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Objective: This systematic review aims to comprehensively analyze the efficacy
and underlying mechanisms of vagus nerve stimulation (VNS) in enhancing
cognitive functions and its therapeutic potential for various cognitive
impairments. The review focuses on the impact of VNS on emotional
processing, executive functions, learning, memory, and its clinical applications
in conditions such as epilepsy, depression, Alzheimer’s disease, and other
neurological disorders.

Methods: A systematic search of electronic databases (PubMed, Scopus, Web of
Science) was conducted using the keywords “vagus nerve stimulation,” “cognitive
enhancement,” “emotional processing,” “executive function,” “learning and
memory,” “epilepsy,” “depression,” “Alzheimer’s disease,” “neurological
disorders,” “attention-deficit/hyperactivity disorder,” “sleep disorders,” and
“long COVID.” The inclusion criteria encompassed controlled trials,
longitudinal studies, and meta-analyses published in English between
2000 and July 2024.

Results: A comprehensive review of 100 articles highlighted the cognitive
effects of Vagus Nerve Stimulation (VNS). Studies show that VNS, especially
through transcutaneous auricular VNS (taVNS), enhances emotional
recognition, particularly for facial expressions, and improves selective
attention under high cognitive demands. Additionally, VNS enhances
learning and memory, including associative memory and spatial working
memory tasks. In clinical applications, VNS exhibits promising benefits for
improving cognitive functions in treatment-resistant epilepsy, depression,
and Alzheimer’s disease.

Conclusion: VNS represents a promising therapeutic approach for enhancing
cognitive function across diverse patient populations. The reviewed evidence
highlights its efficacy in modulating cognitive domains in healthy individuals and
improving cognition in neurological conditions. However, the comparative
effectiveness of different VNS modalities and the differential effects of online
versus offline VNS on cognitive psychology require further investigation. Future
research should focus on optimizing VNS protocols and elucidating specific
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cognitive domains that benefit most from VNS interventions. This ongoing
exploration is essential for maximizing the therapeutic potential of VNS in
clinical practice.
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vagus nerve stimulation, cognitive enhancement, emotional processing, epilepsy,
depression, Alzheimer’s disease, ADHD (attention deficit and hyperactivity disorder),
long covid

1 Introduction

Vagus nerve stimulation (VNS) is a type of neuromodulation
therapy that targets excitability and changes the balance of
autonomic nervous function (Ma et al., 2019; Jung et al., 2024). It
does this by electrically stimulating the vagus nerve network. In 1985,
Zabara 1985 first reported that VNS could suppress epileptic seizures in
dogs. Since then, research on VNS for epilepsy has increased, revealing
its positive effects on various diseases. In 1997 and 2005, the U.S. Food
and Drug Administration (FDA) approved implantable VNS (iVNS)
for the clinical treatment of drug-resistant epilepsy and depression. In
2017, the FDA also approved transcutaneous cervical VNS (taVNS) for
migraines and cluster headaches. Currently, VNS can be classified into
two main categories: invasive and non-invasive. Hese modalities have
been studied in a range of neuropsychiatric disorders beyond epilepsy
and depression, including Alzheimer’s disease, chronic pain, tinnitus,
Parkinson’s disease, and post-stroke rehabilitation (detailed in Table 1).
These applications highlight the versatility and potential of VNS as a
therapeutic intervention across various conditions. For instance, studies
have indicated its efficacy in reducing symptoms and improving the
quality of life for patients suffering from these disorders. With the
advancement of research, recent years have seen the emergence of new

VNS stimulation patterns and protocols both domestically and
internationally, with significant progress in the field of cognitive
function regulation (Kalagara et al., 2024). This article aims to
review the stimulation patterns, mechanisms, and effects of VNS on
cognitive function, providing guidance and reference for clinical
treatment and scientific research.

2 Modes

2.1 Classification of VNS

VNS is generally divided into four clinical forms. See Table 2
for details.

2.2 Methods of VNS

Conventional VNS typically follows an open-loop stimulation
model, where the stimulation parameters are pre-set before
treatment and do not change in response to neural activity
during treatment. Clark et al. (1998), Clark et al. (1999)

TABLE 1 VNS modalities across different disorders.

Pathology type Non-invasive VNS Invasive VNS

Depression Liu et al. (2016); Fang et al. (2016); Bottomley et al. (2019) George et al. (2000); Fang et al. (2016); Furmaga et al. (2012); Carreno
and Frazer (2017); Desbeaumes Jodoin et al. (2018); Bottomley et al.

