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Background and Objective: Coronary artery disease remains a leading cause
of mortality among individuals with cardiovascular conditions. The therapeutic
use of bioresorbable vascular scaffolds (BVSs) through stent implantation is
common, yet the effectiveness of current BVS segmentation techniques from
Intravascular Optical Coherence Tomography (IVOCT) images is inadequate.

Methods: This paper introduces an enhanced segmentation approach using
a novel Wavelet-based U-shape network to address these challenges. We
developed a Wavelet-based U-shape network that incorporates an Attention
Gate (AG) and an Atrous Multi-scale Field Module (AMFM), designed to enhance
the segmentation accuracy by improving the differentiation between the stent
struts and the surrounding tissue. A unique wavelet fusion module mitigates
the semantic gaps between different feature map branches, facilitating more
effective feature integration.

Results: Extensive experiments demonstrate that our model surpasses existing
techniques in key metrics such as Dice coefficient, accuracy, sensitivity, and
Intersection over Union (IoU), achieving scores of 85.10%, 99.77%, 86.93%, and
73.81%, respectively. The integration of AG, AMFM, and the fusionmodule played
a crucial role in achieving these outcomes, indicating a significant enhancement
in capturing detailed contextual information.

Conclusion: The introduction of the Wavelet-based U-shape network marks
a substantial improvement in the segmentation of BVSs in IVOCT images,
suggesting potential benefits for clinical practices in coronary artery disease
treatment. This approach may also be applicable to other intricate medical
imaging segmentation tasks, indicating a broad scope for future research.
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deep learning, medical image processing, bioabsorbable vascular stent, wavelet
transform, intravascular optical coherence tomography
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1 Introduction

Coronary artery disease (CAD) is a leading cause of mortality
in individuals with cardiovascular diseases (Mehvari et al., 2024).
Currently, stent implantation represents an effective nonsurgical
intervention for managing CAD that is capable of dilating narrowed
vessels and mitigating the recurrence of vascular obstruction
posttreatment (Ullah et al., 2023). Metal stents are the most
commonly utilized; however, they may induce stent thrombosis
(Changal et al., 2021). In contrast, bioabsorbable vascular stents
(BVSs), which are absorbable and harmless, have emerged as the
optimal alternative to metal stents. Intravascular optical coherence
tomography (IVOCT) is an imaging modality that can depict the
cross-sectional structure of arteries with high resolution. Given that
BVSs are invisible in X-ray angiography and that their material
composition results in low spatial resolution and blurriness in
coronary angiography (Arat et al., 2018), IVOCT is prevalently
selected for assessing the quality of stent deployment during surgery
and for inspecting restenosis (recurrent vascular obstruction)
during follow-up evaluations. Segmentation of stent struts in
IVOCT images is crucial for assisting clinicians in objectively
assessing stent deployment, tissue coverage, and the burden of
restenosis. Manual segmentation of stent struts in IVOCT images
is impractical, as a single IVOCT pullback may contain thousands
of stent struts, making it time-consuming and inefficient for experts
to identify stents from medical images. Hence, the development
of an expert system for the automatic segmentation of stents is
necessary to provide quantitative data within the timeframe of
surgical procedures.

To date, numerous researchers have embarked on studies
concerning the automatic segmentation of vascular stents employing
image processing techniques among others. Wang et al. (2018)
ventured into stent strut detection in intravascular ultrasound
images by extracting Haar-like features, employing both cascaded
AdaBoost and SVM classifiers for training data to achieve stent
detection outcomes. However, this SVM-based method incurs
significant computational overhead as the sample size increases.
Moreover, its detection robustness is compromised when stents
are incomplete, geometrically irregular, or embedded into the
lumen, thereby offering limited assistance in helping physicians to
assess the level of stent deployment. Cao et al. (2018) introduced
a Bioabsorbable Vascular Stent (BVS) struts detection method
employing a Region-based Fully Convolutional Network (R-FCN),
wherein regions of interest in IVOCT images were extracted using
an Region Proposal Network (RPN) module, and FCN was utilized
to identify regions containing stent struts. Although this method
enhances detection robustness across various scenarios, there
remains room for improvement in its effectiveness. Bologna et al.
(2019) delineated a three-step process for identifying stent struts
in images, initially employing intensity thresholding using the
0.85 quantile of the pixel intensity distribution, followed by
a flood fill operation to close holes in the binary image, and
ultimately extracting BVS struts from IVOCT images through
Boolean subtraction. Duda et al. (2022) commenced with a
series of preprocessing steps on IVOCT images, incorporating
contrast-limited adaptive histogram equalization and the Otsu
threshold method (Sha et al., 2016), and concluded with Canny
edge detection for strut detection.

