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Introduction: Hyperlipidemic acute pancreatitis (HLAP) is a form of pancreatitis
induced by hyperlipidemia, posing significant diagnostic challenges due to its
complex lipid metabolism disturbances.

Methods: This study compared the serum lipid profiles of HLAP patients with
those of a healthy cohort using ultra-performance liquid chromatography-
tandem mass spectrometry (UPLC-MS/MS). Orthogonal partial least squares
discriminant analysis (OPLS-DA) was applied to identify distinct lipid
metabolites. Logistic regression and LASSO regression were used to develop a
diagnostic model based on the lipid molecules identified.

Results: A total of 393 distinct lipid metabolites were detected, impacting critical
pathways such as fatty acid, sphingolipid, and glycerophospholipid metabolism.
Five specific lipid molecules were selected to construct a diagnostic model,
which achieved an area under the curve (AUC) of 1 in the receiver operating
characteristic (ROC) analysis, indicating outstanding diagnostic accuracy.

Discussion: These findings highlight the importance of lipid metabolism
disturbances in HLAP. The identified lipid molecules could serve as valuable
biomarkers for HLAP diagnosis, offering potential for more accurate and early
detection.
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Highlights

1. This study reports the first-ever exploration of the metabolic characteristics of
hyperlipidemic acute pancreatitis using a lipidomics platform.

2. Three hundred ninety-three differential metabolites were identified, distinguishing
patients with hyperlipidemia-induced acute pancreatitis (HLAP) from healthy
individuals.

3. The study identifies lipid metabolism, fatty acid metabolism, and glycerophospholipid
metabolism as key pathways compromised in HLAP.

4. The lipid molecular diagnostic model demonstrates perfect predictive performance
(area under the ROC curve = 1).
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5. This research provides new theoretical foundations and
molecular targets for diagnosing and treating
hyperlipidemia-induced acute pancreatitis.

Introduction

With the westernization of people’s lifestyles and changes in
dietary structure, hyperlipidemia-induced acute pancreatitis
(HLAP) has become the second leading cause of acute
pancreatitis (AP) in China. Compared to other types of AP,
patients with HLAP have a higher tendency for recurrence and a
greater risk of progressing to severe pancreatitis (Zou et al., 2005).
The mechanisms by which high triglyceride levels contribute to the
onset and exacerbation of AP remain unclear. It has been observed
clinically that only a portion of patients with hyperlipidemia
progress to HLAP. Studies indicate that even though Types I, IV,
and V hyperlipidemia primarily involve elevated triglycerides (TG),
patients with Type I hyperchylomicronemia are more likely to
develop HLAP (Gotoda et al., 2012; Tada et al., 2015). The lipid
classification system proposed by the National Institutes of Health in
the U.S. categorizes lipids into eight classes that regulate various life
processes (Fahy et al., 2009; Zhi et al., 2021; Zhang et al., 2019).
However, due to limitations in detection throughput, current
research on the lipid metabolism of HLAP primarily focuses on
serum total TG and free fatty acids (FFA) associated with damage to
pancreatic acinar cells. HLAP patients exhibit significant
disturbances in lipid metabolism, yet there is a lack of research
characterizing the specific lipid metabolic abnormalities of HLAP.
Therefore, a comprehensive understanding of the lipid metabolic
characteristics of HLAP may offer new insights into the disease.

Metabolomics involves the quantitative analysis of all metabolites in
a biological organism, aiming to identify specific and sensitive
diagnostic or predictive metabolic markers while elucidating the
connections between metabolites and physiological or pathological
changes, thus potentially uncovering new therapeutic targets for
diseases (Luo et al., 2018). Nuclear magnetic resonance (NMR)
spectroscopy, liquid chromatography-mass spectrometry (LC-MS),
and gas chromatography-mass spectrometry (GC-MS) are valuable
tools for metabolomics or lipidomics analysis, each with its strengths
and limitations (Kimhofer et al., 2015; Liang et al., 2016). LC-MS,
combining the high separation capability of chromatography with the
selectivity and sensitivity of mass spectrometry, is the most commonly
used tool for detecting a broad range of endogenous metabolites in
tissue or body fluid samples (blood, urine, tissue fluid), and it has been
widely adopted in numerous studies (Deng et al., 2021). This study
collected serum samples from HLAP patients and healthy controls,
utilized LC-MS lipidomics technology to analyze the blood samples,
compared metabolites, and identified differential metabolites that are
meaningful for clinical diagnosis and mechanistic exploration.

