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Background: Exercise-induced oxidative stress and inflammation can impair
muscular function in humans. The antioxidant and anti-inflammatory
properties of molecular hydrogen (H2) highlight its potential to be as an
effective nutritional supplement to support muscular function performance in
healthy adults. However, the effects of H2 supplementation on muscular
endurance performance in trained individuals have not been well
characterized. This study aimed to assess the effects of intermittent
hydrogen-rich water (HRW) supplementation before, during, and after
resistance training on muscular endurance performance, neuromuscular
status, and subjective perceptual responses after a 48-h recovery period.

Methods: This randomized, double-blinded, placebo-controlled cross-over
study included 18 trained men aged 19.7 ± 0.9 years. Participants in this study
were instructed to consume 1,920 mL of HRW or pure water (Placebo) daily for
7 days. Additionally, participants were required to supplement with HRW or pure
water five times during the training day (1,260 mL total). This included drinking
210 mL 30 min and 1 min before training, 210 mL between training sets, 210 mL
immediately after training, and 420 mL 30 min into the recovery period.
Participants performed half-squat exercises with the load set at 70% of one
repetition maximum for six sets (half-squat exercise performed to repetitions
failure each set). Wemeasured the power output and number of repetitions in the
free barbell half-squat used to assess muscular endurance performance in
participants. The countermovement jump (CMJ) height, total quality recovery
scale (TQRS), and muscle soreness visual analog scale (VAS) scores were
measured to assess fatigue recovery status after training, as well as at 24 and
48 h of recovery.

Results: The total power output (HRW: 50,866.7 ± 6,359.9W, Placebo: 46,431.0 ±
9,376.5W, p = 0.032) and the total number of repetitions (HRW:78.2 ±
9.5 repetitions, Placebo: 70.3 ± 9.5 repetitions, p = 0.019) in the H2

supplemented group were significantly higher than in the placebo
group. However, there was no statistically significant difference (p< 0.05)
between the H2 and placebo groups in CMJ, TQRS, and VAS.
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Conclusion: Eight days of intermittent HRW intake could significantly improve
muscular endurance performance in trained individuals, making it a promising
strategy for athletes or fitness enthusiasts looking to boost muscular endurance
during resistance training or competitions. However, it should be noted that HRW
intake alone may not be adequate to accelerate recovery from muscle soreness or
fatigue following high-intensity training.

KEYWORDS

hydrogen-richwater,muscular endurance, countermovement jump, total quality recovery
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1 Introduction

Muscular endurance is the ability of a muscle to perform
continuous contractions under sub-limit loads, and it is
regarded as an essential component not only of athletic
performance in sports but also for activities of daily living that
require repetitive work (Bemben, 1998; Dere and Alemdaroğlu-
Gürbüz, 2024; Varjan et al., 2024; Daniels and Howie, 2024).
Evidence indicates that resistance training positively changes
mitochondria and microvasculature, improving participants’
muscular endurance (Kon et al., 2010; Groennebaek et al.,
2018). However, multiple sets of resistance training can cause
muscle tissue damage, increased creatine kinase, and decreased
neuromuscular status, leading to exercise fatigue and difficulty
maintaining specific power output and completing additional
repetitions (MacIntyre et al., 1995; González-Hernández et al.,
2021; Pareja-Blanco et al., 2017). Additionally, intense resistance
training induces delayed onset muscle soreness (DOMS), causing
participants to experience discomfort in their skeletal muscles for
24–48 h after exercise (Stauber, 1989; McQuilliam et al., 2023). It
has shown that the underlying mechanisms leading to muscle
function impairment and exercise fatigue are localized
inflammatory responses to leukocyte aggregation in injured
muscle tissue, apoptosis, and reactive oxygen species (ROS)
(Close et al., 2005; Carrì et al., 2015; Çakir-Atabek et al., 2019;
Powers and Jackson, 2008). Therefore, efforts have been put on
exploring potential anti-inflammatory and antioxidant
approaches, which can thus help develop appropriate strategies
to enhance muscle endurance performance .