With the rapid advancement of deep learning, methods
exhibiting superior performance in the detection or segmentation
of BVS in IVOCT images are emerging in the research landscape
(Etehadtavakol et al., 2024). Zhou et al. (2019) proposed a U-Net-
based BVS segmentation approach, wherein they modified the U-
Net architecture to better suit biomedical IVOCT images, featuring
five downsampling modules and four upsampling modules.
Lau et al. (2021) integratedMobileNetV2 and DenseNet121 with U-
Net to create a hybrid Encoder-Decoder Network, which enhanced
the speed and accuracy of vascular scaffold segmentation beyond
that of a singular U-Net structure. Huang et al. (2021) improved
the U-Net structure by incorporating an attention layer to focus
on significant areas within IVOCT images and utilized a Dilated
convolution module (DCM) to attain a larger receptive field. This
method also employed semi-supervised learning to address the issue
of labor-intensive and time-consuming BVS annotation. Han et al.
(2023) introduced a multiple attention convolutional model akin
to the yolov5 architecture for stent struts detection, integrating
squeeze and excitation (SE) attention (Hu et al., 2018) with the
convolutional block attention module (CBAM) (Woo et al., 2018)
into their detection network to achieve superior detection outcomes.

Overall, traditional machine learning methods and some
conventional image processing techniques underperform in the
task of segmenting or detecting bioresorbable vascular scaffolds in
IVOCT images, suffering from low credibility of detection results
and poor robustness in complex stent scenarios, such as stent
deformation. Although some deep learning-based segmentation
methods have managed to speed up segmentation and enhance
performance, they fail to fully recognize features in IVOCT images,
such as blood artifacts. These methods are not yet suitable for
inclusion in expert systems that assist physicians with diagnoses,
where high accuracy and reliability are needed.

Given the limitations outlined above, to achieve improved
segmentation results, we propose aWavelet-Based U-shape network
for segmentation. Segmenting stent struts in high spatial resolution
IVOCT images is often limited by artifacts that obscure the
clear delineation of scaffolds from these distractions. Traditional
convolutional networks struggle to accommodate the interference of
artifacts within the stent struts regions to be segmented, potentially
leading to low accuracy in segmentation outcomes. Hence, we
introduce a wavelet branch to integrate with the original Encoder
structure, aiming to merge multi-dimensional features to enhance
the perception of areas of interest.This wavelet branch processes the
High Frequency (HF) part of the original image after undergoing
a 2D Discrete Wavelet Transform, which captures clear detail and
edge information more effectively. Compared to the single-branch
Encoder used by Zhou et al. (2019), our dual-branch Encoder
structure enables themodel to focusmore on theminute stent struts,
thereby enhancing the segmentation results.

We designed and introduced a Wavelet Fusion Block to
merge features from the original convolutional branch with those
from the wavelet branch. This amalgamation leverages both
the semantic features of the original images and the detailed
edge characteristics from the wavelet branch to achieve superior
segmentation results. Additionally, an Atrous Multi-scale Field
Module (AMFM) is incorporated at the base of our proposed
network to attain a larger receptive field, capturing texture and
detail information across multiple scales. Atrous convolution, also
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known as dilated convolution, expands the receptive field without
additional computational cost, enabling the network to learn
multi-scale contextual information. Furthermore, we integrated
an Attention Gate (AG) with the network to suppress feature
responses in irrelevant background regions and enhance the feature
response in the BVS area or regions of interest. With these modules,
our proposed network’s generalization ability and segmentation
performance are enhanced, and its adaptability and robustness to
artifacts and noise in IVOCT images are improved to some degree.
Overall, the contributions of this work are summarized as follows:

(1) A novel U-Net-based network is proposed, incorporating a
wavelet branch with the convolutional branch to enhance the
segmentation effectiveness for BVS in IVOCT images and
improve adaptability to noise and artifacts.

(2) The Atrous Multi-scale Field Module (AMFM) is utilized to
enable the network to learn multi-scale contextual feature
information, enhancing the capability to capture long-range
dependencies.

(3) Awavelet fusion block is designed formerging original andHF
features, optimizing the semantic alignment and integration of
dual-branch information.

(4) The Attention Gate (AG) is integrated with the level-by-level
convolutional network, strengthening the feature response of
the region of interest for better segmentation outcomes.

The remainder of the paper is organized as follows: Section 2
provides a brief overview of the related work. Section 3 introduces
our proposed network along with other modules. Section 4
describes the evaluation metrics and experimental results. In
Section 5, we offer a brief discussion of the work presented in this
paper. Finally, Section 6 concludes the paper and outlines future
research directions.

2 Related work

In the domain of medical image segmentation, since its
introduction in 2015, the U-Net model (Ronneberger et al., 2015)
has become a milestone methodology, widely applied to the
automatic segmentation of various medical images. U-Net, through
its unique symmetrical design of downsampling and upsampling,
effectively captures the contextual information of images while
maintaining sensitivity to details. This design has enabled U-Net to
exhibit exceptional performance in processing medical images with
complex structures, especially when there is a limited amount of
labeled data. Subsequent studies have introduced various variants
and improvements of the U-Net model to meet different medical
image segmentation needs, further demonstrating the architecture’s
strong adaptability and effectiveness.