(2019); Lespérance et al. (2024)

Epilepsy Ghacibeh et al. (2006a); Lampros et al. (2021) Clark et al. (1999); Aldenkamp et al. (2001); Dodrill and Morris.
(2001); Sjögren, et al. (2002); Merrill et al. (2006); Danielsson et al.
(2008); Marrosu, F. et al. (2003); Ghacibeh et al. (2006b); Orosz et al.
(2014); Vaiman et al. (2017); Kimberley et al. (2018); Toffa et al.

(2020); Jensen and Tsiropoulos (2024); Hamza et al. (2024); Winter
et al. (2024)

Alzheimer’s Disease Hachem et al. (2018); Caruso et al. (2018); Mertens et al. (2022) Sjögren et al. (2002); Mertens et al. (2022); Jensen and Tsiropoulos
(2024), Hamza et al. (2024)

Parkinson’s Disease Farrand et al. (2017); Mondal et al. (2019), Mondal et al. (2021); Yu
et al., 2021; Marano et al., 2024

Marano et al. (2024)

Pain Napadow et al. (2012); Straube et al. (2015); Yuan et al. (2016); Garcia
et al. (2017); Chakravarthy et al. (2015); Luo et al. (2020); Zeng et al.
(2020); Zhang et al. (2019); Zhang et al. (2021b); Aranow et al. (2021)

Oshinsky et al. (2014); Chakravarthy et al. (2015)

Post-stroke Rehabilitation Kalagara et al. (2024); Liu et al. (2024) -

Insomnia Zhang et al. (2021a) -

Tinnitus Yakunina et al. (2018); Lin et al. (2024) Yakunina and Nam. (2021); Stegeman et al. (2021)

Other Wang et al. (2021) (Alcohol Dependence); Zaehle and Krauel, (2021)
(Attention-Deficit/Hyperactivity Disorder); Colzato et al. (2023) (Long

COVID); Shi et al. (2024) (Functional Dyspepsia)

Aldenkamp et al. (2001) ADHD; Winter et al. (2024) (narcolepsy)
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discovered that cervical iVNS in rats and epilepsy patients follow an
intensity-dependent inverted U-shaped dose-effect relationship,
where moderate current intensity yields better memory
performance than lower or higher current intensities. Buell et al.
(2018) recorded auditory cortex activity in rats via EEG and verified
that VNS-induced cortical plasticity follows an inverted U-shaped
function of VNS pulse frequency.

This phenomenon can be explained by the Yerkes-Dodson law:
for simpler tasks, individual responses increase linearly with
motivational stimuli; however, as task difficulty increases, the
optimal response threshold for stimuli decreases (Yerkes and
Dodson, 1908; Broadhurst, 1957; Calabrese, 2008a; Calabrese,
2008b). In tcVNS studies, reported stimulation parameters vary
widely, and subject responses lack consistency across studies. This
inconsistency may result from individual differences and
methodological heterogeneity, such as the innervation patterns of
the ABVN in the auricle (Yakunina et al., 2017; Burger and Verkuil,
2018), pre-stimulation vagal tone (Clancy, 2014), respiratory cycles
(Sclocco et al., 2019), and stimulation sites. Some studies suggest that
taVNS has consistent effects regardless of the stimulation site (left or
right ear) or ear area (cymba concha or lobule) (Chen et al., 2015;
Keute et al., 2021). Despite the lack of a standardized percutaneous
VNS protocol, the “International Consensus on Minimum
Reporting Standards for Transcutaneous Vagus Nerve
Stimulation Studies (2020)" (Farmer et al., 2021) recommends

standardizing commonly used stimulation parameters in tcVNS
studies, including stimulation site, electrodes, duty cycle,
frequency (Hz), intensity (mA), pulse width (μs), and waveform.

Closed-loop VNS involves continuously measuring subjects’
behavioral performance, brain activity, and peripheral
physiological indicators during stimulation, dynamically adjusting
stimulation parameters based on the subjects’ state. A team from
Harvard Medical School developed the Respiratory-gated Auricular
Vagal Afferent Nerve Stimulation (RAVANS) method, which uses a
pressure sensor placed on the subject’s chest to deliver taVNS
stimulation during the expiratory/inspiratory phase based on
chest expansion. Results show that stimulation during exhalation
(eRAVANS) enhances treatment efficacy, potentially because the
ventral respiratory group (VRG) in the medulla sends excitatory
signals to the NTS during exhalation, optimizing VNS stimulation
(Napadow et al., 2012; Garcia et al., 2017; Sclocco et al., 2019).
Besides RAVANS, Cook et al. designed a myoelectric-triggered
auricular VNS system (MAAVNS) based on orofacial muscle
movement to improve patients’ swallowing function (Cook et al.,
2020). Thanks to advancements in wireless technology, wireless
EEG, ECG, and subcutaneous fluid signal devices (SHS) are
increasingly used in closed-loop taVNS systems (Yu et al., 2021).
However, eliminating motion artifacts in closed-loop VNS and
ensuring its sustainability and stimulation efficacy remain
research priorities for the future.