In recent years, molecular hydrogen (H2) has emerged as a novel
antioxidant in sports science (Kawamura et al., 2020; Ostojic, 2021;
Ostojic, 2015). It offers several advantages over conventional
antioxidants. H2 effectively reduces hydroxyl radicals (·OH) and
peroxynitrite (ONOO-) in cells without affecting other reactive
substances like superoxide (O2-), hydrogen peroxide (H2O2), and
nitric oxide (NO) (Hong et al., 2010; Ohsawa et al., 2007).
Additionally, as the smallest molecule, H2 can quickly enter cell
membranes, diffuse into organelles such as mitochondria, and
enhance mitochondrial respiration, enzyme activity, and ATP
production or lactate oxidation (Ostojic, 2021; Gvozdjáková et al.,
2020). H2 can also be exhaled, minimizing side effects (Kawamura
et al., 2020; Ostojic, 2015). Given these advantages, H2 has been
suggested to enhance exercise capacity, acting as a selective
antioxidant, signaling molecule, a tonic for mitochondrial
bioenergetics, and/or a buffering agent (Ostojic, 2021). Several
human studies have found that pre-exercise supplementation with

hydrogen-rich water (HRW) improves endurance, repeated sprint
ability, and maximal isokinetic muscle strength performance in
healthy adults (Kawamura et al., 2020; Ostojic, 2021; Sládečková
et al., 2024; Jebabli et al., 2023; Botek et al., 2022; Timon et al.,
2021; Dong et al., 2022; Aoki et al., 2012). Our previous systematic
review and meta-analysis also showed that pre-exercise H2

supplementation effectively increased antioxidant potential and
reduced subjective fatigue (e.g., rating of perceived exertion) and
blood lactate concentration during aerobic and anaerobic exercise
(Zhou et al., 2023; Li et al., 2024). In a study by Botek et al. (2021),
it was demonstrated that intermittent HRW supplementation before,
during, and after barbell half-squats (3 sets of 10 repetitions at 70%
1RM) enhanced lower extremity mobility, reduced blood lactate
concentrations, and alleviated DOMS in healthy adults at 24 h
(Botek et al., 2021). Sládečková et al. (2024) showed that
supplementation with HRW promotes muscle recovery in elite fin
swimmers after two strenuous training sessions on the same day. The
available evidence implicates that short-term H2 supplementation may
be a potential strategy to improve muscular endurance performance
and reduce fatigue in trained individuals. However, according to our
previous systematic review (Zhou et al., 2024), no direct evidence
currently supports the efficacy of short-term H₂ supplementation in
enhancing muscular endurance performance or improving fatigue
recovery within the first 48 h post-training in trained individuals.

Based on the literature (Sládečková et al., 2024; Botek et al., 2021;
Javorac et al., 2019) and our previous studies (Dong et al., 2022; Aoki
et al., 2012; Zhou et al., 2023; Li et al., 2024; Hong et al., 2022; Dong
et al., 2024), we expected that HRW administration would positively
affect muscle contraction function and muscle fatigue compared to
placebo during muscular endurance training and up to 48 h of
recovery. In this regard, we hypothesized that participants would
significantly increase barbell half squat power and repetitions,
increase vertical jump height and subjective fatigue recovery, and
decrease Visual Analogue Scale (VAS).

2 Materials and methods

2.1 Participants

This study included 18 male students of the Faculty of Physical
Culture with the following characteristics (mean ± SD): age: 19.7 ±
0.9 years (range 18–21 years); body weight: 69.7 ± 9.2 kg; body
height: 176.7 ± 6.3 cm; body fat = 12.0 ± 3.8%; 1RM half squat =
136.7 ± 20.9 kg (relative strength ratio:2.4 ± 0.4). All participants
were healthy, medication-free, non-smokers, did not take any
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dietary supplements, and performed resistance training at least three
times a week. The study was approved by the Ethics Committee of
Sports Science Experiment of Beijing Sport University
(No. 2022214H).

