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Background: β-thalassemia (β-TH) is a hereditary hemolytic anemia that results in
deficient hemoglobin (Hb) synthesis. It is characterized by ineffective
erythropoiesis, anemia, splenomegaly, and systemic iron overload. Exploration
new potential biomarkers and drug candidates is important to facilitate the
prevention and treatment of β-TH.

Methods: We applied quasi-targeted metabolomics between wild type (Wt) and
heterozygous β-TH mice (Th3/+), a model of non-transfusion-dependent β-TH
intermedia, in plasma and peripheral blood (PB) cells. Futher data was deeply
mined by Kyoto Encyclopedia of Genomes (KEGG) and machine
algorithms methods.

Results: Using KEGG enrichment analysis, we found that taurine and hypotaurine
metabolism disorders in plasma and alanine, aspartate and glutamatemetabolism
disorders in PB cells. After systematically anatomize the metabolites by machine
algorithms, we confirmed that alpha-muricholic acidUP and N-acetyl-DL-
phenylalanineUP in plasma and Dl-3-hydroxynorvalineUP, O-acetyl-L-serineUP,
H-abu-OHUP, S-(Methyl) glutathioneUP, sepiapterinDOWN, and imidazoleacetic
acidDOWN in PB cells play key roles in predicting the occurrence of β-TH.
Furthermore, Sepiapterin, Imidazoleacetic acid, Methyl alpha-D-
glucopyranoside and alpha-ketoglutaric acid have a good binding capacity to
hemoglobin E through molecular docking and are considered to be potential
drug candidates for β-TH.

Conclusion: Those results may help in identify useful molecular targets in the
diagnosis and treatment of β-TH and lays a strong foundation for further research.
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1 Introduction

β-thalassemia (β-TH) is a hereditary hemolytic anemia that results
in deficient hemoglobin (Hb) synthesis due to reduced or complete
absence of synthesis of the β peptide chain of β-Hb (Taher et al., 2018;
Thein, 2018). β-TH carriers comprise approximately 3% of the total
global population (Jaing et al., 2021). It is estimated that about
300,000 to 500,000 children, the vast majority of whom are from
developing countries, are born each year with severe hemoglobin
abnormalities. Europe, Africa, the Mediterranean basin, the Middle
East, continental India, Southeast Asia, and the Pacific Islands are
severely affected. The prevalence of β-TH carriers in these regions
ranges from 1% to 20%. Europe has the highest prevalence of about
35%, followed byAsia at 24%. Australia and SouthAmerica have almost
equal prevalence at 20% (Jaing et al., 2021).

The three provinces with the highest β-TH carriage rates in China
are Guangxi (6.66%), Hainan (5.11%), and Guizhou (4.63%) (Shang
et al., 2017). Guangdong, Yunnan, Hong Kong, Hunan, and Jiangxi also
had high rates of carriage. According to the data of the China
Thalassemia Blue Book (2020), there are about 30 million
thalassemia gene carriers and about 300,000 patients with thalassemia
major and intermedia in mainland China, and the number of affected
people is increasing at a rate of approximately 10% per year.

There are several techniques for screening and diagnosing
hemoglobin variants and thalassemia (Hartwell et al., 2005).
Determining a patient’s genetic makeup and characteristics by
complete blood count (CBC) is the most reliable method of
diagnosing thalassemia (Birndorf et al., 1996). However, these
methods do not provide insights into changes in metabolite
patterns in biological material, which can provide valuable
phenotypic information and mechanistically reveal the disease
process and associated abnormal biochemical processes. Several
studies have demonstrated that metabolic disorders are prevalent
in patients with β-thalassemia (De Sanctis et al., 2013; De Sanctis
et al., 2016), but to date, metabolic disorders remain unrecognized.

In the present study, we conducted quasi-targeted metabolomic
analyses in β-TH and found metabolic disorders in plasma and
peripheral blood (PB) cells. Analyzing the differential metabolites of
Th3/+ mice in parallel with Wt mice led us to discover novel
potential biomarkers and drug candidates for β-TH.