TABLE 2 Classification of VNS.

Type of VNS Invasiveness Electrode scheme References

Cervically Implanted Vagus
Nerve Stimulation (iVNS)

Invasive Electrodes are surgically implanted at the cervical branch
of the left vagus nerve, with the pulse generator placed
subcutaneously at the upper chest near the pectoralis

major muscle. This method is well-established in terms of
efficacy and safety, but its high cost and risk of
postoperative complications such as coughing,

hoarseness, swallowing difficulties, and bradycardia limit
its clinical use

Clark et al. (1998), Clark et al. (1999); Dodrill and Morris
(2001); Aldenkamp et al. (2001); Sackeim et al. (2001);
Sjögren et al. (2002); Danielsson et al. (2008); Merrill et al.
(2006); Ghacibeh et al. (2006a), Ghacibeh et al. (2022);
Klinkenberg et al. (2013); Orosz et al. (2014); Desbeaumes
Jodoin et al. (2018); Toffa et al. (2020); Mertens et al.

(2022)

Transcutaneous Cervical Vagus
Nerve Stimulation

Non-invasive Electrodes are placed on the neck surface using a portable
handheld device to deliver electrical currents. Stronger
currents are required to penetrate the skin barrier, which
can frequently activate other cervical nerves and vagal
efferent fibers. Common adverse effects include tingling at
the stimulation site, neck pain, dizziness, headaches, and

oropharyngeal pain

Krahl et al. (1998); Dorr and Debonnel (2006); Raedt et al.
(2011); Clancy (2014); Landau et al. (2015); Liu et al.

(2016); Redgrave et al. (2018); Burger and Verkuil (2018);
Sclocco et al. (2019); Farmer et al. (2021)

Transcutaneous auricular vagus
nerve stimulation

Non-invasive Surface electrodes are placed on the auricle, typically in
the cymba concha area, to stimulate the auricular branch
of the vagus nerve (ABVN). The ABVN’s afferent fibers
project to the nucleus of the solitary tract (NTS) in the
brainstem, regulating neural pathways. This method

generates a relatively small electric field intensity in the ear
area, resulting in minimal adverse effects. However, its

clinical efficacy remains somewhat controversial

Steenbergen et al. (2015, 2020); Straube et al. (2015); Chen
et al. (2015); Jacobs et al. (2015); Liu et al. (2016); Fang
et al. (2016); Beste et al. (2016); Badran et al. (2018); Keute
et al. (2018a); Redgrave et al. (2018); Burger and Verkuil.

(2018); Jongkees et al. (2018); Sellaro et al. (2018);
Yakunina et al. (2017), Yakunina et al. (2018), Yakunina
and Nam. (2021); Keute et al. (2019), Keute et al. (2021);
Zhang et al. (2019), Zhang et al. (2021b); Mertens et al.
(2020); Toffa et al. (2020); Luo et al. (2020); Maraver et al.
(2020); Borges. et al. (2020); Lampros et al. (2021); Sun
et al. (2021); Wang et al. (2021); Aranow et al. (2021); Yu
et al. (2021); D’Agostini et al.(2022); Zhang et al. (2021a);

D’Agostini et al.(2022)

Percutaneous auricular vagus
nerve stimulation (paVNS)

Minimally invasive This involves using 2-3 micro-needle electrodes to
penetrate the skin of the ear area and stimulate the ABVN.
Compared to surface electrodes, needle electrodes are
smaller, allowing for more precise spatial positioning in
the ear area. However, the minimally invasive nature of
paVNS presents challenges regarding patient acceptance,
including discomfort and risk of minor skin infections

Kovacic et al., ((2017)
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3 Mechanisms of central regulation
by VNS