Materials and methods

Sample source

The HLAP patients included in this study were recruited from
the departments of Gastroenterology and General Surgery at the

affiliated hospital of North Sichuan Medical College. Blood
samples and clinical data were collected from patients upon
admission. The collection period ranged from January 2020 to
October 2020. The study was divided into two groups: the HLAP
group (n = 24) and the healthy control group (Con, n = 24).
Participants were randomly selected from eligible patients using a
random number method, and the control group was matched by
age and gender to minimize selection bias. The diagnosis criteria
for HLAP patients referred to the 2012 revised Atlanta
classification international consensus (Banks et al., 2013). Based
on clinical severity, participants were divided into a mild group
(n = 18, no organ failure, local or systemic complications) and a
moderately severe group (n = 6, with transient organ failure, local
complications, or exacerbation of comorbidities). Participants
voluntarily consented to take part in the study, agreed to
provide sufficient blood samples and access to complete medical
records, and signed informed consent forms. Exclusion criteria
comprised severe hepatic or renal diseases, current or prior
malignancies, chronic kidney disease, and other conditions that
could lead to elevated amylase levels or pancreatitis. Healthy
controls were individuals undergoing routine health check-ups
at the Health Examination Center of North Sichuan Medical
College Hospital. Inclusion criteria for participants in the
control group: (1) No restrictions on gender, with an age range
of 18 to 85 years; (2) No significant symptoms, and examination
and laboratory test results within normal ranges; (3) Participants
were informed and agreed to participate in the study, and signed
the informed consent form; (4) Participants were able to provide
an adequate blood sample.

Primary reagents

The methanol, methyl tert-butyl ether (MTBE), acetonitrile,
isopropanol, formic acid, and ammonium formate used in the
study were all of chromatographic grade and purchased from
Fisher Scientific in the United States.

Sample collection

Patients were selected based on inclusion and exclusion criteria,
their medical histories were collected. Included patients were
required to fast for at least 8 h prior to sample collection. In the
morning, on an empty stomach, 5 mL of venous blood was collected
and placed in ethylenediaminetetraacetic acid disodium salt (EDTA)
vacuum blood collection tubes.

Sample processing

After sample collection, samples were left to stand on an ice pack at
4°C for 20 min. Subsequently, they were centrifuged at 4,000 rpm for
10 min within 2 h. Following centrifugation, 200 uL of the supernatant
was transferred to individual Eppendorf tubes using a pipette, with
200 uL in each tube. Four tubes were prepared, each labeled with a
marker indicating the sample number and grouping information. The
plasma samples were then stored in a −80°C freezer.
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Sample pretreatment

Samples were thawed at 4°C for 60 min, then 50 µL were
aspirated into an Eppendorf tube and mixed precisely with
300 µL of methanol solution. Subsequently, 1 mL of MTBE was
added, and the mixture was vortexed and shaken at room
temperature for 30 min. Next, 250 µL of water was added,
followed by centrifugation at 15,000 rpm at 4°C for 10 min
100 μL of the supernatant was carefully transferred to a labeled
centrifuge tube, dried in a vacuum concentrator, and stored under
sealed, low-temperature conditions. Prior to analysis, 200 μL of
acetonitrile-isopropanol solution was added to the samples, followed
by vortex mixing. The samples were then centrifuged at 15,000 rpm
for 10 min at 4°C.

Sample separation and mass spectrometry

Lipid separation was carried out using the Ultimate 3000 ultra-
high-performance liquid chromatography system. The
chromatographic system utilized an Accucore C30 core-shell
column (2.6 μm, 2.1 mm × 100 mm) operating at a column
temperature of 50°C. Mobile phase A consisted of a 6:4 ratio of
acetonitrile to water, containing 10 mmol ammonium formate and
0.1% formic acid, while mobile phase B was composed of a 1:9 ratio
of acetonitrile to isopropanol, supplemented with 10 mM
ammonium formate and 0.1% formic acid. The flow rate for the
chromatographic separation was set at 0.3 mL/min. The gradient of
the mobile phase was as follows: initial composition of 90%A and
10%B, 50% each of A and B at the fifth minute, and 0%A and 100%B
at the 23rd minute maintaining this ratio for column washing and
equilibration until the 30th minute.

Lipid mass spectrometry analysis was performed using a
Q-Exactive hybrid quadrupole-orbitrap mass spectrometer.
Electrospray ionization was employed as the ion source,
generating positive and negative ions. For the front ionization
conditions, the sheath gas flow rate was set at 45 arb, auxiliary
gas flow at 10 arb, ionization chamber heated to 355°C, capillary
temperature at 320°C, and S-Lens RF level at 55%. Lipid molecular
ions were scanned using a full scan mode at a resolution of
70,000 FWHM, with a maximum injection time of
200 milliseconds and a mass-to-charge ratio scan range of
300–2000 m/z. For secondary mass spectrometry fragment ions, a
resolution of 17,500 FWHM and a maximum injection time of
80 milliseconds were utilized. Nitrogen gas was used as the collision
gas, with a dynamic exclusion time of 8 s.

Quality control (QC) analysis

QC samples were utilized for sample mixing. The variability
coefficient (CV value) between QC samples was calculated to
assess the overall stability of the experiment. Moreover, the
correlation between QC samples was calculated to evaluate the
experimental reproducibility. Finally, the distances and
clustering tightness among different QC samples in the
principal component analysis (PCA) score plot were visually
shown for intuitive demonstration.