2.2 Procedures

The study was a double-blind, cross-over design with
administration of HRW and placebo randomized and
counterbalanced. The experimental protocol consisted of a
process familiarization, a one repetition maximum (1RM) half-
squat test, and two sessions with a one-week washout period
(Figure 1). The participants were informed about the
experimental procedure and signed an informed consent form
before the 1RM half-squat test. During the experiment,
participants were instructed to avoid caffeinated beverages, such
as coffee or tea, and other substances that may affect physiological
and perceptual outcomes. Participants were also instructed to avoid
high-intensity physical activity during the experiment. To avoid
environmental and diurnal variations, the intervention and tests
were performed in an indoor physical training center (indoor
temperature 24°C) between 13:30 and 16:30. The first session
proceeded 72 h after the 1RM test. In this session, participants
were randomly divided into two groups, HRW (n1 = 9) or placebo
(n2 = 9), and they then followed each task scheduled in the
experimental research protocol (Figure 1). Order of HRW or
placebo consumption was randomized utilizing lots that included
an equal number of two colored strips (yellow and green) to
represent either HRW or placebo consumption first. While
blinded, participants drew one strip. There was then a 1-week
washout period before the second session where the beverage
consumption was reversed before performing the same resistance
training protocol. The coach instructed the participants to consume
the same diet and not make any changes in their diet throughout the
study. Participants ate together in the training center cafeteria,
ensuring the food was the same.

2.2.1 Anthropometric measurement
Body height and body mass were measured using a digital

weighing scale DSZN-M-101A (Dashu Intelligent Technology
Co., Tianjin, China). Percent body fat was determined using
bioimpedance analysis (Inbody770, South Korea).

2.2.2 One repetition maximum test (1RM test)
The 1RM test is a classic method for evaluating dynamic

maximal muscular strength (Earle, 2008). Prior to the 1RM test,
participants engaged in a 10-min warm-up on a cycle ergometer,
followed by 10 min of dynamic stretching of the lower limb muscles
and a set of 8–12 repetitions of a free barbell half-squat exercise at an
anticipated weight equivalent to 50% of their 1RM. After a 3-min
rest, participants performed four repetitions at 70%–75% of the
anticipated 1RM, followed by another 3-min rest and 2-3 additional
repetitions at 85%–90% of the anticipated 1RM. Following a 4-min
rest period, the information gleaned from the third set was utilized
to determine the final weight of each individual’s 1RM(35).
Participants were required to perform each barbell half-squat in a
3/0/x/0 movement tempo following a movement rhythmizer. 3/0/x/
0 denotes a 3-s eccentric phase, no intentional isometric pause
during the transition phase, a concentric phase as fast as possible,
and no pause between the completion of the concentric phase and
the beginning (eccentric phase) of the next repetition.

2.2.3 Resistance training protocol
Prior to resistance training, all participants performed a 10-min

warm-up on a cycle ergometer at 60 rpm, followed by 10 min of
dynamic stretching and one set of free barbell half-squats
(6–8 repetitions with 50%1RM) with a 3-min rest before
resistance training. Resistance training consisted of six free
barbell half squats with a fixed load (70%1RM) with 5 min rest
between sets. Participants were required to train to repetitions
failure (inability to complete the concentric phase of a repetition)
for each set. The half-squat training was performed in a half-squat
rack (Technogym, Shanghai, China). They then squatted to a depth
of 90° angle to the knees and returned to the starting position. Two

FIGURE 1
Overview of the experimental protocol sessions. 1RM, One Repetition Maximum; CMJ, Countermovement Jump; VAS, Visual Analog Scale; TQRS,
Total Quality Recovery Scale.
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strength coaches stood at each end of the barbell to ensure that the
participants completed each half-squat correctly and safely.

2.2.4 Protocol of HRW administration
The HRW was prepared using an electrolysis device (Zhiheng

Hydrogen Health Technology Co., Ltd., Fuzhou, China) with a
transparent Tritan™ tank body and an electrolysis generator.
Participants were unable to identify HRW and placebo (purified
water) due to the identical appearance of HRW and placebo and
the colorless, odorless, and tasteless of H2. The chemical properties
of HRW (pH:7.9; Oxidation reduction potential: 650mv;
Temperature:22°C) and placebo (pH:7.6; Oxidation reduction
potential: +167mv; Temperature:22°C) were measured using a
pH/oxidation-reduction potential/temperature meter (169 E,
Shenzhen Yiyi Yiqi Science and Technology Co., Ltd., China).
The concentration of H2 in the HRW was 1,600 ppb, according to
the manufacturer’s instructions. Based on previous studies (Timon
et al., 2021; Botek et al., 2021), we developed the HRW
supplementation protocol for this study, as there is no gold
standard for using H2 to enhance muscular endurance
performance. Previous studies (Timon et al., 2021; Botek et al.,
2021) have shown that this H2 supplementation protocol meets
individual H2 intake requirements without causing adverse effects.
Participants were instructed to drink 1,920 mL (six bottles of HRW
or PW according to a crossover double-blind design) of water per
day (7 days in total), and all of the water had to be drunk
immediately after the hydrogenation process in order to
maintain hydrogen concentration levels and avoid deterioration
of oxidation reduction potential. Additionally, participants were
required to supplement with five doses of HRW or PW during each
training session, specifically 210 mL at 30 min and 1 min before
training, 210 mL during the middle of training, another 210 mL
immediately after training, and 420 mL of HRW at 30 min during
the recovery period.