Building on the foundation of U-Net, the Attention U-Net
(Oktay et al., 2018) incorporates a novel attention module, known
as the Attention Gate (AG). This model integrates AG into the
level-by-level U-Net structure, specifically, it modulates the feature
maps from one upsampling operation and the parallel feature maps
from skip connections through the AG attention mechanism. This
suppresses the attention to background areas, enabling the model
to focus more on the foreground parts to be extracted. In the
same year, ResUnet (Zhang et al., 2018) employs residual units

in place of the basic convolutional blocks of the original U-Net
structure. The advantage of this modification is that residual units
are easier for the network to train and can integrate high-level and
low-level information without degradation, allowing the region of
interest to be identified at multiple scales. ResUnet++ (Jha et al.,
2019), an enhancement of ResUnet aimed at colonoscopy image
segmentation, incorporates an Atrous spatial pyramid pooling
(ASPP) module that acts as a bridge between the encoder’s output
and the decoder’s input to expand the receptive field. It also
uses an SE module (squeeze and excitation block) to enhance the
foreground awareness during the downsampling process of the
model, though this method might result in the loss of some low-
level detail information, reducing segmentation precision. As the
transformer structure has been widely used for visual tasks, Swin-
Unet (Cao et al., 2022) represents a hybrid model for medical
image segmentation. This approach feeds image patches into a
transformer-based U-Net network structure and combines skip
connections to learn global semantic information that pure CNN-
based networks might struggle to fully grasp. Although capable
of capturing long-distance dependencies, this patch input method
imposes limitations on image inputs, particularly for high spatial
resolution medical images. Compared to the models mentioned
above, ourmethod not only enhances the ability of feature extraction
but also improves robustness in noisy backgrounds, as evidenced by
our extensive experiments where we achieved superior performance
with a Dice coefficient of 85.10%, accuracy of 99.77%, sensitivity
of 86.93%, and IoU of 73.81%, surpassing the results reported by
previous studies.

In recent years, the integration of wavelet transform with the U-
Net model has garnered widespread attention in the field of medical
image segmentation. Incorporating wavelet transformwithin the U-
Net architecture allows for effective multi-scale analysis of images,
thereby better capturing and utilizing texture and detail information
within the images. Aerial LaneNet (Azimi et al., 2018) is a symmetric
FCNN model enhanced by wavelet; it views wavelet transform
as a tool for extracting full-spectral information in the frequency
domain and integrates it into the CNN. However, this method is
specifically designed for lane marking in aerial imagery. CWNN
(Gao et al., 2019), another model that combines CNN with wavelet
transform, focuses on sea ice change detection from synthetic
aperture radar (SAR) images. It introduces the dual-tree complex
wavelet transform to improve the pooling layer, achieving more
robust and reliable detection results, but the model is still limited to
a specific use case and lacks generalizability. Wavesnet (Li and Shen,
2022) employs discrete wavelet transform (DWT) to extract image
details during downsampling and uses Inverse DWT to restore
detail information during upsampling. This symmetrical approach
fits well with U-Net’s Encoder-decoder structure. Xnet (Zhou et al.,
2023), by improving upon previous wavelet-integrated methods,
designs a dual-branch for HF and LF images and uses feature
fusion technology to perform dual-decoder output, selecting the
optimal segmentation results. Furthermore, unlikeWavesnet (Li and
Shen, 2022) and Xnet (Zhou et al., 2023), our model does not rely
on offline wavelet transform or a computationally expensive dual
encoder-decoder structure, making it more efficient and applicable
to a broader range of medical imaging scenarios.

The introduction of wavelet transform not only enhances the
model’s sensitivity to features at different frequencies but also
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FIGURE 1
The whole architecture of our proposed model. The Convolution Branch and the Wavelet Branch represent the traditional encoder structure and our
proposed wavelet-based encoder structure, respectively.

improves its robustness in noisy backgrounds. This approach
is particularly suitable for scenarios where texture information
significantly impacts segmentation accuracy, such as boundary
recognition or segmentation of fine structures. By merging U-Net’s
deep feature extraction capabilities with the multi-scale analysis
advantages of the wavelet transform, researchers have been able
to develop more accurate and robust medical image segmentation
models, providing more reliable support tools for clinical diagnosis
and treatment.

3 Materials and methods

3.1 Overview

Our proposedmodel structure, as shown in Figure 1, is designed
for a Wavelet-based U-shape convolutional network aimed at BVS
segmentation in IVOCT images. The model principally comprises
two branches: a convolutional branch, which serves as the plain
U-Net encoder, and a wavelet branch that inputs HF features.
Bridging these two branches, the key component is the Wavelet
Fusion Module, which integrates the original features with HF
features to form multi-dimensional features. Moreover, the model
incorporates two major components: the Atrous Multi-scale Field
Module (AMFM) and the Attention Gate (AG).

