mechanisms play an important role in PH
pathology. Autoantibodies (e.g., antinuclear antibodies), and
elevated levels of pro-inflammatory cytokines Interleukin-1 (IL-1)
and IL-6 were detected in some patients with PH. Histologic findings
in the lungs have also shown an inflammatory infiltrate
(macrophages and lymphocytes) at the lesion in patients with
severe PH (Yaku et al., 2022). Interleukin-1 β (IL-1β) is a key
inflammatory cytokine released in response to inflammasome
activation and is an important mediator of the inflammatory
response. Elevated serum levels of IL-1β in patients with PH are
associated with worsening PH (Pickrell and Youle, 2015). IL-1βmay
be derived in part from neutrophils and T cells infiltrated in diseased
pulmonary vessels, a key component of chronic hypoxia-induced
inflammation in PH mice, i.e., it contains Pyrin domain 3 (NLRP3)
of the Nod-like receptor family and contains the positive staining for
apoptosis-associated speckled protein (ASC) of the caspase
recruitment domain proved this (Cero et al., 2015). Elevations in
lung IL-1β, IL-1βR and MyD88 preceded pulmonary hypertension
in hypoxic mice. Knockdown of IL-1βR or a molecular adaptor of
mouse myeloid differentiation primary response protein
88 prevented hypoxia-induced PH (Parpaleix et al., 2016). In
PASMCs, prostacyclin modulates vasodilatation and has
antiproliferative effects. This vasodilatory effect is mediated
through the second messenger cyclic adenosine monophosphate
(cAMP). IL-1β attenuates the conversion of ATP to cAMP in
PASMCs by down-regulating adenylate cyclase. In addition, IL-
1β can regulate PASMC growth through the IL-1R1/
MyD88 pathway (Yang et al., 2014).

As can be seen, inflammatory factors are clearly drivers and
contributors to the pathologic process of PH. some of these
inflammatory factors show a strong correlation with the severity
of PH disease (notably interleukins IL-1, IL-6 (Hu et al., 2020). Not
only is inflammation part of the pathology of PH, but inflammation
may indeed drive several key pulmonary vasculopathic features of
the disease.

PH and ROS

ROS, including O2- and H2O2, play important roles as mediators
and signaling molecules capable of activating multiple pathways
involved in the control of pulmonary vascular tone, cell proliferation
and apoptosis, inflammation, and fibrosis. Supraphysiologic doses of
H2O2, in turn, are highly correlated with pathophysiologic responses
leading to vasoconstriction and PH.

In the pulmonary vasculature, Nox isozymes can be activated by
a number of stimuli (e.g., G-protein-coupled receptor agonists,
angiotensin II, thrombin, endothelin, 5-hydroxytryptophan,
thromboxane A2 (Karpińska et al., 2017). Nox-derived ROS are
able to activate NF-κβ, activate MAPK, and cause aberrant cell
proliferation, as well as potassium channel regulation in response to
changes in oxygen concentration (Dias-Freitas et al., 2016; Brendel
et al., 2020). Both Nox1 and Nox4 induce proliferation in PASMCs
(Mittal et al., 2007). Nox4 expression in PASMCs can be induced by
several stimuli, including hypoxia, shear stress, and endoplasmic
reticulum stress (Bedard and Krause, 2007; Lambeth et al., 2007).
The effect of Nox4 on the expression of smooth muscle
differentiation markers is required, and there is a correlation
between the reduction of Nox4 expression and the loss of
smooth muscle differentiation markers, such as smooth α-actin
and myosin heavy chain, over multiple passages in PASMCs
(Clempus et al., 2007; Sturrock et al., 2006), a process in which
Nox4 is involved through the induction of TGF-β1 (Sturrock et al.,
2006). In PASMCs TGF-β activation of Nox4 leads to intracellular
ROS production (Waghray et al., 2005). Under hypoxic conditions
Nox4 increases ROS production, stimulates proliferation of
PASMCs and inhibits apoptosis in lung fibroblasts (Li et al., 2008).

Pulmonary hypertension and endoplasmic
reticulum stress

Endoplasmic reticulum (ER) stress has been a hot topic in the
study of disease mechanisms. Research surrounding ER stress and
PH has consequently been initiated, with numerous findings
suggesting that the unfolded protein response (UPR) plays an
important role in the onset and progression of PH pathology.
Nowadays, inhibition of ER stress is considered as a new
potential intervention in the clinical treatment of PH. Several
studies have demonstrated that treatments that reduce ER stress
through the use of chemical chaperones can reverse or treat PH in
animal models (Wu et al., 2016; Dromparis et al., 2013; Martin and
Pabelick, 2014).