2.2.5 Muscular endurance performance
Muscular endurance performance was defined as the power

output and maximum number of repetitions performed by
participants during resistance training with a load of 70% of
their current one-repetition maximum (1RM) (Fliss et al., 2022;
Vieira et al., 2021). The primary outcomes of muscular
endurance performance were single-set power output and six-
set total power output completed by participants in the free
barbell half squat, and the secondary outcomes were the
single-set number of repetitions and six-set total number of
repetitions completed. A linear position transducer measured
the power output and number of repetitions (Linear encoder kit,
Chronojump, Spanish). The linear position transducer consists of
a floor unit consisting of a spring-powered retractable wound on
a cylindrical spool coupled to the shaft of an optical encoder
(Drinkwater et al., 2007). The floor unit is placed on the floor
perpendicular to the right collar of the barbell. The other end of
the cable was attached vertically to the barbell (immediately
proximal to the right collar) with a Velcro strap for data
acquisition (Grgic et al., 2020). Previous studies have shown
the linear position transducer to be reliable for measuring power
during resistance training (Grgic et al., 2020; Orange et al., 2020;
Askow et al., 2018; García-Ramos et al., 2018).

2.2.6 Fatigue
Fatigue could be generally defined as a decrease in physical

performance related to a rise within the real/perceived difficulty of a
task or exercise, as well as the inability of the muscles to keep up with
the specified level of strength during exercises (Gandevia, 2001;
Abd-Elfattah et al., 2015). This study used repetitions to failure
exercise to ensure that participants’ skeletal muscles were fatigued
(González-Hernández et al., 2021). The primary outcomes of fatigue
were the height of the Countermovement Jump test (CMJ) at
baseline (CMJ0), 5 min (CMJ5), 24 h (CMJ24), and 48 h (CMJ48)
post-training. The secondary outcomes were the Total Quality
Recovery Scale (TQRS) and Visual Analogue Scale (VAS) at 24 h
(VAS24/TQRS24) and 48 h (VAS48/TQRS48) post-training.

2.2.6.1 Countermovement jump test (CMJ)
The CMJ test is an appropriate method for monitoring

neuromuscular fatigue in participants (Gathercole et al., 2015;
Claudino et al., 2017). Before the test, the participants completed
a warm-up according to the resistance training protocol. After a 3-
min rest, the participants performed three one-repetition maximal
effort CMJs, with a 30-s rest between each jump. The starting
position for the CMJ required the body to stand upright on a
jump mat (Contact Platform Kit, Chronojump, Spanish), with
the hands on the hips to avoid swinging the arms. Then, a fast
downward movement was performed to an optimal position
(approximately 90° at the knee), followed by a fast vertical
movement upward as forceful as possible. The maximum height
of the CMJs was used for data analysis. Participants were not
required to perform an additional warm-up during the CMJ test
5 minutes after resistance training.

2.2.6.2 Total quality recovery scale (TQRS)
The TQRS is used to assess perceived and action recovery

(Kenttä and Hassmén, 1998). The participants rated their
recovery over the previous 24 and 48 h using the question,
“What is your condition now?” The TQRS ranged from 0 (very,
very poor recovery) to 10 (very, very good recovery) (Kenttä and
Hassmén, 1998).

2.2.6.3 Visual Analogue Scale (VAS)
DOMS occurs 24–48 h following a resistance training session.

Evidence shows that training with sore muscles while trying to
sustain a high load can lead to overreaching (Meeusen et al., 2013).
The VAS is commonly used to measure DOMS (Lau et al., 2015;
Nosaka et al., 2002).The VAS was used to measure lower limb
muscle pain at 24 and 48 h after resistance training. The VAS is a
100 mm long horizontal line, with 0 indicating “no pain” and
100 indicating “worst pain imaginable” (Lau et al., 2015).