3.1 Afferent network of the vagus nerve

The afferent branches of the vagus nerve can be functionally
divided into: 1) General somatic afferent fibers (GSA) originating
from the superior ganglion, transmitting general sensations from the
posterior wall of the external auditory canal and the outer surface of
the tympanic membrane, terminating in the spinal trigeminal
nucleus;2) General visceral afferent fibers (GVA) originating
from the inferior ganglion, distributed to the pharynx, larynx,
trachea, lungs, esophagus, abdominal viscera, aortic pressure,
chemoreceptors, and the dura mater of the posterior cranial
fossa, terminating in the caudal part of the nucleus tractus
solitarius (NTS); 3) Special visceral afferent fibers (SVA)
originating from the inferior ganglion, receiving taste information
from the epiglottis area, terminating in the rostral part of the NTS
(Ruffoli et al., 2011). Approximately 80% of vagus nerve fibers are
sensory afferent fibers (George et al., 2000), primarily transmitting
general somatic and visceral sensations. The NTS is the main hub of
the vagus nerve’s afferent network, where most afferent fibers
terminate. For example, the NTS sends these fibers to the locus
coeruleus (LC), the dorsal raphe nucleus (DRN), and the
parabrachial nucleus (PBN). There are close neural connections
between brainstem nuclei and the thalamus, hippocampus, and
amygdala, regulating perception, learning, memory, and
emotional functions. Furthermore, connections are established
through the nucleus basalis and cingulate cortex with the
prefrontal cortex (PFC), orbital frontal cortex (OFC), and
sensorimotor cortex, which participate in the regulation of
cortical and subcortical circuit excitability (Hachem et al., 2018).

3.2 Central mechanisms of VNS

3.2.1 Inhibition of neuroinflammatory response
Neuroinflammation, linked to neurovascular unit (NVU)

damage, microglia and astrocyte activation, and increased blood-
brain barrier (BBB) permeability, can be mitigated by VNS, which
helps maintain BBB integrity (Chen et al., 2018). This has a
“neuroprotective” effect and is used to treat neurological and
psychiatric disorders (Borovikova et al., 2000; Shytle et al., 2004;
Varatharaj and Galea, 2017; Fonseca et al., 2019). The classic anti-
inflammatory mechanism of VNS is the “cholinergic anti-
inflammatory pathway” (CAP). A study by Borovikova et al.
(2000) found that acetylcholine (ACh) released after VNS can
lower the levels of cytokines that cause inflammation (TNF-α, IL-
1β, IL-6, and IL-8) that are caused by lipopolysaccharide (LPS)
without changing the levels of cytokines that stop inflammatory
responses (IL-10, IL-4, and TGF-β). In 2012, Olofsson et al., 2012
studied the CAP pathway in more detail and discovered that
norepinephrine (NE), which is released when the vagus nerve
stimulates the celiac ganglion and splenic nerve, can increase the
number of T lymphocytes and ACh release through β2-adrenergic
receptors (β2-AR). ACh can connect to α7-nicotinic acetylcholine
receptors (α7nAChR), which turns on macrophages in the spleen
and lowers the production of TNF-α. In the same way, Shytle et al.

(2004) discovered that VNS can turn onmicroglial α7nAChR, which
stops the CAP pathway from making pro-inflammatory cytokines.
Kaczmarczyk et al. (2018) said that VNS can change the microglial
phenotype from neurodestructive to neuroprotective. This is done
by increasing the release of BDNF, bFGF, and anti-inflammatory
factors while decreasing the release of pro-inflammatory factors.
This protects the neurons. Besides that, VNS can turn on specific
mAChR central muscarinic acetylcholine receptors. These can then
activate vagal efferent fibers and stop the growth of inflammation
(Pavlov et al., 2009). Additionally, mAChR is involved in
hippocampal theta rhythm modulation, which is crucial for
learning, memory, and anxiety regulation (Broncel et al., 2018).
Increased BBB permeability is another critical factor in
neuroinflammation, with NVU damage being the core
mechanism. The NVU is made up of vascular endothelial cells,
smooth muscle cells, cholinergic and adrenergic nerve terminals,
astrocytes, and perivascular cells (microglia, macrophages, and mast
cells). It is very important for keeping the brain’s microenvironment
stable and regulating blood flow, BBB substance exchange, immune
surveillance, nutritional support, and coagulation balance (Iadecola,
2010; Kalaria, 2010). Researchers have discovered that increasing the
release of LC and NE can turn on endothelial cell α7nAChR, which
makes them better at pinocytosis (Kimura et al., 2019). Excitation of
the vagus nerve can stop microglia and reactive astrocyte activation
(Chen et al., 2018; Yang et al., 2018), stop aquaporin-4 (AQP-4),
lower TNF-α levels, and improve tight junction protein protection of
the BBB (Lopez et al., 2012), which stops neurodegenerative changes
caused by inflammation (Varatharaj and Galea, 2017). Also, dorsal
motor nuclei of the vagus (DMV) and paraventricular nuclei of the
hypothalamus (PVN) that are activated by the vagus nerve help
release growth hormone-releasing peptides (Ghrelin) and oxytocin,
which help control inflammation and protect the brain-blood
barrier (Bansal et al., 2012; Yuan et al., 2016; Collden et al., 2017;
Panaro et al., 2020).