It has been shown that vascular remodeling is closely related to
ER stress, especially to the abnormal proliferation of PASMCs
(Koyama et al., 2014). It has been suggested that proliferation of
PASMCs and resistance to apoptosis are critical for vascular
remodeling in PH (Masson et al., 2022; Perros et al., 2008; Wang
et al., 2014). ER stress is a fundamental cellular response that
promotes the proliferation of PASMCs and enhances
inflammatory responses (Chen et al., 2018). Therefore, it has
been suggested that abnormal proliferation of PASMCs is the
most important cause of pulmonary vascular remodeling in PH
(Santos-Ribeiro et al., 2016; Yu et al., 2017). Studies have shown that
autophagy is involved in the pathogenesis and development of
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MCT-induced PH (Long et al., 2013; Feng et al., 2021). And eIF2α
can activate ER autophagy after ER stress. Meanwhile, eIF2α plays a
key role in regulating cell proliferation and hypertrophy, and is
involved in regulating the proliferation and migration of vascular
smooth muscle (Jiang et al., 2016; Liu et al., 2013). All of the above
suggest that ER stress is involved in the abnormal proliferation of
PASMCs in PH. Inflammatory cell recruitment and persistence of
inflammation in PH are two key components of pathological
vascular remodeling (Hassoun et al., 2009). Activation of UPR
and production of pro-inflammatory biomolecules were due to
ET-1 signaling in rat PASMCs (Yeager et al., 2012). The
occurrence of ER stress promotes the proliferation and
inflammatory state of PASMCs, which contributes to PH
pathology. The persistent inflammation produced by PASMCs is
associated with vascular remodeling, and inhibiting this process may
be a potential approach for treating PH. Although the function of ER
stress in PASMCs has been extensively studied, the mechanism
remains incompletely understood. In conclusion, inhibition of the
aforementioned proliferation of pulmonary artery smooth muscle
cells due to ER stress is also a potential therapeutic option for PH.

Pulmonary hypertension and platelet
activation, thrombosis

Patients with PH may even develop thrombotic arteriopathy,
which indicates a prolonged activation of platelets and endothelial
cells, with the continuous involvement of coagulation factors. This
endothelial activation is associated with endothelial cell proliferation
and plexiform lesion formation (Guignabert and Dorfmüller, 2017).

Patients with PH tend to exhibit thrombocytopenia, and those with
moderate to severe disease have a poorer prognosis, suggesting that
platelets appear to play a role in disease progression. Impaired platelet
function in patients with PH leading to their chronic activation and
degranulation, increased expression of thrombopoietin in the pulmonary
arteries, and an increase in themean platelet volume suggest that platelet
activation, aggregation, and depletion may be increased in the
pulmonary circulation (Vrigkou et al., 2019; Zheng et al., 2015).
Platelet depletion also stimulates platelet production in the bone
marrow, resulting in more platelets and potentially stronger
thrombogenic effects. Activated endothelial cells may promote
thrombosis through von Willebrand factor (vWF)-mediated platelet
activation, factor X activation and tissue factor (TF) production
(Nogueira-Ferreira et al., 2014). In rodent models of PH, the activity
of this protein is positively correlated with pathological hemodynamic
changes and vascular remodeling. The pathological role of TF is not only
related to its prothrombotic effects, but also to its direct proliferative and
migratory effects. In addition, decreased histone trimethylation and
increased histone acetylation of the vWF promoter in the PH
endothelium facilitated the binding of NF-κB2 to the vWF promoter
and drove the transcription of vWF. epigenetic regulation of the vWF
promoter contributes to the creation of a localized environment that is
conducive to in situ thrombosis in pulmonary arteries. It reveals a direct
link between inflammatory pathways and platelet adhesion in the
pulmonary vascular wall, suggesting a possible role of in situ
thrombosis in the development or progression of PH (Manz et al., 2022).

Microparticles derived from platelets and the endothelium are
an increasingly well-recognized signal in PH (Zheng et al., 2015).