2.3 Statistical analysis

Data were presented as arithmetic mean ± SD. The normality of
data was tested using the Kolmogorov-Smirnov test. This experiment
utilized a repeated-measures design that allowed for repeated
measurements at different time points within the same group of
subjects, necessitating repeated-measures ANOVA to handle this
correlational data. We used a two-way (time*group) repeated-
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measures ANOVA to evaluate changes in muscular endurance
performance (power output, repetitions) during six-set training
and fatigue recovery (CMJ, TQRS, and VAS) from immediate to
48 h post-training. Post hoc analyses were performed using the
Bonferroni test. Repeated-measurement data was needed to satisfy
Mauchly’s test (p > 0.05), otherwise an epsilon (ε) correction was
required. If no interaction between time and group was observed, the
data were analyzed for the main effect, and then effect sizes [partial
eta-squared (η2p)] were calculated, where effect sizes were categorized
as trivial (η2p <0.01), small (0.01≤ η2p <0.06), moderate
(0.06≤ η2p <0.14), and large (η2p ≥0.14) effects (Botek et al., 2021).
In contrast, if an interaction between time and group was detected, the
data were analyzed for simple effects and effect sizes were calculated
(Cohen’s d). The effect size could be useful for calculating
performance changes following a training program (Hopkins,
2004). Cohen’s d was calculated as (experimental group mean -
control group mean)/control group standard deviation. Cohen’s d
was classified as trivial effect (d < 0.2), small effect (0.2 ≤ d < 0.5),
moderate effect (0.5 ≤ d < 0.8), and large effect (d ≥ 0.8) (Cohen,
1988). Additionally, we analyzed the overall effect of HRW on
participants’ total power output and total repetitions using a
paired-sample t-test and Cohen’s d, considering the training
session as a whole. Differences in means were also expressed using
95% confidence intervals (CIs). For all tests, p < 0.05 was considered
statistically significant. All analyses were performed using the SPSS
statistical package (version 25.0, IBM Statistics, Chicago, IL).

3 Results

3.1 Effect of H2 on muscular endurance

3.1.1 Power output
There was no interaction between time and group (F = 1.233,

p = 0.306). Time main effects showed a significant decrease (F =
48.222, p < 0.001, η2p = 0.739, large effect) in power output in both
the HRW and placebo groups from the 1st to the 6th training set.
Meanwhile, group main effect showed that the H2

supplementation group performed significantly higher power
output than the placebo group (F = 5.435, p = 0.032, η2p =
0.242, large effect) (Table 1).

H2 supplementation significantly enhanced total power output
compared to placebo in six sets of free barbell half-squat exercises
(HRW: 50,866.7 ± 6,359.9W, Placebo: 46,431.0 ± 9,376.5W, 95%CI:
421.4~8,449.9, p = 0.032, d = 0.47, small effect) (Figure 2).

3.1.2 Repetitions
There was no interaction between time and group (F = 0.244, p =

0.819). Time main effects showed a significant decrease (F = 51.357,
p < 0.001, η2p = 0.751, large effect) in repetitions in both the HRW
and placebo groups from the 1st to the 6th training set. Meanwhile,
group main effect showed that the H2 supplementation group
performed significantly more repetitions than the placebo group
(F = 6.709, p = 0.019, η2p = 0.283, large effect).

H2 supplementation significantly increased total repetitions
compared to placebo in six sets of free barbell half-squat exercises
(HRW:78.2 ± 9.5 repetitions, Placebo: 70.3 ± 9.5 repetitions, 95%CI:
1.5~14.2, p = 0.019, d = 0.82, large effect) (Figure 2).