2 Materials and methods

2.1 Mice

Wild-type C57BL/6 (Wt) mice were obtained from the Hunan
SJA. Laboratory Animal Co. Ltd. β-TH (Th3/+) mice with a C57BL/
6 background were originally purchased from Jackson Laboratories.
Male Th3/+ and female wild-type C57BL/6 mice were cross-bred to
produce β-TH and wild-type littermates at Central South University
Laboratory Animal Center.

2.2 Quasi-targeted metabolomic analysis

Using the eyeball removal method, we collected PB in EP tubes
containing heparin (50 U/mL) and centrifuged it at 200 × g for 5 min

at 4°C. The upper layer of fluid was plasma, and the lower layer of
cells was PB cells. The plasma and PB cells were separated. PB cells
(100 μL, about 1×109–5×109 cells) were ground separately with
liquid nitrogen and resuspended in prechilled 80% methanol and
0.1% formic acid by vortexing. Samples were incubated on ice for
5 min and then centrifuged at 15,000 × g for 20 min at 4°C. Quasi-
targeted metabolomics profiling was performed on the prepared
samples using the XploreMET platform (Novogene, China)
following previously reported procedures with minor
modifications (Lin et al., 2023).

2.3 Biomarker screening

The random forest (RF) machine learning method was
selected to construct the prediction model. Differential
biomarkers in the top 15 positions that had a key role in the
grouping were screened. Then, we performed Pearson’s
correlation coefficient analysis of hemoglobin concentration
and metabolite abundance in each mouse to further screen
biomarkers by correlation coefficient (R2), p-values, and
receiver operating characteristic curve.

2.4 Molecular docking

The crystal structure of the candidate protein targets of
hemoglobin was downloaded from the RCSB Protein Data Bank
(Th) and modified using the Autodock Tools 1.5.6 software. These
targets include ligand and water removal, hydrogen addition, and
amino acid optimization and patching. The files were saved in pdbqt
format. Discovery Studio2019 Client was used to visualize the
docking results.

2.5 Statistical analysis

The statistical analysis of each plot is described above or in the
corresponding figure legend. All grouped data values are presented
as the mean ± SD. p-values were calculated using Student’s t-test or
Kruskal–Wallis ANOVA with GraphPad Prism software.

3 Results

3.1 Basic characteristics of Th3/+ mice

Female Wt C57BL/6 mice and Male Th3/+ mice were crossed to
produce β-TH and Wt littermates. Five male Th3/+ mice and five
male Wt mice were selected by genotype. Routine blood tests
revealed that Hb, red blood cells (RBC), hematocrit (HCT), mean
corpuscular volume (MCV), mean corpuscular hemoglobin (MCH),
and mean corpuscular hemoglobin concentration (MCHC) were
significantly lower, while reticulocyte percentage (ret%) was
significantly higher in Th3/+ mice (Table 1). The results illustrate
that the genotypic identification results were consistent with the
phenotypic results, which lays the foundation for the accuracy of the
subsequent experimental results.
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TABLE 1 Mouse red blood cell parameters.

Treatment
group

Hb (g/L),
mean (SD)

RBC (1012/L),
mean (SD)

Ret (%),
mean (SD)

HCT (%),
mean (SD)

MCHC (g/L),
mean (SD)

MCV (fL),
mean (SD)

Wt 138.6 (3.4) 8.9 (0.2) 3.14 (0.7) 39.9 (1.1) 347 (4.6) 44.7 (0.3)

Th3/+ 79.6 (4.8)*** 7.8 (0.5)** 31.84 (3.4)*** 28.8 (1.6)*** 276.6 (5.1)*** 37.1 (1.2)***

Note: Hemoglobin, RBC, Ret%, HCT, MCHC, and MCV in the Wt and Th3/+ mice. N = 5 mice per group. Hb: hemoglobin, RBC: red blood cells, Ret: reticulocyte, HCT: hematocrit, MCHC:

mean corpuscular hemoglobin concentration, MCV: mean corpuscular volume. Th3/+: β-thalassemic, Wt: wild type. ***p < 0.001 and **p < 0.01.