The activation of platelets, apart from releasing granules, increases
the surface expression of various adhesion molecules and receptor
(e.g., selectin P, gp IIIa/IIb) as well as the production of
thromboxane A2 (TxA2), which in turn activates other platelets
and promotes vasoconstriction and local thrombosis (Kazimierczyk
and Kamiński, 2018). Evidence of platelet function abnormalities
and dysregulation of the coagulation cascade have been found in PH
patients (Bazan and Fares, 2018). Coagulation processes are
involved in most of the major pathophysiological pathways of
PH, either directly (e.g., thrombus formation and thrombotic
arteriopathy) or indirectly (through the production and release of
vasoactive substances) (Kazimierczyk and Kamiński, 2018).
Therefore, platelets are activated and function abnormally,
platelet aggregation is diminished, there is catabolism, there are
defects in the initiation of the coagulation process and propagation
of clots, and there is diminished thrombin formation in patients with
PH. The procoagulant activity is impaired, which may be due to the
sustained and prolonged activation of the procoagulant process
(Vrigkou et al., 2020). PH patients have higher levels of
procoagulant microparticles (MPs) in the pulmonary vasculature,
which are fragments of circulating cell membranes released by
activated and/or apoptotic cells that stimulate thrombosis by
providing coagulation factor activation (Nadaud et al., 2013). As
a result, patients with PH have reduced levels of PGI2 and increased
levels of TxA2. Upon activation, platelets release TxA2 and platelet-
derived growth factor (PDGF), among others, which induce
activation of nearby platelets and contribute to platelet
amplification and aggregation. Meanwhile, PGI2, which is mainly
produced by inactivated endothelium, has vasodilatory and
antiplatelet aggregation effects. Thus, this imbalance appears to
be the result of impaired endothelial function and/or enhanced
platelet activation in the pulmonary vasculature, with important
implications for disease progression.

Pulmonary hypertension and genetics

Considerable progress has been made in the genomics of
pulmonary arterial hypertension since the 6th World Symposium
on Pulmonary Hypertension, with the identification of 17 genes, as
well as common variants that confer a modest increase in PH risk.
Gene and variant curation by an expert panel now provides a robust
framework for knowing which genes to test and how to interpret
variants in clinical practice. Researchers recommend that genetic
testing be offered to specific subgroups of symptomatic patients with
PH, and to children with certain types of group 3 PH. Testing of
asymptomatic family members and the use of genetics in
reproductive decision-making require the involvement of genetics
experts (Austin et al., 2024). In 2020, investigators for the
United States Pulmonary Hypertension Scientific Registry
(USPHSR) provided data from the first US PH patient registry to
include genetic information. Genetic testing identified pathogenic or
suspected pathogenic variants in 67 of 499 (13%) USPHSR
participants (Badlam et al., 2021).

Pathogenic mutations in BMPR2 are the most common cause of
heritable pulmonary arterial hypertension (HPAH) in both adults
and children (Welch and Chung, 2020). The loss of
BMPR2 promotes endothelial dysfunction, endothelial to
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mesenchymal transition and pulmonary arterial smooth muscle cell
hyperproliferation (Theilmann et al., 2020; Hiepen et al., 2019;
Hopper et al., 2016). Genes with causal mutations identified in
children with PH differs from the prevalence of causal gene
mutations identified in adults with PH. For example, mutations
in TBX4, a transcription factor in the T-box gene family that
modulates lung development, are found more commonly in
children with PH (Zhu et al., 2018).

Clinical observations, molecular discoveries, and laboratory
technology have made genetic counseling and testing possible for
patients diagnosed with PH, especially group 1 PAH. Recent studies
in scRNA-seq have significantly deepened our understanding of PH
by revealing cellular heterogeneity and uncovering key molecular
pathways involved in disease progression. Dysregulated endothelial
cell subpopulations with proliferative and angi ogenic phenotypes
contribute to aberrant vascular remodeling, as exemplified by the
role of CD74 in endothelial dysfunction—its knockdown regulates
endothelial cell proliferation and barrier integrity, suggesting a
potential therapeutic target (Rodor et al., 2022). Additionally,
scRNA-seq analyses have identified significant changes in
immune cells: macrophages interact with other disease-related
cells via the PI3K/Akt pathway (Miao et al., 2022); T cells and
natural killer cells drive heightened inflammation through
upregulation of CCL5 (Kumar et al., 2024); and neutrophil
subsets expressing high levels of MMP9 correlate with increased
mortality in idiopathic pulmonary arterial hypertension patients
(Zhang et al., 2023). These insights highlight the complex interplay
between endothelial dysfunction and immune-mediated

inflammation in PH, offering new potential therapeutic targets,
particularly in immune cell regulation and endothelial function.
Furthermore, to advance gene- and pathway-specific care and
targeted therapies, gene-specific registries will be essential to
support patients and their families and to lay the foundation for
genetically informed clinical trials.