The AMFM enriches the model’s ability to capture a broader
range of contextual information and long-distance dependencies by
fusing multiscale information to achieve a larger receptive field. By
feeding the feature maps from the encoder side and the parallel

featuremaps from the decoder side into theAGvia skip connections,
the response of unrelated areas is suppressed, while the response of
regions of interest is enhanced, thus achieving better segmentation
results. This strategic integration of components ensures that our
model not only effectively handles the inherent challenges in IVOCT
image segmentation, such as noise and artifacts but also improves
the precision and robustness of segmentation outcomes.

3.2 Wavelet Transform

Intravascular optical coherence tomography (IVOCT) images,
which are 2D high-spatial-resolution images, are discrete
nonstationary signals containing rich information in both the
frequency and spatial domains.The wavelet transform is an effective
tool for capturing information within images while maintaining
robustness to noise (Zavala-Mondragón et al., 2021). The 2D
discrete wavelet transform (DWT) enables the decomposition
of an image into one low-frequency component and three high-
frequency components. The low-frequency component, referred
to as LL, retains most of the semantic information of the image
but with reduced resolution and less detail. The three high-
frequency components, denoted as HL, LH, and HH, capture
vertical, horizontal, and diagonal detail information, respectively.

For a 2D imageX, we employ the 2DDiscreteWavelet Transform
to decompose it into four parts, namely, LL, HL, LH, and HH:

Xij = (↓2)( fij ∗ X) , i, j ∈ {L,H} (1)

In this context, fLL represents the low-pass filter, while fHL, fLH
and fHH represent to high-pass filters in the vertical, horizontal,
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FIGURE 2
(A) The original IVOCT image; (B) the result of 2D DWT or visualization of LL, HL, LH, and HH components; (C) visualization of the HF components.

and diagonal directions, respectively. The asterisk ∗ denotes the
convolution operation. Through the application of the 2D Discrete
Wavelet Transform, the outputs obtained are XLL, XHL, XLH and
XHH, which represent the LL, HL, LH, and HH components,
respectively.

Taking the 1D Haar wavelet (Stanković and Falkowski, 2003)
as an example, its low-pass filter fL and high-pass filter fH
are defined as:

fL =
1
√2
[

[

1

1
]

]
, fH =

1
√2
[

[

1

−1
]

]
(2)

Meanwhile, the 2DHaar wavelet low-pass filter fLL and the three
high-pass filter fHL, fLH and fHH are defined as:

fLL = fL ⊗ fL =
1
2
[

[

1 1

1 1
]

]
, fHL = fH ⊗ fL =

1
2
[

[

1 −1

1 −1
]

]
(3)

fLH = fL ⊗ fH =
1
2
[

[

1 1

−1 −1
]

]
, fHH = fH ⊗ fH =

1
2
[

[

1 −1

−1 1
]

]
(4)

We define the LF component as the LL component, while theHF
component is a combination of the HL, LH, and HH components,
representing the details in various directions of the original image.
This distinction is particularly crucial for segmenting stent struts,
which are small in area and have detailed edges in the foreground.
Our definitions of LF and HF are as follows:

LF = LL, HF =HL+ LH+HH (5)

The LF and HF components are illustrated in Figure 2.
Compared to the original image, the LF, which is the LL, is
blurred and loses detailed information. On the other hand, the HF
emphasizes detail information, significantly aiding in the precise
localization of the BVS by the model.

3.3 Attention gate

In our proposed method, we have incorporated an Attention
Gate (AG) mechanism, inspired by the Attention U-Net
architecture (Oktay et al., 2018), aimed specifically at refining

feature extraction for medical image segmentation tasks,
particularly for the detection of stent struts.The AGmodule enables
the model to focus on salient features relevant to the specific task
at hand while suppressing the influence of unrelated background
information. By selectively emphasizing important spatial regions
and features within the input image, AG enhances themodel’s ability
to distinguish the area of interest from surrounding tissues and
artifacts.

The core principle of the Attention Gate is to generate a gating
signal that modulates the feature activation before the convolutional
operations in the network. Through this, the two feature maps x
and g will be modulated by two 1× 1 convolutions respectively,
followed by concatenation and activation with a ReLU function.
Subsequently, the feature map is compressed into a single channel,
and finally, an attention coefficient α, ranging from 0 to 1, is
generated through a sigmoid activation function. This attention
coefficient is then applied in an element-wisemultiplicationwith the
original feature map to produce a new feature map that highlights
important areas. This process can be viewed as a gating mechanism
that learns to weigh the importance of different features at different
spatial locations, thereby allowing the network to focus more on
relevant structures within the image. The AG operation does not
require explicit external Region of Interest (ROI) cropping or
sampling, making it an efficient and effective method to enhance
the accuracy of segmentation results (due to the uniqueness of the
gating feature map, which dynamically adjusts feature focus across
the entire image without predefined zones).