Data collection

Lipid compositional analysis was conducted using the
LipidSearch software (Thermo Scientific, United States) in
conjunction with the LipidMaps database. The chromatographic
peak areas (AUC) were extracted using the TraceFinder software to
provide relative quantitative information.

Data processing and analysis

Measurement values were expressed as means ± standard
deviation (mean ± SD), while count data were represented using
ratios. PCA and orthogonal partial least squares discriminant
analysis (OPLS-DA) multivariate statistical analysis were
performed using SIMCA-P software (Umetrics, Sweden) (Alseekh
et al., 2021; Bartel et al., 2013). T-tests, one-way analysis of variance
(ANOVA), and false discovery rate (FDR) corrected unit statistical
analysis were conducted using SPSS 26.0 software (IBM,
United States) (Bar et al., 2020). A diagnostic model was
constructed based on binary logistic regression. Random Forest
(RF) algorithm and the glmnet package in R version
4.0.3 environment (R Core Team, 2020) were employed to
further screen differential lipids, optimizing and simplifying lipid
selection using LASSO regression from the glmnet package.
MetaboAnalyst was utilized for heatmap visualization and lipid
functional enrichment analysis, while the Biopan tool was used
for lipid-lipid interaction analysis (Xia and Wishart, 2010). Receiver
operating characteristic (ROC) curves and boxplots were generated
using GraphPad Prism 9.0 (Gaud et al., 2021).

Construction of the diagnostic model

This study used Logistic regression, LASSO regression, and
receiver operating characteristic (ROC) curve analysis to assess
the diagnostic value of metabolite molecules for HLAP. LASSO
regression was first employed during themodel construction process
to select features among the identified lipid molecules. The selection
criterion was the mean squared error (MSE) minimized penalty
parameter λ, which was determined through 10-fold cross-
validation to choose the optimal λ value, thereby reducing
redundant variables and preventing overfitting. The selected
variables were then input into a Logistic regression model to
construct the diagnostic model. The parameters of the Logistic
regression model were optimized using the maximum likelihood
estimation (MLE) method. The model’s predictive performance was
further evaluated through 10-fold cross-validation, ultimately
selecting the model parameters with the largest area under the
AUC and minimal bias as the optimal parameters. In each cross-
validation, the data were randomly divided into a training set (70%)
and a testing set (30%) to train and validate the model.

Ethical statement

This study has been approved by the Ethics Review Committee
of the affiliated hospital of North Sichuan Medical College (approval
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number: 2021ER133-1). Before participating in the study, all
individuals were provided with comprehensive information
regarding the research objectives, methods, potential risks, and
benefits, and after full understanding, they voluntarily signed an
informed consent form. The study strictly adhered to relevant
medical research ethics standards and international medical
ethical guidelines, ensuring the protection of participants’ privacy
and data security, with no additional health risks imposed on the
participants. All collected samples and clinical information were
kept strictly confidential and used solely for this study.

Results

Baseline data comparison

This study included 24 HLAP patients (18 with mild severity
and 6 with moderate severity) and 24 healthy controls. The baseline
data analysis revealed that the white blood cell count and neutrophil
percentage in the HLAP group were significantly higher compared
to the Control group. Furthermore, the TG and cholesterol levels
were markedly elevated in the HLAP group, along with varying
degrees of increase in different types of lipoproteins, indicating a
significant lipid metabolism disorder occurring in the HLAP group,
as presented in Table 1.

Metabolomics data quality assessment

This study utilized a Pareto chart to visually assess the quality of the
metabolomics data results (Figure 1A). It was observed that 95.04% of

the lipid relative standard deviation (RSD) values were below 20% based
on the Pareto chart. Figure 1B demonstrates that even among all QC
samples, selecting the ones with the lowest correlation, their Spearman
correlation coefficient remained high at 0.9902. Furthermore, the
distribution of QC samples in Figure 1C further confirms the
stability and reliability of the lipid results. Given the complexity of
the human body, this study utilized 999 permutation tests to evaluate
the robustness of the OPLS-DA model. The analysis revealed that
within the blue healthy control group, there was minimal variation, and
they were notably separated from the red AP group along the first
principal component, indicating a significant segregation trend.
Consistent with clinical knowledge, the majority of lipid levels in
patients with HLAP showed significant differences compared to
healthy individuals, while the lipid levels in healthy individuals
remained stable and similar to each other.

Identification of differential metabolites

All samples underwent analysis on the LC-MS lipidomics
platform. Both univariate and multivariate analysis models were
employed following substance identification, data QC, and data
transformation. A total of 524 lipid species were identified after
screening. TG was the most abundant, followed by
phosphatidylcholines (PC), with as many as 56 different types of
free FA. The composition of lipid molecules from various classes is
illustrated in Figure 2A.

Due to the complexity of the human body, variations within and
between the two study groups are often intertwined, making the use
of PCA alone insufficient to achieve clear and meaningful inter-
group classification results. Therefore, OPLS-DA was utilized to

TABLE 1 Baseline data comparison between HLAP group and con group.