FIGURE 1
QC analysis of the metabolome data. (A, B) were plasma, and (C, D) were peripheral blood cells (PB cells).
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For preliminary screening of biomarkers and drug candidates in
Th3/+ mice, we selected PB cells and plasma for metabolomic analysis.
The combined analysis of plasma and PB cells could reflect the

metabolic status inside and outside the cells. In addition, compared
with erythrocytes, PB cells have a wider detection range, which can
provide more options for screening markers and drug candidates.

FIGURE 2
Differential metabolite analysis of PB cells and plasma between Th3/+ mice and Wt mice. (A) Orthogonal partial least squares discriminant analysis
(OPLS-DA) of plasma. (B)OPLS-DA score plots from theWtmice and Th3/+mice in plasma (pR2 = 0.15, pQ2 = 0.05). (C)OPLS-DA of PB cells. (D)OPLS-
DA score plots from the Wt mice and Th3/+ mice in PB cells (pR2 = 0.05, pQ2 = 0.05). Volcano plot of differentially abundant metabolites in plasma (E)
and PB cells (F). The horizontal coordinate indicates the variation in the differential multiplicity of metabolites in different subgroups (log2FC), and
the vertical coordinate indicates the level of differential significance (−log10(p-value)). Each point in the volcano plot represents ametabolite. Significantly
upregulated metabolites are represented by yellow dots, significantly downregulated metabolites are represented by blue dots, and the size of the dots
represents the VIP value.
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3.2 Analysis of the metabolome data

3.2.1 QC analysis
The kernel density estimation plot (Kdeplot) reveals that the plasma

distribution of metabolites is good (Figure 1A). The Pearson correlation
coefficients of QC samples calculated by the relative quantitative values
of metabolites are between 0.99 and 1.00 (Figure 1B). The Kdeplot of
PB cell distribution of metabolites is also good (Figure 1C), while the
Pearson correlation coefficients of QC samples were between 0.61 and
1.00 (Figure 1D). The above data indicate that the quality of these data is
high, laying the foundation for subsequent research.

3.2.2 Differential metabolite analysis of PB cells and
plasma between Th3/+ mice and Wt mice

We applied OPLS-DA to plasma (Figures 2A,B) and PB cells
(Figures 2C,D) for statistical analysis. We obtainedmodel evaluation
parameters R2 and Q2 by 7-fold cross-validation, with the results
suggesting that the models were good, and we could proceed to the

next analysis step. After analyzing the targeted metabolic data, we
found that the difference in plasma metabolites between groups was
obvious among the 649 metabolites tested (Figure 2E). In PB cells,
the differential metabolite expressions between groups were also
obvious among the 752 metabolites tested (Figure 2F).

Thirty-two metabolites in plasma were differentially expressed
between Th3/+ mice and Wt mice, of which 18 metabolites showed
an upward trend and 14 metabolites showed a downward trend. In
PB cells, 212 metabolites were differentially expressed, of which
180metabolites showed an upward trend and 32metabolites showed
a downward trend. The differences among groups were
further clarified.

3.2.3 Hierarchical clustering analysis of the
differential metabolites

Compared to Wt mice, the main upward-trending metabolites
were concentrated in bile acids, while the main downward-trending
metabolites were concentrated in amino acids in plasma. In PB cells,

FIGURE 3
Hierarchical clustering analysis of the differential metabolites: heat map analysis of plasma (A) and PB cells (B).
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the main upward-trending metabolites were concentrated in amino
acids, while the main downward-trending metabolites were
concentrated in phospholipids.