In Figure 3, we illustrate that x represents the feature map in
the decoder that needs to be upsampled, while g is the feature
map in the encoder with the same resolution, used as a gating
feature map to guide x towards paying more attention to important
features. This gating feature map, being closer to the original
input level, possesses more contextual information for reducing
irrelevant feature responses. The feature map with attention x′ is
defined as follows:

α = σ(fout1×1 (ReLU(f1×1g (g) ⊕ f1×1x (x)))) (6)

x′ = α⊗ x (7)

In the description, ⊕ denotes concatenation, ⊗ represents
element-wise multiplication, ReLU stands for the Rectified Linear
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FIGURE 3
The illustration of the Attention Gate (AG), where the Cm is equal to Cg plus Cx. ReLU represents the ReLU activation function.

Unit, and σ (⋅)denotes the Sigmoid activation function, which is used
to generate the attention coefficient α ranging from 0 to 1. The term
f1×1out refers to a 1× 1 convolution employed to reduce the number of
channels to 1, while f1×1g and f1×1x respectively indicate 1× 1 transition
convolutions used to unify the number of channels of the gating
feature map and the feature map.

Integrating the AG into our model improves the accuracy
of stent strut detection by enhancing feature contrast and detail
resolution. Moreover, this approach can reduce false-positive
predictions due to the difficulty of modeling the relationship
between the stent struts and the surrounding tissue on a global scale.
This results in more accurate and clinically useful segmentation
results that are critical for assisting medical professionals in
diagnosis and treatment planning.

3.4 Atrous multi-scale field module

Atrous convolution, also known as dilated convolution, aims
to expand the filter’s receptive field without losing resolution,
allowing the model to capture more contextual information
without increasing the number of parameters or the amount
of computation (Chen et al., 2017). Unlike standard convolution,
which acts on adjacent pixels, atrous convolution introduces gaps
in the input feature map, allowing the filter to cover a wider area of
the input image. The expansion rate determines the spacing of each
unit in the convolution kernel; An expansion rate of one indicates a
regular convolution, while a higher expansion rate implies a wider
range of inputs considered in each convolution step.

Accurate semantic information is crucial to the feature
decoupling process. Therefore, we proposed the Atrous Multi-
scale Field Module (AMFM) to expand the receptive field of
the feature map in the lowest layer of the network through
Atrous convolution to obtain more accurate contextual semantic
information. Considering that a single Atrous convolution may lack
generality, we use multiple dilated rates of Atrous convolution to
capture multi-scale details to capture global semantic information.

Figure 4 shows the details of the AMFMmodule we designed. In
theAMFMmodule, the featuremap x output by the encoderwill first
extracts important information through a 1× 1 convolution, and
then the feature map undergoes a 3× 3 convolution with 3 different
dilated rates, dilated rates are 1, 2, and 3 respectively. The purpose
of this step is to expand the receptive field. The model can learn
more semantic context information in IVOCT images. After atrous
convolution, the three feature maps will be concatenated through
a 1× 1 transition convolution to change the number of channels.
Finally, after activating the function by Sigmoid, the element-wise
multiplication is executed with the original feature map x to obtain
the final feature map x̂. In this process, the number of channels in
the input feature map x will be the same as the number of channels
in the output feature map x̂, but the output feature map x̂ contains
more semantic information.Moreover, it will capturemore sufficient
information for segmentation. We define this process as follows:

x̂ = x⊗ σ(
3

∑
i=1

f 3×3d=i ( f
1×1 (x))) (8)

Where ⊗ stands for element-wise multiplication, f 3×3d=i (⋅) stands
for 3× 3 atrous convolution, where d = i stands for dilated rate
i, f1×1 (⋅) stands for 1× 1 transition convolution. Note that the Σ
represents the concatenation of the three feature maps together.

3.5 Wavelet fusion module

To better combine the distinct characteristics of the original
feature map and the HF feature map, we designed a wavelet
fusion module, the structure of which is illustrated in Figure 5. The
original feature map contains most of the semantic information
of the original image but loses details and resolution during
the downsampling process (Wang et al., 2023). On the other
hand, the HF feature map, derived from the high-frequency
components of the 2D DWT, encompasses the detail information
of IVOCT images (Li et al., 2023). Through the wavelet fusion
module, we can fuse features with different focal points to
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FIGURE 4
The illustration of our proposed Atrous Multi-scale Field Module (AMFM). Sigmoid represents the sigmoid activation function and 1× 1 Conv denotes
the transition convolution.

FIGURE 5
The illustration of our proposed wavelet fusion module, where r equals to 16 here.

achieve a richer feature representation, thereby obtaining better
segmentation results.