Item Con (n = 24) AP (n = 24) P value

Age (years) 53.47 ± 18.6 54.81 ± 15.29 —

Gender (Male/Female) 14/10 14/10 0.35

White Blood Cell Count (*109/L) 5.62 ± 1.24 10.49 ± 3.54 1

Neutrophil Percentage (%) 57.04 ± 6.6 79.57 ± 10.52 4.53*10–8

Hematocrit 38.89 ± 5.36 35.88 ± 14.38 1.30*10–10

Creatinine (μmol/L) 61.26 ± 15.54 57.65 ± 21.01 0.18

Urea (μmol/L) 5.9 ± 1.79 4.66 ± 1.69 0.08

Blood Glucose (mmol/L) 5.45 ± 0.86 9.18 ± 3.84 0.11

Alanine Aminotransferase (U/L) 21.88 ± 17.33 125.8 ± 150.96 6.93*10–6

Aspartate Aminotransferase (U/L) 22.82 ± 10.29 94 ± 108.14 0.24

Total Bilirubin (μmol/L) 12.48 ± 3.81 29.86 ± 42.05 0.12

Direct Bilirubin (μmol/L) 3.58 ± 1.41 14.4 ± 13.94 0.14

Total Cholesterol (mmol/L) 4.82 ± 0.8 7.47 ± 3.97 0.03

Triglycerides (mmol/L) 1.59 ± 0.75 8.8 ± 8.11 2.31*10–5

High-density Lipoprotein (mmol/L) 1.18 ± 0.27 1.53 ± 1.43 3.03*10–6

Low-density Lipoprotein (mmol/L) 2.6 ± 0.55 2.65 ± 1.04 0.04
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maximize the classification of lipids between groups. To avoid
overfitting due to excessive classification, we employed a
permutation validation approach, which involved iteratively
rearranging the sample classification in the original dataset to
create new models and estimate their parameters. This method is
known as permutation validation. The robustness of the OPLS-DA
model was evaluated in this study through 999 permutations, as
shown in Figure 2B.

The results of the 999 permutation validations shown in
Figure 2C indicate that the intercept of the model prediction
ability Q2 was −0.304, and the intercept of the model
explanatory power R2 was −0.228. The positive slopes of both
intercepts indicate a robust model without overfitting.

To balance the false negative and false positive rates, we applied
the FDR correction to the p-values of the t-test using the Benjamini-
Hochberg method. A threshold of q < 0.05 led to the initial
identification of 393 differentially expressed lipids.

Identification of differential metabolites

The volcano plot in Figure 3A visually represents the general
lipid distribution between the two groups. In the pathological

state of HLAP, the average abundance of most lipids is higher
than in the healthy population. To visually assess the relative
concentrations of each specific lipid in the samples, a heatmap
corresponding to lipids with significant differences in the volcano
plot was generated. As depicted in Figure 3B, the specimens from
the AP and Con groups are divided into two groups from left to
right. These distinct lipid categories include ceramides (Cer),
diacylglycerols (DG), FFA, PC, phosphatidylethanolamines (PE),
and predominantly TG. Subsequently, box plots (Figure 3C) were
created to intuitively explore the various classes of differential
lipids. The most abundant lipid category between the two groups
is TG, with the majority of TG levels elevated in the AP group,
aligning with clinical observations and definitions. The fatty acid
chains in TG contain the common inflammation factor
arachidonic acid (20:4). Differential lysophosphatidylcholines
(LPC) decrease in concentration during hyperlipidemic
pancreatitis, whereas lysophosphatidylethanolamines (LPE)
show increased concentrations during this condition. PC, the
precursors of LPC, exhibit the opposite trend, with
concentrations increasing during hyperlipidemic pancreatitis,
suggesting a conversion between PC and LPC. The relative
concentrations of free FA show diverse variations, with
shorter saturated FA and sphingolipids having lower

FIGURE 1
Lipid Molecular QC Sample Analysis. Note: (A) Pareto Chart of Coefficients of Variation for Lipid Molecular QC Samples. The x-axis represents the
percentage range of coefficients of variation in the lipid data of QC samples used for statistical analysis, while the y-axis represents the percentage of
lipids within this range. The curve in the graph shows the cumulative percentage across different ranges of coefficients of variation. (B) Scatter Plot of
Spearman Correlation Coefficients for Lipid Molecular QC Samples. (C) PCA Score Plot of Lipid Molecular QC Samples.
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concentrations in the diseased state, while long-chain
unsaturated free FA and sphingolipids have higher
concentrations in the diseased state. Furthermore, the relative
expression intensity of various representative lipid categories is
depicted in the figure.

Systems biology analysis of the impact of
hyperlipidemia on lipid
metabolism pathways

In this study, we utilized systems biology tools to investigate the
specific effects of hyperlipidemia on human metabolic pathways. By
integrating the KEGG database and Biopan tool, we conducted an
in-depth analysis of metabolic differences between healthy
individuals and patients with hyperlipidemia.