Hierarchical clustering showed a clearer picture of the detailed
clustering of the top 25 differential metabolites. In plasma, the top

upregulated metabolites were 2-deoxyuridine, oxindole, indoxylsulfuric
acid, and 3-(2-hydroxyphenyl) propionic acid, while the top
downregulated metabolites were S-adenosyl-L-methioninamine, 2-
hydroxy-2-methylbutanedioic acid, flucytosine, and L-cysteine-
glutathione disulfide (Figure 3A). In PB cells, the top upregulated

FIGURE 4
KEGG enrichment analysis in different groups. Bubble diagramof KEGG enrichment of plasma (A) and PB cells (B). The color of the dot represents the
p-value, and the size of the dot represents the number of differential metabolites in the corresponding pathway. Schematic diagram of metabolic
pathways of taurine and hypotaurine metabolism (C); alanine, aspartate, and glutamate metabolism (D); and glutathione metabolism (E).
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metabolites were 1,4-diaminobutane, DI-3-hydroxynorvaline, adenylic
acid, and pyrrole-2-carboxylic acid, while the top downregulated
metabolites were alpha-nicotinamide adenine dinucleotide, methyl
alpha-D-glucopyranoside, 3-methyl-2-oxobutanoic acid, and lysoPC
20:0 (Figure 3B).

Although the number of results is substantial, there are still
differences between mice of the same type, especially in plasma.
Therefore, we need other methods to better analyze metabolites.

3.2.4 KEGG enrichment analysis in different groups
KEGG enrichment analysis of the differential metabolites showed

that plasma of Th3/+ mice and Wt groups were mainly enriched in
taurine and hypotaurine metabolism (p = 0.025) (Figure 4A), while
PB cells were mainly enriched in alanine, aspartate, and glutamate
metabolism (p < 0.001) and glutathione metabolism (p < 0.001)
(Figure 4B). In taurine and hypotaurine metabolisms, the differential
metabolites were 3-sulfino-L-alanineDOWN, taurocholateUP, and alpha-

ketoglutaric acidDOWN(Figure 4C). In alanine, aspartate, and glutamate
metabolism, the differential metabolites were L-alanineUP, citrateUP,
L-aspartateUP, L-glutamateUP, 4-aminobutanoateUP, fumarateUP,
D-glucosamine 6-phosphateUP, and succinateUP(Figure 4D). In
glutathione metabolism, the differential metabolites were
cadaverineUP, glycineUP, putrescineUP, spermidineUP, glutathione
disulfideUP (GSH), L-glutamateUP, gamma-L-glutamyl-L-cysteineUP,
and 5-oxoprolineUP(Figure 4E).

In addition to these top-ranked metabolic pathways, pyrimidine
metabolism, aminoacyl-tRNA biosynthesis, and D-glutamine and
D-glutamate metabolism were strengthened in the PB cells of Th3/+
mice, with the levels of related metabolites significantly higher than
those in normal controls. From the metabolic pathways, we can
speculate that the large number of upregulated metabolites in Th3/+
mice is closely related to the enhancement of metabolism. These
increased metabolites also offer the possibility of searching for
biomarkers associated with anemia in Th3/+ mice.

FIGURE 5
Machine learning algorithms for β-TH biomarker prediction: random forest (RF) analysis of plasma (A) and PB cells (B).
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FIGURE 6
Further screening of predicted biomarkers. Relative abundance and correlation coefficient of alpha-muricholic acid (A), N-acetyl-DL-phenylalanine
(B), Dl-3-hydroxynorvaline (C), sepiapterin (D), O-acetyl-L-serine (E), H-abu-OH (F), imidazoleacetic acid (G), and S-(methyl) glutathione (H).
Comparisons between the two groups were evaluated with a 2-tailed t-test, *p < 0.05; **p < 0.01; ***p < 0.001.
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3.3 Biomarker prediction of β-TH

3.3.1 Machine learning algorithms for β-TH
biomarker prediction

The metabolites with variable importance in projection (VIP) >
1.0 and p-value < 0.05 were chosen, and comparisons were made
among each group using RF to screen the top 15 metabolites. After
combined analysis of the machine learning algorithms, the
representative difference products between Th3/+ mice and Wt
mice in plasma were N-acetyl- DL-phenylalanine, indoxylsulfuric
acid, oxindole, flucytosine, alpha-muricholic acid, oxidized
glutathione, arachidic acid, and glutathione disulfide (mean
decrease accuracy>0.01, Figure 5A).