Within the wavelet fusion module, the two feature maps are
first concatenated, which increases the number of channels. Inspired
by the squeeze and excitation block (Hu et al., 2018), we also
designed a similar channel attention mechanism. This results in a
feature map that has been refined through an attention mechanism,
enhancing performance in subsequent processing stages. Initially,

global spatial information is compressed into a channel descriptor
through global average pooling, facilitating a global understanding
of the featuremap. Subsequently, the inter-channel dependencies are
captured through two layers of 1× 1 convolution. This mechanism
allows the network to focus on more informative features by
adjusting the channel based on the importance learned for each
channel, effectively recalibrating features based on their learned
importance (Ghaffarian et al., 2021). The reduction ratio r is a

Frontiers in Physiology 07 frontiersin.org

https://doi.org/10.3389/fphys.2024.1454835
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Lin et al. 10.3389/fphys.2024.1454835

parameter which represents the degree to which the number of
channels is reduced during the compression step. By setting r, we
control the balance between model complexity and the ability to
capture channel-wise dependencies.

The recalibrated channel attention is then applied to the
concatenated feature map through a multiplication operation. This
operation selectively emphasizes features more relevant to the
current task while suppressing less useful information, thereby
enhancing the network’s representational capability. Finally, the
channel count is reduced through a 1 × 1 transition convolution,
which also adds non-linearity to the network. We define this
process as follows:

Fout = Fm ⊗ (σ( f1×1 (ReLU( f1×1 (AvgPool(Fm)))))) (9)

Fm = F1 ⊕ F2 (10)

Where F1 and F2 are the input original feature map and HF
feature map, respectively, Fm is the concatenated feature map, and
Fout is the final feature map after feature fusion. σ (⋅) represents the
Sigmoid activation function.

3.6 Loss function

In the task of BVS segmentation in IVOCT images, since
the shape of the segmentation target of the support pillar is
usually a series of discontinuous small squares, the foreground
takes a small proportion of the whole image. If the cross-
entropy (CE) loss function is used, class unbalance leads to poor
model optimization, resulting in poor segmentation. For this task,
we choose to use the Dice coefficient loss function for model
optimization (Milletari et al., 2016), which is defined as follows:

Ldice = 1−
2∑N

i=1
piqi

∑N
i=1

p2i +∑
N
i=1

q2i
(11)

Where N represents the total number of pixels, pi and qi
represent the predicted label and the true label of pixel i.

4 Results

4.1 Experiment settings

4.1.1 Dataset
The experimental data for this study were sourced from the

Dongfang Hospital Affiliated to Tongji University. The dataset
comprises 641 IVOCT images in the polar coordinate system,
with a resolution of 527× 704. Each image was annotated by
experienced clinicians. The ground truth data were generated
through a rigorous process that involved the careful examination
of each image to identify and delineate the regions of interest with
high precision. We divided these data into training and testing sets
at an 8:2 ratio. To prevent overfitting and enhance segmentation
performance (Buslaev et al., 2020), we employed data augmentation
techniques. Specifically, we applied random adjustments to hue,
saturation, and value to simulate different camera settings, thereby

enriching the diversity of our images. Additionally, we utilized
random shift, scale, and rotation augmentations to further increase
the variability within the dataset. Moreover, we included random
horizontal and vertical flips.

4.1.2 Model implementation and metrics
This model uses the PyTorch 1.7.0 framework and the NVIDIA

Tesla V100 SXM2 with 32 GB memory as the training tool. We set
the batch size to 4, the epoch to 100, the initial learning rate to 0.001,
and use AdamW to optimize the training process. At the same time,
we use the step learning rate adjustment strategy, that is, the learning
rate decreases by 50% every 20 rounds.

We used Dice coefficient (Dice), Accuracy, Sensitivity, and
Intersection Over Union (IoU) as evaluation indicators, and their
definitions are as follows:

Dice =
2|A∩B|
|A| + |B|

= 2TP
2TP+ FP+ FN

(12)

Accuracy = TP+TN
TP+TN+ FP+ FN

(13)

Sensitivity = TP
TP+ FN

(14)

IoU =
|A∩B|
|A∪B|
= TP
TP+ FP+ FN

(15)

where TP, TN, FP, and FN denote the number of true positives,
true negatives, false positives, and false negatives. A denotes the
segmentation result and B denotes the Ground truth.

4.2 Comparison with state-of-the-art
methods

To demonstrate the superiority of our proposed network in BVS
segmentation within IVOCT images, we conducted comparative
experiments with other state-of-the-art models, including U-
Net (Ronneberger et al., 2015), FCN (Liang-Chieh et al., 2015),
Attention U-Net (Oktay et al., 2018), ResUnet (Zhang et al., 2018),
R2U-Net (Alom et al., 2018), ResUnet++ (Jha et al., 2019), HRNet-
18 (Sun et al., 2019), Swin-Unet (Cao et al., 2022), DuckNet
(Dumitru et al., 2023), DconnNet (Yang and Farsiu, 2023),
and XNet (Zhou et al., 2023). The experimental results are
presented in Table 1.