Figure 4A illustrates the relationship between various
metabolic pathways’ significance levels (−log (p) values) and
their pathway impact values. Pathways such as sphingolipid
metabolism, unsaturated fatty acid biosynthesis, linoleic acid
metabolism, α-linolenic acid metabolism, and
glycerophospholipid metabolism showed significant
differences, indicating their substantial regulation under
hyperlipidemic conditions. Figure 4B provides a detailed
explanation of the interconversion of lipids. In hyperlipidemia,
the conversion process from SM to Cer is enhanced, while

pathways from DG to PE and PE to PC are upregulated;
conversely, the conversion from PC to DG is downregulated.
These findings suggest hyperlipidemia significantly influences
key lipid conversion pathways essential for cell membrane
structure and function. Figure 4C further reveals the
expression changes of specific FA in hyperlipidemia, such as a
significant increase in the concentration of FA (18:1), which may
have profound effects on cellular metabolic functions. In
conclusion, our study conclusively demonstrates the broad
impact of hyperlipidemia on human lipid metabolism
pathways and reveals its potential biochemical mechanisms.

Building HLAP prediction models

To further refine the 393 differentially expressed lipids, we
utilized the RF package in the R environment for weighting these
lipids and ranking the top 30 lipids (Table 2) based on their
compound classification, represented by a bubble plot in
Figure 5A. Subsequently, a LASSO regression was performed
on these 30 lipid classes (Figures 5B, C), resulting in the
identification of the top five lipids under the optimal
threshold: TG (18:0/18:2/18:2), PE (16:0/18:2), Cer(d18:1/18:
0), Nervonic acid, and TG (18:0/18:0/18:0), all showing higher
concentrations in hyperlipidemic pancreatitis as depicted in the
box plots (Figure 5D).

FIGURE 2
Lipid Molecular Composition, OPLS-DA Scores, and Permutation Test Analysis. Note: (A) Lipid molecular composition of different classes. (B)OPLS-
DA score plot of lipid molecules between HLAP and Con groups. Blue dots represent healthy control samples (Con), while red dots indicate
hyperlipidemia pancreatitis samples. (C) Permutation test of OPLS-DA model between HLAP and Con groups.
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FIGURE 3
Analysis of Differential Lipid Molecules. Note: (A) Volcano plot of lipid molecules between HLAP and Con groups. (B) Heatmap of the relative
abundance of differential lipid molecules. (C) Box plot of various types of differential lipid molecules between HLAP and Con groups. The y-axis
represents the relative abundance of lipid molecules compared to the control group. TG: Triglycerides; LPC: Lysophosphatidylcholine; PC:
Phosphatidylcholine; Caprylic acid: Octanoic acid; Nervonic acid: Nervonic acid; Cer: Ceramide; ChE: Cholinesterase; DG: Diglycerides; PI:
Phosphatidylinositol.
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FIGURE 4
Analysis of Changes in Lipid Metabolism Pathways in HLAP and Control Groups. Note: (A) Represents the significant differences and pathway impact
values in various metabolic pathways between the hyperlipidemia and healthy control groups. The significance level is indicated by −log (p) values, and
the pathway impact values are calculated based on the degree of metabolite changes. Each circle in the figure represents a specific metabolic pathway,
with the size of the circle reflecting the significance of metabolite changes at key nodes within the pathway, and the color depth indicating the
importance of the pathway in the analysis. This analysis is based on the KEGG database’s metabolic data from 57 hyperlipidemia patients and healthy
controls. (B) Describes the interconversion relationships among lipid compounds, including SM, Cer, DG, PE, PC, and other major lipid classes dynamic
changes. In the figure, arrows and numbers denote the regulatory direction and strength of the corresponding pathways, with transformation pathways
analyzed using the Biopan tool. (C) Displays the expression differences of specific fatty acid species between the hyperlipidemia and healthy control

(Continued )
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ROC curves were generated (Figures 6A–E) to evaluate the
diagnostic performance of these five lipid molecules individually.
Each of these molecules exhibits good sensitivity and specificity as
standalone indicators (Table 3). Moreover, when these five lipid

molecules are combined into a logistic regression model, the
diagnostic model achieves an AUC 1, indicating a complete
differentiation between hyperlipidemic pancreatitis and healthy
individuals (Figure 6F).

TABLE 2 Lipid molecules with significant differences between HLAP and con groups.