In conclusion, the causes of pulmonary arterial hypertension
include increased vascular resistance, etc., of which hypoxia is the
most important factor in the formation of pulmonary arterial
hypertension, under the effect of hypoxia, inflammation, ROS,
ER stress, platelet activation, thrombosis and genetics together
lead to pathological changes in pulmonary arterial vascular
configuration (Figure 1).

Aerobic exercise and pulmonary
hypertension

Aerobic exercise has emerged as adjuvant therapy for many
diseases, and the beneficial relationship between aerobic exercise
and lung disease has gradually become closer.

Benefits of aerobic exercise to pulmonary
vascular membrane

Based on the existing literature, it seems that researchers prefer
to discuss the benefits of aerobic exercise on each layer of the vessel

FIGURE 1
Multiple factors such as hypoxia, inflammation and ER stress lead to long-termmaladaptation and dysfunction of the pulmonary artery vasculature,
ultimately leading to the development of pulmonary hypertension. The main manifestations are changes in the structure and function of vascular
endothelial cells, smooth muscle cells, and extracellular matrix.
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separately rather than as a whole, and these beneficial effects are
mainly concentrated in the pulmonary artery intima and pulmonary
artery media.

Aerobic exercise training opposes endothelial dysfunction via
enhanced endothelial NO synthase and increased NO production
and bioactivity, which improves NO-dependent vasodilation of large
conduit vessels. As such, exercise training improves vascular
endothelial function (Fiuza-Luces et al., 2018). Exercise training
studies also demonstrate that exercise training is associated with an
increase in endothelial function (Ramos et al., 2015). Long-term
aerobic exercise training also induces shear stress-mediated arterial
remodeling that results in larger conduit and peripheral artery sizes.
Aerobic exercise also reduces the wall thickness of conduit arteries
(Hellsten and Nyberg, 2015). These vascular structural adaptations
markedly increase the luminal reserve of the vessel and reduce the
probability of a flow-limiting stenosis (Fiuza-Luces et al., 2018).

Benefits of aerobic exercise to mechanisms
of disease

Aerobic exercise and inflammation: Aerobic exercise can
facilitate lung regeneration with mild inflammatory effect, and
proper aerobic exercise is beneficial for lung damage repair and
regeneration, which should be considered as an ideal supportive
therapy for patients with different respiratory diseases (Wu
et al., 2022).

Aerobic exercise and ROS: Exercise improves endothelial
function and arterial stiffness by reducing inflammatory and
oxidative damage signaling in vascular tissue together with an
increase in antioxidant enzymes and nitric oxide availability,
globally promoting functional performance (El et al., 2022). In
the case of drug resistance, effective aerobic exercise could reduce
ROS, activate SOD, inhibit HIF-1 and acetaldehyde dehydrogenase 1
(ALDH1), and cause a reduction in cancer stem cells to sensitise cells
to drug again and ultimately inhibit the malignant proliferation of
tumours. Therefore, in the treatment of lung adenocarcinoma, the
inhibitory effect of aerobic exercise on oxidative stress can be used as
an effective adjunct measure in the treatment of lung
adenocarcinoma (Yang et al., 2022).

Aerobic exercise and ER stress: Study showed 8-week exercise
and choline intervention also inhibited the protein expression of
myocardial MFN2, PERK/eIF2α/ATF4, and NLRP3/caspase-1/IL-
1β signaling pathways, thereby effectively reducing mitochondrial
fusion, endoplasmic reticulum stress, and inflammation. Aerobic
exercise increases can improve cardiac function in cardiovascular
disease (CVD) rats (Ma et al., 2021).

Aerobic exercise and thrombosis: Exercise is considered a
double-edged sword since, on one hand, acute exercise can be a
direct cause of a thrombotic event, and on the other hand, exercise
training is a potent intervention for lowering the risk of
cardiovascular events. Thus, for patients at risk, the safer
recommendation would accordingly be to initiate exercise
programs at low to moderate intensities. Studies combining
platelet reactivity assay, clinical measures of hemostatic markers,
and the novel functional measure of clot microstructure will provide
a new level of detailed prediction of the susceptibility to harmful
arterial blood clots (Olsen et al., 2021).

Therefore, although many studies have examined the effects of
regular physical exercise on the cardiovascular and respiratory
systems, the specific effects of physical exercise on the
pathological mechanisms of pulmonary hypertension have not
been fully studied, especially the lack of exercise and the
mechanism of pulmonary artery vascular hyperplasia. Therefore,
future research on aerobic exercise and vascular hyperplasia should
be increased.

Pulmonary artery hypertension and
recommended exercise

Patients with PH have reduced exercise capacity and quality of
life. Despite initial concerns that exercise training might exacerbate
symptoms in such patients, several studies have reported that
exercise rehabilitation training improves function and quality of
life (Figure 2).