From Table 1, we observe that traditional networks such as U-
Net and FCN exhibit average performance in BVS segmentation in
IVOCT images, with Dice coefficients of approximately 80% and
IoUs between 65%–70%.Models incorporating attentionmodules or
residual units, such as Attention U-Net, ResUnet, and ResUnet++,
show some improvements in Dice coefficients and other metrics.
Surprisingly, the recently proposed Swin-Unet performed the worst
in this task, achieving only a 60.77% Dice coefficient. Xnet, which
uses a dual-branch for HF images and LF images as inputs, displayed
segmentation effectiveness similar to ResUnet. Our proposed
network outperformed these models, achieving the highest Dice
coefficient of 85.10%, an improvement of 1.24% over the second-
best score of 84.06%, and showed enhancements in IoU, accuracy,
and sensitivity to 73.81%, 99.77%, and 86.93%, respectively. Notably,
our model scored the highest in all evaluation metrics, indicating
significant improvements and the best segmentation performance.
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TABLE 1 Comparison with state-of-the-art methods, the best experimental results are shown in bold.

Methods Years Dice (%) Accuracy (%) Sensitivity (%) IoU (%)

U-Net 2015 80.53 99.24 80.86 67.25

FCN 2014 79.10 99.68 81.28 65.43

Attention Unet 2018 84.06 99.75 84.97 71.81

ResUnet 2018 83.45 99.75 83.19 71.61

R2U-Net 2018 82.19 99.73 81.59 69.77

ResUnet++ 2019 83.35 99.75 83.08 71.45

HRNet-18 2019 84.02 99.76 82.67 72.46

Swin-Unet 2022 60.77 99.40 64.62 43.64

DuckNet 2023 81.79 99.74 78.22 69.19

DconnNet 2023 83.53 99.73 86.45 71.71

XNet 2023 82.56 99.76 82.57 70.84

Ours 2024 85.10 99.77 86.93 73.81

In Figure 6, we visualized the segmentation results for
a qualitative comparison. Swin-Unet, which had the lowest
performance metrics, resulted in the poorest segmentation of
BVS, potentially leading to false-positive segments and poor edge
delineation of stent struts, a lack of connectivity and distortion of
the original shape of the stent struts. This could minimally assist
or even interfere with clinical decision-making and procedures.
In contrast, our model achieved the best segmentation results,
capturing the edge details of the stent struts well while maintaining
the distribution of stent struts across the IVOCT images. For
instance, DconnNet, which focuses on segment connectivity, tends
to merge closely situated stent struts into a larger entity, whereas our
model can correctly distinguish between individual stent struts.

4.3 Ablation studies

4.3.1 Ablation on model components
To illustrate the role of the modules within our model,

we conducted ablation studies on the Attention Gate
(AG) and Atrous Multi-scale Field Module (AMFM), as
shown in Table 2.

Commonly, the inclusion of these two modules improved the
evaluation metrics of the baseline model, but their enhancements
focused on different aspects. When the AG was added to the
baseline model, there was a greater increase in sensitivity compared
to AMFM. This is because AG focuses on reducing the response
to unimportant features to decrease false-positive segmentation.
Conversely, when AMFM was added to the baseline model, there
was a greater improvement in IoU compared to AG. This is
attributed to the AMFM module’s emphasis on expanding the
model’s receptive field and enhancing its ability to capture long-
distance dependencies, thus improving segmentation by modeling

the differences between the background and foreground at a global
scale. The model incorporating all modules performed optimally
because the inclusion of AG and AMFM enhanced the model’s
feature extraction capabilities from multiple perspectives, yielding
the best results.

4.3.2 Ablation on wavelets bases
To determine the optimal wavelet for BVS segmentation in

IVOCT images, we experimented with different wavelet bases in
the 2D Discrete Wavelet Transform (DWT). We tested several
classic wavelets, including Haar, Daubechies 2, Daubechies 3,
Coiflets 2, Symlets 2, Meyer, Discrete Meyer (Dmey), Biorthogonal
1.5, and Biorthogonal 2.4 wavelets. According to the results
presented in Table 3, we found that the Biorthogonal 2.4 wavelet
demonstrated the best performance. Consequently, all other
experiments in our model were based on the 2D DWT using
the Biorthogonal 2.4 wavelet. Some wavelet bases, such as
Biorthogonal wavelets, are more suitable for edge detection
because they can more effectively capture the high-frequency
components of the image, which is particularly important for
the representation of edges and details. This also explains why
the choice of Biorthogonal 2.4 wavelet led to the best results.
On the other hand, wavelet bases like Coiflets offer a smoother
effect, which may result in weaker detail extraction capabilities,
further explaining why the performance of Coiflets wavelet
was not optimal.

4.3.3 Ablation on wavelet fusion module
To investigate whether our designed wavelet fusion module

facilitates the fusion of features from the dual-branch architecture,
we conducted an ablation study. The results, as shown in Table 4,
indicate that the model without the fusion block, where features
from the two brancheswere simply element-wise added together in a
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FIGURE 6
Visual comparison between our proposed method and state-of-the-art networks. It offers a side-by-side analysis of the segmentation results
produced by our innovative approach and those of the current leading methods in the field.