Biomarker Formula m/z p-value q-value Log2 (AP/Con)

Caprylic acid C8H16O2 143.1078 1.01343E-13 8.30251E-12 −1.485470961

TG (16:0/16:0/20:4) C55H98O6 872.77017 8.52228E-14 8.30251E-12 3.926289986

TG (18:0/18:2/18:2) C57H102O6 900.80147 1.10935E-13 8.30251E-12 3.476823726

PE (16:0/18:2) C39H74NO8P 716.52248 4.82072E-14 8.30251E-12 2.594308018

TG (16:0/18:1/20:4) C57H100O6 898.78582 1.17709E-13 8.30251E-12 3.261769776

TG (16:0/18:1/18:1) C55H102O6 876.80147 1.20791E-13 8.30251E-12 2.304980798

TG (16:0/18:1/18:2) C55H100O6 874.78582 1.53237E-13 8.92182E-12 2.124124598

Cer(d18:1/24:1) C42H81NO3 648.62892 1.95157E-13 9.29656E-12 2.127801342

TG (18:1/18:1/18:1) C57H104O6 902.81712 3.38151E-13 1.47659E-11 2.489301105

Cer(d18:1/18:0) C36H71NO3 566.55067 7.8236E-13 2.6129E-11 2.50696111

PE (16:0/18:1) C39H76NO8P 718.53813 9.01743E-13 2.62507E-11 2.813541801

TG (16:0/18:2/20:4) C57H98O6 896.77017 9.52203E-13 2.62608E-11 3.441453685

TG (18:1/18:2/20:4) C59H100O6 922.78582 1.29421E-12 3.08258E-11 3.144735622

TG (18:1/18:1/20:1) C59H108O6 930.84842 1.77608E-12 3.66702E-11 3.868022765

TG (16:0/18:2/18:2) C55H98O6 872.77017 2.11001E-12 4.09497E-11 2.474100221

TG (16:0/18:1/22:5) C59H102O6 924.80147 3.45723E-12 6.03864E-11 3.421334486

DG (16:0/18:1) C37H70O5 612.55615 3.79454E-12 6.414E-11 3.976919034

Cer(d18:2/24:1) C42H79NO3 646.61327 4.65157E-12 7.38614E-11 1.812479291

DG (20:1/18:1) C41H76O5 666.6031 5.09199E-12 7.84766E-11 4.36872368

DG (18:0/18:1) C39H74O5 640.58745 5.46938E-12 8.18844E-11 4.2989165

TG (18:0/16:0/18:0) C55H106O6 880.83277 7.84752E-12 1.11138E-10 3.08317512

DG (18:1/20:4) C41H70O5 660.55615 1.203E-11 1.61634E-10 3.72486085

TG (19:1/18:1/18:1) C58H106O6 916.83277 1.82442E-11 2.22325E-10 4.126769444

TG (18:2/18:2/22:4) C61H102O6 948.80147 2.40249E-11 2.62271E-10 3.231330656

TG (18:1/18:1/18:2) C57H102O6 900.80147 2.54852E-11 2.72535E-10 2.283815096

PC(16:0/16:0) C40H80NO8P 734.56943 2.94853E-11 2.79872E-10 1.790429473

TG (19:1/18:1/18:2) C58H104O6 914.81712 3.23476E-11 2.97371E-10 3.412513352

TG (18:1/18:2/22:1) C61H110O6 956.86407 3.60066E-11 3.25301E-10 5.385513944

Nervonic acid C24H46O2 365.3425 1.66645E-10 1.10534E-09 1.054612444

TG (18:0/18:0/18:0) C57H110O6 908.86407 4.39593E-10 2.55941E-09 2.579675504

FIGURE 4 (Continued)

groups. Triangles in the figure represent different types of FA, with the color and direction of arrows indicating the trend of concentration increase or
decrease. The data is derived frommetabolite profiling of 57 study subjects. Statistical methods employed in the figure include t-tests, with a significance
level set at p < 0.05. Abbreviations such as “SM” and “Cer” specially marked in the figure represent sphingomyelin and cerebrosides, aiding in the rapid
identification of metabolic changes in relevant lipid classes.

Frontiers in Physiology frontiersin.org09

Ren et al. 10.3389/fphys.2024.1457349

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1457349


Discussion

The pancreas is a vital metabolic organ that regulates the body’s
metabolic homeostasis (Saltiel and Kahn, 2001). The
pathophysiological mechanisms of general AP primarily involve
abnormal activation of zymogens within the pancreas, pancreatic
cell injury, and the cascade effects of the inflammatory response
(Banks et al., 2006). Metabolic disturbances are one of the hallmark
features of acute pancreatitis. Compared to general AP, HLAP

patients not only experience the common pathological processes
of AP but also exhibit significant lipid metabolism disorders, making
the pathophysiological mechanisms of HLAP more complex and
diverse. In hyperlipidemia, plasma TG levels are significantly
elevated, and under the action of pancreatic lipase, they are
hydrolyzed into large amounts of FFA. The accumulation of
FFAs not only directly damages pancreatic cells but also
exacerbates pancreatic injury by inducing oxidative stress and
inflammatory responses (Guo et al., 2019).