Along with its impact on immune cytokines and BBB
permeability, VNS may also help reduce inflammation by
controlling gut microbiota and improving cerebrospinal fluid
(CSF) exchange in the glymphatic system (Bohórquez et al.,
2015; Bonaz et al., 2019; Cheng et al., 2020; Zhang et al., 2020),
though the exact ways it does this need more research.

3.2.2 Promoting neurogenic signaling pathways
VNS promotes the release of neurotransmitters and chemical

molecules in the brain. These are the main ones: the NE pathway, the
5-HT pathway, the dopamine (DA) pathway, the brain-derived
neurotrophic factor-tyrosine kinase B (TrkB) pathway, and the
-aminobutyric acid (GABA) pathway.

The neurotransmitter GABA is mostly found in the medial
septum (MS), the nucleus ambiguus (NA), the dorsal motor nucleus
of the vagus (DMV), and the nucleus tractus solitarius (NTS)
(Bennett et al., 1987; Helm et al., 2005; Herman et al., 2009;
Pelkey et al., 2017). It is an inhibitory neurotransmitter. Herman
et al. (2009) discovered that stimulating NTS can increase GABA
signaling and send it to DMN and NA, making epileptic seizures less
severe. Marrosu et al. (2003) found that GABA can control cortical
excitability through GABAA receptors on the cerebral cortex to help
people with epilepsy. And Keute et al. (2018a), Keute et al. (2018b)
discovered that VNS can also act on GABAergic neurons in the
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motor cortex to control autonomic behavior inhibition.
Furthermore, it has been discovered that GABAA and GABAB
receptors in MS help control changes in the hippocampus after VNS
stimulation. This can impact how people deal with anxiety and their
ability to learn new things (Broncel et al., 2019). It can be seen that
VNS stimulation can promote GABAergic pathways to regulate
abnormal brain excitation and achieve comprehensive
protective effects.

Noradrenaline (NE) is an excitatory neurotransmitter, and the
locus coeruleus (LC) is the most abundant region of noradrenergic
neurons in the brain. Short-term and long-term VNS can raise the
firing rate of LC neurons and keep them active for a long time,
causing NE to build up in the prefrontal lobe, amygdala, and
hippocampus (Groves, Bowman and Brown, 2005; Hulsey et al.,
2017). The rise in NE is strongly connected to cognitive function and
memory performance (Ciampa et al., 2022). Some scholars have
observed that after VNS, there is also an increase in NE levels in the
medial and thalamic areas, as well as other cerebral cortex areas
(Landau et al., 2015). The LC, the core node of the noradrenergic
pathway, can sustain damage in experiments. VNS-mediated
antiepileptic effects are blocked by LC (Krahl et al., 1998; Raedt
et al., 2011; Liu et al., 2016); additionally, LC mediates the release of
5-HT and dopamine (DA) (Ruffoli et al., 2011).

The dorsal raphe nucleus (DRN) is where the VNS controls the
5-HT pathway. Stimulating the VNS can raise the level of 5-HT in
the DRN and hippocampus, which can help people with depression
(Furmaga et al., 2011). At the moment, there is disagreement about
whether NTS and DRN connect directly through fibers. However,
electrophysiological studies have shown that NTS can be sent
through LC to indirectly control DRN (Dorr and Debonnel,
2006). They found that the discharge rate of LC increased after
long-term and short-term VNS, and the discharge rate of DRN
increased significantly only after long-term VNS. A study by Manta
et al. (2009) found that the increasing DRN discharge frequency
stopped happening after selective inhibition of LC-mediated
norepinephrine neurons. This means that 5-hydroxytryptamine
and norepinephrine work together and have a purpose in the
brain. Manta et al. (2013) and Farrand et al. (2017) also revealed
dopamine (DA) in the midbrain ventral tegmentum, substantia
nigra, striatum, subventricular nucleus, and frontal lobe.