3.2 Effect of H2 on fatigue

3.2.1 Countermovement jump
There was no interaction between time and group (F = 1.529, p =

0.212). Time main effects showed that participants in the HRW and
placebo groups had statistically significant (F = 12.241, p < 0.001,
η2p = 0.265, large effect) CMJ heights after resistance training
compared to baseline (CMJ0). Specifically, there was a significant
decrease in CMJ5 (p < 0.001, 95% CI: 1.28–44.6) and CMJ24 (p =
0.014, 95% CI: 0.25–3.11) compared to baseline (CMJ0), but no
statistically significant difference between CMJ48 and baseline
(CMJ0) (p > 0.05, 95% CI: 0.98–2.32) in the HRW and placebo
groups. Groupmain effect showed that H2 supplementation failed to
significantly increase CMJ height at 5 min, 24 and 48 h compared to
placebo (F = 0.249, p = 0.621, η2p = 0.007, trivial effect) (Figure 3).

3.2.2 Total quality recovery scale
There was no interaction between time and group (F = 1.126, p =

0.296). Time main effect showed a significant increase (F = 69.493,
p < 0.001, η2p = 0.671, large effect) in TQRS scores at 24 and 48 h after
training in both the HRW and placebo groups. However, group
main effect showed that H2 supplementation failed to significantly

TABLE 1 Effect of H2 supplementation on fatigue.

Variable Group Baseline P5 min P24 h P48 h Time factor Water factor Interaction

p η2p p η2p p

CMJ (cm) HRW 51.0 ± 7.2 48.2 ± 7.5 49.7 ± 6.9 51.4 ± 6.6 <0.001 0.265 0.621 0.007 0.212

Placebo 50.7 ± 6.6 47.5 ± 7.0 48.6 ± 6.4 49.0 ± 7.3

VAS (mm) HRW — — 37.2 ± 21.6 26.5 ± 21.0 <0.001 0.394 0.380 0.023 0.975

Placebo 41.9 ± 15.1 30.9 ± 19.0

TQRS HRW — — 6.8 ± 1.8 7.9 ± 1.9 <0.001 0.671 0.099 0.078 0.296

Placebo 5.1 ± 1.8 7.1 ± 1.2

p, statistical significance; η2p , partial eta-squared effect size; CMJ, countermovement jump test; VAS, visual analog scale; TQRS, Total Quality Recovery Scale.

— = No measurements were taken.
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increase TQRS scores at 24 and 48 h compared to placebo (F = 2.882,
p = 0.099, η2p = 0.078, moderate effect) (Figure 3).

3.2.3 Visual analog scale
There was no interaction between time and group (F = 0.001, p =

0.975). Time main effect showed a significant decrease (F = 22.096,
p < 0.001, η2p = 0.394, large effect) in VAS scores at 24 and 48 h after
training in both the HRW and placebo groups. However, group
main effect showed that H2 supplementation failed to significantly
reduce VAS scores at 24 and 48 h compared to placebo (F = 0.792,
p = 0.380, η2p = 0.023, small effect) (Figure 3).

4 Discussion

This study aimed to assess the effects of HRW supplementation in
trained individuals for 8 days (including the training day) onmuscular
endurance performance during training, neuromuscular status, and
perceptual responses during the recovery period (24 h, 48 h). This
study revealed that 8 days of HRW supplementation effectively
enhanced muscular endurance performance in trained individuals
but failed to promote fatigue recovery significantly after training.

In our resistance training protocol, all half-squat sets were
repetitions to failure by the participant at maximal voluntary effort
(single set completion time over 30 s), with a five-minute passive
recovery time between sets. In the case of high-intensity exercise, when
the phosphocreatine (PC) system is depleted within the first few
seconds, anaerobic glycolysis becomes the primary metabolic

pathway, usually leading to blood lactate accumulation and exercise
fatigue (Brooks, 2018). Studies have shown that HRW
supplementation reduces post-exercise blood lactate concentrations
and subjective fatigue (Zhou et al., 2023). This study supports Botek
et al. (2021) recommendation for practical application that acute
ingestion of HRW is promising as an effective hydration strategy
for athletes to improve lower limb muscular endurance performance.
Trainers could utilize HRW supplementation as a muscular endurance
performance enhancer for athletes during the phase of muscular
endurance training, typically lasting 7 days. This improvement may
be attributed to the stimulating effect of hydrogen molecules on
mitochondrial oxidative phosphorylation, which in turn enhances
the antioxidant potential of the human body during high-intensity
exercise (Li et al., 2024; Murakami et al., 2017; Cheng et al., 2023).
Additionally, counteracting exercise-induced acidosis is a well-known
routine for improving exercise performance and avoiding fatigue
(Lancha Junior et al., 2015). Studies have shown that HRW can
increase fasting and post-exercise blood pH during exercise or
affect acid-base balance and metabolic fatigue (Botek et al., 2021;
Ostojic, 2012; Ostojic and Stojanovic, 2014; Alharbi et al., 2022). H2