FIGURE 5
Analysis of the HLAP Prediction Model. Note: (A) RF analysis. (B) Selection of the optimal lambda threshold. (C) Determination of the metabolite
coefficient. (D) Box plots of the expression of candidate biomarkers.
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In this study, the serum lipid profiles of 24 HLAP patients and
24 healthy controls were analyzed utilizing the LC-MS Lipidomics
platform. Differential analysis revealed significant alterations in TG,
FFA, glycerophospholipids, and sphingolipids in the HLAP
group. Furthermore, this study’s comprehensive description of
the lipid metabolic features in HLAP patients holds significant
scientific value, laying the groundwork for future diagnostic and
therapeutic strategies. Clinically, these findings enhance the
management and prognosis assessment of HLAP. Additionally,
the specific pathways and molecular mechanisms of lipid

metabolism mentioned in this study provide potential targets for
drug development and therapeutic interventions against HLAP.

Insufficient understanding of the pathogenesis of HLAP has
long been a primary reason for the lack of specific therapies for
this disease. Due to limitations in detection throughput, previous
research on HLAP has primarily focused on TG and FFAs (Yang
and McNabb-Baltar, 2020; Kuklinski et al., 1991). Elevated TG
and FFAs in the blood are independent risk factors for AP
accompanied by organ dysfunction (Kuklinski et al., 1991).
This study not only confirmed the significant elevation of TG

FIGURE 6
ROC Curves Differentiating HLAP from Con Using Individual and Combined Models. Note: (A–E) depict the ROC curves for five lipid molecules
(Cer(d18:1/18:0), sphingosine, PE (16:0/18:2), TG (18:0/18:0/18:0), and TG (18:0/18:2/18:2)) in the diagnosis of hyperlipidemia. Each ROC curve in the
figures assesses the diagnostic performance of the respective lipid molecule, with the range of the AUC provided in the graph, offering quantitative
indicators of each lipid molecule’s diagnostic sensitivity and specificity. (F) Combining the ROC curves of these five lipid molecules forming the
diagnostic panel showcases the performance of the composite diagnostic index. The statistical significance level was set at p < 0.05. The term “AUC” in
the figures represents the English abbreviation for “area under the curve,” indicating the diagnostic accuracy of the model.
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levels in HLAP patients but also identified varying
concentrations of different TG subtypes in these patients,
which may explain why only a portion of high TG patients
progress to HLAP. Guidelines recommend plasma exchange or
insulin administration to increase lipoprotein lipase activity for
reducing TG levels (Zou et al., 2005). However, treatments to
lower blood lipids have not significantly reduced complication
rates and mortality among patients. The diverse nature of lipids,
being insoluble in water and soluble in organic solvents, presents
a challenge. It is speculated that the lack of improvement in the
pro-inflammatory lipid composition due to indiscriminate
plasma lipid replacement may account for poor treatment
outcomes. Through in-depth research on the plasma lipid
profile of HLAP, replacing a specific lipid type or regulating

certain specific lipid metabolism pathways may offer promising
applications.

Liu et al. (2024) conducted a comprehensive metabolomics and
lipidomics analysis, revealing significant changes in TG, PC, and PE
in the serum of AP patients. The study highlighted that the levels of
these lipid molecules significantly alter with increasing severity of
AP, suggesting their potential roles in the pathophysiology of the
disease. Similar to Liu et al.’s findings, our study also identified
significant changes in TG, PC, and PE levels in HLAP patients.
Furthermore, through lipidomics analysis, we identified the roles of
additional lipid molecules, such as nervonic acid and Cer, in HLAP.
Although Liu et al.’s research emphasized the association between
changes in TG, PC, and PE and the severity of AP, it did not
specifically address these alterations in the context of HLAP.
Compared to general AP, HLAP presents more pronounced lipid
metabolism abnormalities. The findings from Liu et al.’s 2024 study
complement our results, highlighting the importance of lipid
metabolism in acute pancreatitis.

Recent research has confirmed that high concentrations of long-
chain unsaturated FA are the main cause of pancreatic acinar cell
damage leading to HLAP. In this study, we observed an increase in
FA concentration, with enriched analysis of lipid molecular
pathways revealing enhanced synthesis of long-chain unsaturated
FA. The presence of TG molecules with an 18-carbon fatty acid
chain notably increased in HLAP, suggesting that these TG subtypes
may serve as the material basis for FFA metabolism in HLAP.
Modulating the synthetic enzymes involved in FFA metabolism
could be a potential therapeutic target for HLAP. LPC and LPE are

TABLE 3 Characteristics of differential changes in candidate biomarkers
and AUC values.