TABLE 2 Ablation study results of the AG and AMFM.

Method AG AMFM Dice Accuracy Sensitivity IoU

Baseline

× × 83.10 99.74 83.76 71.08

× ✓ 84.73 99.76 85.81 73.46

✓ × 84.59 99.76 86.16 73.29

✓ ✓ 85.10 99.77 86.93 73.81

The best experimental results are shown in bold.

TABLE 3 Ablation study results on wavelet bases.

Wavelets Dice (%) Accuracy (%) Sensitivity (%) IoU (%)

Haar 84.57 99.76 85.67 73.26

Meyer 84.46 99.76 85.29 73.09

Symlets 2 84.43 99.76 85.34 73.05

Coiflets 2 83.84 99.75 84.43 71.67

Discrete Meyer 84.35 99.75 85.98 72.94

Daubechies 2 84.17 99.76 85.50 72.66

Daubechies 3 84.26 99.76 85.36 72.79

Biorthogonal 1.5 84.47 99.76 85.93 73.12

Biorthogonal 2.4 85.10 99.77 86.93 73.81

The best experimental results are shown in bold.
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TABLE 4 Ablation study results on wavelet fusion module.

Methods Dice (%) Accuracy (%) Sensitivity (%) IoU (%)

Concatenation 81.23 99.72 80.56 70.21

Summation 79.58 99.71 79.64 70.07

Fusion Module 85.10 99.77 86.93 73.81

The best experimental results are shown in bold.

“summation” operation, performed the worst with a Dice coefficient
of only 79.58%. The performance of directly concatenating the
feature maps from the two branches also lagged behind the model
utilizing the wavelet fusion block. This suggests that our wavelet
fusionmodule plays a significant role in enabling better information
fusion and semantic alignment between the two feature maps,
ultimately enhancing the model’s segmentation performance.

5 Discussion

Most existing networks for BVS segmentation in IVOCT
images utilize the U-Net approach. This encoder-decoder structure
effectively combines low-level detail information with high-level
semantic information for segmentation tasks. However, current
research has not adequately addressed issues such as detail loss in
the downsampling process and artifacts in IVOCT images. A model
that is robust to noise and anomalies is necessary to assist physicians
in decision-making.

This study is inspired by the wavelet transform, a tool
widely used in signal analysis known for its robustness to noise.
After utilizing the 2D discrete wavelet transform, we can extract
more detailed information from the original images. A feature
fusion module is used to combine feature maps rich in semantic
information with those rich in detail information for improved
segmentation results.

Moreover, we addressed the issue of class imbalance due to the
small area of stent struts relative to the entire image.We designed the
Attention Gate (AG) and AtrousMulti-scale FieldModule (AMFM)
to enhance themodel’s ability to capture foreground andbackground
details while suppressing the response of irrelevant areas like the
background. Overall, the dual-encoder structure proposed in this
study leverages the advantages of wavelet transform and, through
the AG and AMFM modules, enhances the model’s segmentation
performance. However, our model has limitations. A dual-encoder
increases the number of parameters, but this cost is justified as
the credibility and robustness of an expert system are crucial for
assisting physicians. Furthermore, if the detail information in the
images is not significant, the enhancement from feature fusion may
be minimal, thus not significantly improving segmentation results.

6 Conclusion

In this paper, we introduced a Wavelet-based U-shape Net for
BVS segmentation in IVOCT images, effectively addressing the issue
of detail loss during the downsampling process in traditional U-Net

networks and enhancing the model’s segmentation performance.
Firstly, by designing a wavelet-based dual-branch encoder, we
enhanced the model’s capability to perceive details in feature
extraction. Additionally, our designed feature fusion module
supported the integration of feature maps from both branches.
Secondly, through the Attention Gate (AG), we bolstered the
model’s response to features in areas of interest, reducing false-
positive segmentation. Finally, the atrous multiscale field module
(AMFM) enables the model to learn more semantic contextual
information, allowing it to capture information that is more
useful for segmentation. Comparative experiments with other
state-of-the-art models demonstrated that our model achieves the
best performance. The results of ablation studies also validate
the effectiveness of our designed modules. Through qualitative
comparisons, our model better segments the detailed structures of
stent struts in actual images. Considering the potential semantic
disparity between feature maps from the two different branches,
we plan to explore more diverse feature fusion methods for
semantic alignment in the future, aiming for a more accurate
integration of semantic and detail information. Additionally, given
the time-consuming and labor-intensive nature of expert manual
image annotation, we will also investigate training models using
semi-supervised or unsupervised approaches. Finally, we will also
explore the development of a BVSs segmentation model with
increased robustness against noise, special stent conditions, and
other scenarios in the future, to better assist clinical physicians in
their treatment.
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