also could reduce intracellular reactive oxygen species (ROS) levels and
thus enhance muscle contractile function (Powers and Jackson, 2008;
Shibayama et al., 2020). For instance, a study on soccer players showed
that administering three successive doses of 500mLHRWbefore high-
intensity aerobic exercise increased the mean power frequency of
skeletal muscles during subsequent strength tests (Aoki et al., 2012).
One study found that inhalingH2 gas before exercise can reduce fatigue
during high-intensity exercise by maintaining high prefrontal cortex

FIGURE 2
Effect of hydrogen rich water (HRW) on muscular endurance performance. Values are presented as the mean and standard deviation. (A) Effect of
HRW on single-set power output. (B) Effect of HRW on six-set total power output. (C) Effect of HRW on single-set number of repetitions. (D) Effect of
HRW on six-set total number of repetitions. * = statistically significant (p < 0.05) difference between hydrogen rich water and placebo at the same time.
# = statistically significant (p < 0.05) for the hydrogen rich water group compared to baseline. † = statistically significant (p < 0.05) for the placebo
group compared to baseline.
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activation (Hong et al., 2022). The dose-response relationship between
H2 and physical performance has yet to be established, making it
difficult to determine the most appropriate dosage supplementation
protocol for H2 in improving muscular endurance performance (Zhou
et al., 2024). This study used a strategy of intermittent multi-dose
HRW supplementation for eight consecutive days. Studies have shown
that HRW supplementation for consecutive days effectively improves
aerobic and anaerobic capacity in trained athletes (Timon et al., 2021;
Da et al., 2018). One potential reason for this is that prolonged (7 days
or more) intake of H2 during resistance training may contribute to
increased mitochondrial biogenesis and endogenous antioxidant
systems, as well as improved muscle endurance performance (Li
et al., 2024; Botek et al., 2021). However, one study showed that
HRW supplementation for two consecutive weeks did not significantly
enhance the biological antioxidant potential of college students (Hori
et al., 2020). This heterogeneity may stem from differences in
participants’ training status. Timon et al. (2021) showed that the
participants’ training status influenced the benefits of HRW and
that 7 days of HRW intake increased anaerobic capacity in trained
cyclists but had no effect on untrained subjects. Future studies should
focus on directly measuring the antioxidant potential of HRW
supplementation over consecutive days in trained individuals,
especially athletes. For instance, researchers could use the oxidative
stress parameters recommended in the Kayacan et al. study to directly
assess the antioxidant capabilities during exercise (Kayacan et al., 2022;
Kayacan et al., 2018; Kayacan et al., 2019). Mikami et al. (2019)
reported that most H2 could be maintained in the body for 30–40 min

after HRW administration. Therefore, this study utilized HRW
supplementation before, during, and after exercise to ensure H2

concentrations in the participants somewhat. More research is still
necessary to explore the dosage and timing of HRW supplementation
to enhance exercise performance further.

Contrary to expectations, this study did not findHRW effective in
promoting neuromuscular status (CMJ) and subjective fatigue
recovery in participants after high-intensity resistance training.
These results are consistent with those of Botek et al. (2021), who
found no significant difference betweenHRWand placebo in Creatine
kinase concentrations, VAS, and CMJ, during 24-h post-exercise
recovery. One potential reason for this finding is that the H2

content of a one-time supplement of HRW (e.g., 420 mL) is
insufficient to restore the oxidative stress status of skeletal muscle
after high-intensity resistance training without significantly restoring
neuromuscular status (Li et al., 2024). The CMJ performance duration
is 1–2 s, unlike the longer duration half squat (>30 s), and is mainly
dependent on the energy of the ATP-PC system and the elastic
potential of the muscle (stretch-shortening cycle). Studies have
shown that drinking 1,260 mL of HRW before and during exercise
may enhance the endogenous antioxidant capacity to respond to the
intensity dependent, mitochondrial production of ROS, reduce
oxidative stress, and enhance mitochondrial ATP production
(Çakir-Atabek et al., 2019; Murakami et al., 2017; Radak et al.,
2017). However, drinking HRW after intense exercise might not
be compelling enough to improve neuromuscular status. For
example, one study showed that short-term HRW supplementation