European Respiratory Society published a statement on exercise
training in PH reporting improvements in exercise capacity,
muscular function, quality of life and potentially right ventricular
function (Grünig et al., 2019). However, it was noted that further
studies were needed to consolidate these findings and the impact of
exercise training on disease risk profiles and to establish optimal
training methodology. European Cardiac and Respiratory Societies
Guidelines for the diagnosis and treatment of PH recommend
supervised exercise training for people with PAH under medical
therapy (Class of recommendation: 1; level of evidence A) (Humbert
et al., 2022). With the broadening of international acceptance of
exercise training in PH, albeit based on a limited body of evidence. In
patients with PH, supervised exercise-based rehabilitation may
result in a large increase in exercise capacity. Changes in exercise
capacity remain heterogeneous and cannot be explained by
subgroup analysis. It is likely that exercise-based rehabilitation
increases health-related quality of life (HRQoL) and is probably
not associated with an increased risk of a serious adverse events.

FIGURE 2
For patients with pulmonary hypertension, aerobic exercise may
lead to substantial improvements in exercise capacity, which may
improves pulmonary hypertension.

Frontiers in Physiology frontiersin.org07

Song et al. 10.3389/fphys.2024.1461519

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1461519


Exercise training may result in a large reduction in mean pulmonary
arterial pressure (Morris et al., 2023).

The beneficial effects of exercise rehabilitation training were
mainly demonstrated by improvements in peak oxygen uptake
(pVO2), 6-minute walk distance (6MWD), hemodynamics,
cardiorespiratory fitness, and exercise capacity in patients with
different types of PH.

PH patients receiving PH medication and inoperable patients were
randomly assigned to training and control groups. The training regimen
consisted of low-load intermittent cycle ergometer training, walking,
low weight (500–1,000 g) dumbbell training for a single muscle group,
and respiratory training for at least 1.5 h per day. Results showed a
significant increase in pVO2/kg in the training group after 15 weeks
(mean increase of 24.3% relative to baseline). The training group also
showed significant improvements in cardiac index, mean pulmonary
artery pressure, pulmonary vascular resistance, 6MWD, quality of life
scores and exercise tolerance at rest and during exercise (Ehlken et al.,
2016). It was also shown that 8 weeks of exercise significantly improved
a predictor of death in PH: cardiorespiratory fitness (Santos-Lozano
et al., 2019). The efficacy of low-dose exercise and breathing training as
an add-on treatment for severe chronic PH. Their effects are a powerful
complement to the beneficial results of new medical treatments.

Cardiopulmonary exercise testing (CPET) is a comprehensive
methodology well studied in PAH with roles in diagnosis, treatment
response, and prognosis. Submaximal and maximal exercise data is a
valuable tool in detecting abnormal hemodynamics associated with
exercise-induced and resting pulmonary hypertension as well as
right ventricular dysfunction. Pulsatile pulmonary vascular
pressure-flow relationships in PH allow for the assessment of RV
hydraulic load. 12 weeks of aerobic training can significantly
improve right ventricular systolic blood pressure in patients with
PH (Atef and Abdeen, 2021). The increased granularity of CPET
may help further risk stratify patients to inform prognosis and better
individualize treatment decisions (Sherman and Saggar, 2023).
Chronic obstructive pulmonary disease or diffuse interstitial lung
disease, CPET helps to understand the nature of exertional
limitation. Different studies have shown that the presence of PH
significantly reduces peak oxygen consumption and oxygen pulse
volume in these chronic lung diseases, confirming that the typical
ventilatory limitation of the underlying respiratory disease is
associated with cardiovascular restriction (Blanco et al., 2020).

Decreased exercise capacity is a common feature of PH. The 6-
min walk test (6MWT) is often the most common method
incorporated into the clinical assessment of the disease (Babu
et al., 2017). The test can be used to assess the efficacy of
interventions and to provide prognostic information (Holland
et al., 2014). In the past, the PM6M was used to assess the
efficacy of treatment for PH, and it is now used as one of the
basic elements in the multiparametric assessment of risk of death

(Boucly et al., 2014). For example, in PH due to chronic
thromboembolic disease, which can be resolved surgically, PM6M
is routinely performed before and after pulmonary endarterectomy
as a tool to assess disease severity, functional capacity and prognosis
(Richter et al., 2014).

In conclusion, for patients with PH, supervised exercise
rehabilitation may lead to substantial improvements in exercise
capacity, which in turn improves PH.
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