The combined analysis of the machine learning algorithms
revealed that the representative differential products in the
PB cells of Th3/+ mice and Wt mice were lysoPA 16:0, beta-
nicotinamide mononucleotide, DI-3-hydroxynorvaline, LysoPC
18:0, H-abu-oh, O-acetyl-L-serine, linolelaidic acid, S-methyl
glutathione, sepiapterin, and imidazoleacetic acid (mean decrease
accuracy > 0.007, Figure 5B).

3.3.2 Further screening of predicted biomarkers
We performed Pearson’s correlation coefficient analysis of RF-

screened biomarkers with mice Hb and found that in plasma, the
alpha-muricholic acid (R = 0.84, p = 0.002) and N-acetyl-DL-
phenylalanine (R = 0.81, p = 0.004) were highly correlated with
hemoglobin (Figures 6A,B). In PB cells, Dl-3-hydroxynorvaline (R =
0.96, p < 0.001), sepiapterin (R = 0.95, p < 0.001), O-acetyl-L-serine
(R = 0.94, p < 0.001), H-abu-OH (R = 0.90, p < 0.001),
imidazoleacetic acid (R = 0.88, p < 0.001) and S-(methyl)
glutathione (R = 0.8, p = 0.005) were highly correlated with mice
hemoglobin (Figures 6C–H). In addition, the area under the curve
(AUC) values of the above metabolites were estimated, and the
results showed that all metabolites had an AUC value of 1 (Table 2).

From the above results, we found that the screened serum
metabolic markers alpha-muricholic acid and N-acetyl-DL-
phenylalanine were elevated. In PB cells, Dl-3-hydroxynorvaline,
O-acetyl-L-serine, H-abu-OH, and S-(methyl) glutathione were
elevated while sepiapterin and imidazoleacetic acid were
decreased. We speculate that alpha-muricholic acidUP, N-acetyl-
DL-phenylalanineUP, Dl-3-hydroxynorvalineUP, O-acetyl-L-
serineUP, H-abu-OHUP, S-(methyl) glutathioneUP, sepiapterinDOWN,

and imidazoleacetic acidDOWN play key roles in predicting the
occurrence of β-TH.

3.4 Drug candidate prediction of β-TH

A combined analysis of the differential metabolites in plasma
and PB cells revealed 21 common differential metabolites, of which
eight were co-upregulated, and three were co-downregulated. The
three co-downregulated metabolites were methyl alpha-D-
glucopyranoside, alpha-ketoglutaric acid, and 2-hydroxy-2-
methylbutanoic acid. Together with sepiapterin and
imidazoleacetic acid, the above five metabolites were selected as
drug candidates for β-TH.

The interaction of hemoglobin E (1NQP) isolated from blood
samples of β-TH predictive candidate targets was validated by
molecular docking. The 2D and 3D structures of the ligands are
shown in Figure 7. The estimated free energy of binding is
summarized in Table 3. Electrostatic and van der Waals forces
are the main forces between ligand and target proteins. The
binding energies of the ligands and receptors of sepiapterin,
imidazoleacetic acid, methyl alpha-D-glucopyranoside, and
alpha-ketoglutaric acid were less than −5.366 kcal/mol with
1NQP, indicating good binding stability between the above
compounds and the 1NQP target.

4 Discussion

Metabolites serve as direct signatures of biochemical activity and
provide a readout of the cell state. Metabolomic analysis has
identified 40 serum metabolites that are significantly differently
expressed between β-TH patients and healthy controls, and
metabolic pathway analysis revealed multiple alterations
(Musharraf et al., 2017). A metabolomic study in the serum of
40 β-thalassemia patients before and after administration of
hydroxyurea (HU) revealed that the levels of 25 metabolites,
which were altered before the patients received HU therapy,
started to revert toward the levels of the healthy group after HU
treatment. As HU shifts body metabolism toward normal, this study
suggested that HU is a good treatment option and can ameliorate
disease complications (Iqbal et al., 2018). Most previous studies were

TABLE 2 Information of predicted biomarkers.