FIGURE 3
Effect of hydrogen rich water (HRW) on fatigue. (A) Effect of HRW on Countermovement Jump height (CMJ). (B) Effect of HRW on Total Quality
Recovery Scale (TQRS). (C) Effect of HRW on Visual Analog Scale (VAS). Values are presented as the mean and standard deviation. * = statistically
significant (p < 0.05) difference between hydrogen rich water and placebo at the same time. ns = no statistically significant differencewas found between
hydrogen-rich water and placebo at the same time (p > 0.05). # = statistically significant (p < 0.05) for the hydrogen rich water group compared to
baseline. † = statistically significant (p < 0.05) for the placebo group compared to baseline.
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did not significantly improve the surface electromyographic
parameters (e.g., RMS amplitude, high-frequency power, low-
frequency power) of the quadriceps muscle after resistance training
in participants (Botek et al., 2021). Therefore, in practice, participants
may need to continuously supplement HRW during fatigue recovery
(e.g., 24 h, 48 h after training) to achieve a significant effect.
Additionally, the training status of the participants in this study
may also be an essential factor contributing to the failure of HRW
supplementation after resistance training to relieve skeletal muscle
pain and subjective fatigue recovery. The results indicated that the
HRW and placebo groups had returned to their baseline levels of
countermovement jump (CMJ) height 48 h after training. This is
because DOMS in trained participants may not be severe after
resistance training. This means that the neuromuscular status of
the participants could be wholly recovered 48 h after the training.
Study has shown that muscle fatigue in trained individuals cloud be
recovered within 48 h after resistance training (Morán-Navarro et al.,
2017). Kawamura et al. (2020) suggested that short-term intake of
HRW, an alternative recovery procedure, is unlikely to reduce
inflammation and oxidative stress effectively after high-intensity
exercise. As a result, acute intake of HRW alone after high-
intensity resistance training may not be an efficient recovery
strategy. Trainers may include short-term HRW as part of a varied
nutritional approach or as an alternative to hydration. Considering
the limitations of hydrogen concentration in HRW, fatigue recovery
may be more favorable if participants directly inhale a more
concentrated hydrogen-rich gas (HRG). One study has shown that
inhalation of HRG during the post-exercise recovery period reduces
systemic oxidative damage, thus facilitating improved lower limb
performance (Shibayama et al., 2020). Future studies should directly
compare HRW and HRG to promote fatigue recovery in participants.

There are some limitations in the application of HRW. This study
did not establish an optimal H2 supplementation protocol based on
individual H2 dynamics. Few papers have reported changes in H2

concentration in the living body after HRW intake (Kawamura et al.,
2020). Therefore, administration immediately before and during
exercise may be necessary to obtain an acute H2 effect. In
addition, participants were only supplemented with H2 for 8 days,
which may not clarify the long-term effects of H2 on muscular
endurance performance or safety. Studies have shown that
excessive intake of conventional antioxidants such as vitamins C
and E can inhibit redox-sensitive signaling pathways and interfere
with physiological adaptations to exercise training (Gomez-Cabrera
et al., 2015; Kawamura and Muraoka, 2018). Future studies should
promptly clarify the effects of long-term H2 supplementation on
physiological adaptations induced by prolonged exercise training and
its safety. This study utilized a randomized crossover trial, which
could not wholly avoid the influence of the training trace effect on the
muscle soreness score. Future studies should use randomized
controlled trials to explore the long-term effects of HRW
supplementation on muscle function and structure.

5 Conclusion

Intermittent intake of HRW for 8 days could significantly
enhance muscular endurance performance in trained individuals,
making it a promising strategy for athletes or fitness enthusiasts

seeking to improve muscular endurance during resistance training
or competitions. Based on our findings, HRW administration is
usually recommended before and during muscular endurance
training. However, it should be noted that HRW intake alone
may not be sufficient to promote recovery from muscle soreness
or fatigue after muscular endurance training. Future RCTs with
rigorous designs are needed to help obtain more definitive
conclusions on the long-term effects of HRW on muscular
function performance in trained individuals.
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