Biomarker Sensitivity% Specificity% AUC

TG (18:0/18:2/18:2) 91.7 100 0.972

PE (16:0/18:2) 91.7 100 0.984

Cer(d18:1/18:0) 95.8 100 0.997

Nervonic acid 87.5 95.8 0.953

TG (18:0/18:0/18:0) 91.7 100 0.944

Diagnostic Panel 100 100 1

FIGURE 7
Lipidomics analysis of HLAP: Investigating diagnostic biomarkers and pathways.
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common bioactive lipids in serum, serving as key metabolic
products in cells and are involved in membrane construction and
signal transduction (Trinder et al., 2019; Yang et al., 2019). PC and
PE are hydrolyzed by phospholipase A2 (PLA2) at the sn-2 position
of the phospholipid, generating LPC and LPE. Studies have
indicated that LPC exhibits pro-inflammatory activity and can
promote cell apoptosis. Biopan is a cutting-edge tool for lipid
metabolic pathway analysis (Deng et al., 2021; Costello, 2018).
Analysis based on the Biopan database revealed an increase in
the conversion of DG to PE and PC. TG hydrolysis yields DG
after releasing a fatty acid chain. Elevated concentrations of PE and
PC lead to the formation of LPC and LPE under the action of
phospholipase, exerting pro-inflammatory effects. Additionally, PE
and PC serve as precursor molecules for leukotrienes,
prostaglandins, and other inflammatory mediators. The shift of
lipid molecular, metabolic subtypes in HLAP towards the
conversion into pro-inflammatory mediators provides a
substantial material foundation for the inflammatory mediators
required in systemic inflammatory responses.

Based on five lipid molecules, the diagnostic model constructed
in this study demonstrated predictive solid performance, with an
area under the AUC of 1, indicating its potential clinical application
in distinguishing HLAP. For instance, this diagnostic model could
be used for the early identification of high-risk patients, enabling
more timely and personalized interventions. Additionally, the lipid
molecules included in the diagnostic model could be utilized to
monitor disease progression and prognosis. Continuous monitoring
of changes in these lipid molecules during treatment may assist
physicians in evaluating therapeutic efficacy and making necessary
adjustments to the treatment plan.

However, despite the model’s high efficiency, the limitations of
this study, such as the small sample size and the constraints of the
study design, necessitate further validation of our findings in larger
cohorts. Moreover, the high cost of lipidomics analysis and the need
for specialized technical expertise may limit the widespread clinical
application of this diagnostic model. Therefore, simplifying the
analysis process, reducing costs, and enhancing the practicality of
the results are crucial challenges for the broader adoption of this
model in clinical practice.

Additionally, due to the use of a non-targeted lipidomics
platform, while it can describe a wide range of lipid molecules,
the exploration depth of specific pathways is limited, and some
conclusions will need further validation through targeted lipidomics
techniques in the future. Lastly, as this study is cross-sectional, the
causal relationship between lipid molecules and disease states
remains unclear and requires further investigation in larger
sample sizes and prospective studies. Therefore, future research
should focus on the early diagnosis of diseases and a detailed analysis
of the pathological mechanisms, as well as the specific roles and
mechanisms of these lipid metabolic changes in disease progression,
especially how they impact the severity of pancreatitis and treatment
response. Additionally, our study emphasizes the importance of
utilizing a variety of bioinformatics tools and databases, such as
Biopan and KEGG, for a detailed analysis of lipid metabolic
pathways. These tools helped us uncover the comprehensive
picture of lipid metabolism in the HLAP pathological state,
including changes in key metabolites and metabolic pathways.
This approach provides a robust framework for future lipidomic

studies to more comprehensively understand complex diseases’
metabolic networks and develop new diagnostic and treatment
strategies for clinical applications.

Conclusion

This study utilized ultra-high-performance liquid
chromatography-tandem mass spectrometry to analyze lipid
metabolites in the serum of patients with HLAP compared to a
healthy control group, revealing 393 significantly different lipid
metabolites between the two groups (Figure 7). Particularly
notable were differences in TG, PC, and free FA, involving key
metabolic pathways such as sphingolipid, fatty acid, and
glycerophospholipid metabolism. Furthermore, a diagnostic
model was constructed, utilizing five key lipid molecules, which
achieved a highly efficient diagnosis of HLAP, with an area under the
ROC curve of 1 indicating exceptional diagnostic accuracy.

Scientifically, this research enhances our understanding of lipid
metabolism changes in HLAP and illuminates the central role of lipid
metabolism in disease development. This study identifies disease-
relevant metabolic markers and demonstrates metabolomics’
potential application in precision medicine. Clinically, these
findings contribute to improving diagnostic methods for HLAP,
offering more precise and rapid diagnostic tools that could be
crucial for early diagnosis and disease monitoring.

Despite the research’s significant scientific and clinical value,
some limitations exist. Firstly, the relatively small sample size
(24 individuals per group) may restrict the generality and
extrapolation of statistical results. Secondly, the study mainly
focuses on changes in lipid metabolites, potentially overlooking
the role of biomarkers associated with other metabolites.
Additionally, as a single-center study, there may be regional
biases present.

Future research should aim to increase sample size and engage in
multi-center collaborations to validate and optimize the accuracy
and applicability of diagnostic models. Furthermore, exploring other
types of metabolites, such as amino acids and nucleotides, to
comprehensively assess the role of metabolic networks in HLAP
is recommended. Moreover, investigating how these metabolites are
linked to the clinical manifestations and treatment responses of
HLAP will provide valuable insights for developing personalized
treatment strategies. Ultimately, these research findings hold
promise for translating into new therapeutic targets, offering
novel directions for managing HLAP.
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