Groups Metabolites Formula Class Trend ROC

Plasma Alpha-muricholic acid C24H40O5 Bile acids Up 1.00

N-acetyl-DL
-phenylalanine

C11H13NO3 Amino acid and its derivatives Up 1.00

PB cells DI-3-hydroxynorvaline C5H11NO3 Amino acid and its derivatives Up 1.00

Sepiapterin C9H11N5O3 Organoheterocyclic compounds Down 1.00

O-acetyl-L-serine C5H9NO4 Amino acid and its derivatives Up 1.00

H-Abu-OH C4H9NO2 Amino acid and its derivatives Up 1.00

Imidazoleacetic acid C5H6N2O2 Organic acid and its derivatives Down 1.00

S-(methyl) glutathione C11H19N3O6S Amino acid and its derivatives Up 1.00
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single-sample studies. We designed plasma and PB cells for joint
metabolomic analysis. In addition, we selected quasi-targeted
metabolomics methods, which are a new technology integrating
sequencing breadth and accuracy (Wang et al., 2022; Wu et al., 2023;

Peng et al., 2024) and discovered many new metabolic biomarkers
and drug candidate metabolites.

Using KEGG analysis, we found disturbed metabolism of
alanine, aspartate, and glutamate in PB cells with nine metabolite

FIGURE 7
β-TH drug candidate prediction. Molecular docking analysis of the interaction of the hemoglobin Ewith sepiapterin (A), imidazoleacetic acid (B), and
methyl alpha-D-glucopyranoside (C).
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changes, most of which were related to energy metabolism, such as
citrate, fumarate, and succinate. Matte A et al. demonstrated a
significant reduction of ATP in the bone marrow and splenocytes
of Th3/+ mice (Matte et al., 2021). The reduction of ATP in
erythrocytes affects the stability of the cell membrane and leads
to hemolysis. This is the first time we have focused on metabolite
changes in energy supply, prompting us to explore the new
pathogenesis of β-TH. Another metabolism disorder in PB cells
is glutathione metabolism, and GSH plays a core role. GSH is
essential for cellular redox homeostasis (Seo et al., 2004), and the
glutathione redox system is the first line of defense against oxidative
stress in thalassemia patients (Kalpravidh et al., 2013). In terms of
pathogenesis, loss of HBB gene function in human erythroid
progenitor cells leads to increased ROS generation and oxidative
stress, causing increased apoptosis. Therefore, by metabolomics
assay, we speculate that the increase of ROS in Th3/+ mice was
related to glutathione metabolism.

We identified eight potential metabolic markers for the
diagnosis of thalassemia, most of which were derived from amino
acids and derivatives (62.5%). A study of the amino acid metabolism
of β-TH major patients in the United Arab Emirates found that
glutamate, serine, and proline were significantly higher, which was
consistent with our results (Abdulrazzaq et al., 2005). According to
KEGG analysis, amino acids represented by glycine were
significantly increased in the glutathione metabolism disorder in
PB cells. In erythroblasts, glycine uptake via the glycine carrier
system, GlyT1, is a rate determiner of heme biosynthesis and
bioavailability (Eulenburg et al., 2005; Wolosker, 2007), and an
oral selective inhibitor of GlyT1 was developed to treat negative
symptoms of patients with schizophrenia (Black et al., 2009; Roberts
et al., 2010; Umbricht et al., 2014; Winter et al., 2016) and also had a
good treatment effect in a mouse model of β-TH (Matte et al., 2019).
Developing drugs that reduce these upregulated metabolites is a new
approach to drug discovery.

Hemoglobin E [HbE; Glu26(B8) → Lys], a result of splice site
mutation (GAG → AAG) in exon 1 of the β-globin gene (Orkin
et al., 1982; Shirohzu et al., 2000), is prevalent in Southeast Asia
(Weatherall and Clegg, 1996) and the most common hemoglobin
variant. HbE combined with β-thalassemia leads to E/β-thalassemia,
with severe clinical consequences. E/β-thalassemics and
homozygous HbE showed the instability of HbE in a higher
temperature; in particular, any change that reduces the contacts
between the subunits that compose the hemoglobin would generate
its instability (Rees et al., 1998; Sen et al., 2004). Using molecular
docking, we found that sepiapterin, imidazoleacetic acid, methyl
alpha-D-glucopyranoside, and alpha-ketoglutaric acid have good

binding forces, suggesting that those metabolites might increase
HbE stability by increasing contacts between the subunits.

Among them, sepiapterin was predicted to be the first candidate
metabolic drug. Tetrahydrobiopterin plays an important role in
functional and metabolic cellular homeostasis, with additional
effects on proliferation (Tanaka et al., 1989; Anastasiadis et al.,
1997), immune responsiveness (Huber et al., 1984; Fukuda et al.,
1985), and neuronal activity (Mataga et al., 1991; Koshimura et al.,
1995; Koshimura et al., 2000). Sepiapterin, an analog of
tetrahydrobiopterin, has shown good therapeutic effects in many
diseases (Tarpey, 2002). Sepiapterin has been reported to diminish
eNOS-derived superoxide in human vascular segments (Guzik et al.,
2002). Spontaneously diabetic BB rats have diminished GTP-
cyclohydrolase 1 activity and decreased BH4 levels, while
sepiapterin treatment normalized BH4 levels for 48 h and
increased NO production from endothelial cells isolated from
diabetic BB rats (Meininger et al., 2000). Vasquez-Vivar et al.
found a 6 h influence of sepiapterin incubation on vascular
BH4 levels and endothelial function in vessels isolated from
rabbits fed a high-cholesterol diet (Vasquez-Vivar et al., 2002).
From the above results, we speculated that sepiapterin might be
beneficial to β-TH and need further investigation.

In this study, we chose plasma and PB cells for metabolomic
analysis. However, due to the large differences in circulating cells in
Th3/+ mice compared to WT mice, it is necessary to isolate these cells
and analyze individual cell populations so that the metabolic status of
each cell population can be more accurately reflected. In addition, as a
preliminary study for screening biomarkers and drug candidates, these
results must be confirmed by further analysis using human cells.

5 Conclusion

In the present study, we conducted quasi-targeted metabolomics
analyses and found dysfunctional metabolism in Th3/+ mice plasma
and PB cells. The complex pathogenesis of Th3/+ remains unclear.
This study systematically analyzed the metabolites further
preliminarily confirming that alpha-muricholic acidUP and
N-acetyl-DL-phenylalanineUP in plasma and Dl-3-
hydroxynorvalineUP, O-acetyl-L-serineUP, H-abu-OHUP, S-
(methyl) glutathioneUP, sepiapterinDOWN, and imidazoleacetic
acidDOWN in PB cells play key roles in predicting the occurrence
of β-TH. Furthermore, sepiapterin, imidazoleacetic acid, methyl
alpha-D-glucopyranoside, and alpha-ketoglutaric acid are drug
candidates with a good binding capacity to hemoglobin E, laying
a strong foundation for further investigation. Our findings may help

TABLE 3 Molecular docking energy results.

Protein pdb ID Compound Minimum docking energy (kcal/mol)

1NQP Sepiapterin −6.675

Imidazoleacetic acid −5.084

Methyl alpha-D-glucopyranoside −5.032

Alpha-ketoglutaric acid −5.366

2-Hydroxy-2-methylbutanedioic acid −4.882
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identify useful molecular targets in the diagnosis and treatment of
β-TH. However, owing to the complexity of metabolomics data,
not all metabolites were systematically analyzed in this study. In
subsequent studies, specimens from β-TH patients will be collected
for targeted metabolomics analysis, and the above initial screening
results will be validated in human cells.
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