Brain-derived neurotrophic factor (BDNF) can prevent
neuronal death and is an important hippocampal plasticity
neurotrophic factor (Hofer and Barde, 1988; Zhao et al., 2007). A
study by Furmaga et al. (2012) and Carreno and Frazer (2014) shows
that long-term VNS can change hippocampal neurons through the
aTnAChR mechanism, raise BDNF levels, improve mouse memory,
and boost hippocampal tyrosine kinase B receptor B (AAkt) and
cellular external signals controlled by S6K and CAMP response
element binding protein (CREP), a group of cytokines.

4 VNS and its effects on
cognitive function

4.1 VNS’s role in cognitive processing

VNS is most commonly studied in the cognitive domain of
emotional functioning. VNS can enhance subjects’ ability to

recognize emotions in others’ facial expressions. Ventura-Bort
et al. (2021) required subjects to complete memory tasks while
receiving taVNS stimulation and conducted a recognition test
1 week later. The results showed that the taVNS group
performed better on emotional images compared to the sham
group, with no significant difference in performance on neutral
images between the two groups. Colzato et al. (2017) found that
taVNS only improved performance on simple tasks of the Reading
the Mind in the Eyes Test (RMET), with no significant effect on
complex RMET tasks. Sellaro et al. (2018), based on the above
studies, further explored the differential effects of taVNS on facial
and body emotion recognition, showing that subjects’ scores in facial
emotion recognition improved without affecting body emotion
recognition. Sellaro therefore suggests that taVNS can enhance
the brain’s ability to recognize emotions but is sensitive only to
prominent stimuli that enhance attention, such as faces and eyes.
Maraver et al. (2020) discovered that people who received taVNS
were more accurate in tasks that came after direct gaze stimuli. This
improvement happened regardless of the emotion (anger, fear) or
the time between tasks, which supports Sellaro’s findings even more.
Additionally, VNS can regulate participants’ inner motivation and
evaluation before and after task completion, with delayed
satisfaction being an important characteristic of self-
emotional control.

Researchers have found that the impact of taVNS on delayed
reward discount rates is dependent on the individual’s positive
emotional level, reflecting the effectiveness of taVNS in emotional
control (Steenbergen et al., 2020). De Smet et al. (2021) found that
after subjects receiving taVNS were required to re-evaluate pictures
previously rated negatively, their intense emotions were significantly
reduced compared to the control group. Neuser et al. (2020), Ferstl
et al. (2021) did one of the most important studies on emotional
control. They found that taVNS significantly increased participants’
positive emotions after they worked hard to complete low-reward
tasks. They also found that lower baseline positive emotions were
significantly related to better taVNS effects. This study suggests that
taVNS can encourage participants to work harder under low-value
rewards to enhance their behavioral motivation, which is highly
significant for improving patient behavioral motivation in clinical
rehabilitation settings.

VNS also has a significant impact on executive attention
functions, particularly selective attention and cognitive control.
Steenbergen et al. (2015) used the stop-change paradigm to test
people’s selective attention function. They discovered that taVNS
improved people’s ability to choose their responses during action
cascade processes, which means they had faster reactions when
doing two behaviors right after each other. In more research on
inhibitory control, Beste et al. (2016) discovered that taVNS did not
improve performance in the reverse inhibition paradigm but did
significantly improve performance in response inhibition paradigms
involving task loads. Jongkees et al. (2018) also discovered that
subjects receiving taVNS did not show any return inhibition
phenomenon in continuous response tasks with high cognitive
loads, suggesting that taVNS can improve cognitive selection
processes when high-selectivity requirements are present.
However, its effect on cognitive control is limited under
conditions of lower loads or involvement of working memory.
Borges et al. (2020) partly corroborated these findings,
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minimizing working memory load and using the Flanker test and
Stroop questionnaire to test subjects’ inhibitory control capabilities.
The results showed that under taVNS stimulation, there was no
improvement in subjects’ inhibitory control performance, but there
was a significant improvement in their performance in tasks
involving task switching. Colzato looks at the vagus nerve
network’s GABAergic pathway and the locus coeruleus-
norepinephrine (LC-NE) pathway and says that taVNS can
stimulate the GABAergic pathway in the cortex to promote
inhibition. This weakens competitive selection in tasks that need
high selectivity and makes it easier for people to choose between
competing options. Network reset theory says that taVNS turns on
the LC-NE after a global attention reset to change people’s behavior
and stop them from investing too much time in tasks (Colzato et al.,
2018a; Colzato et al., 2018b).

Learning and memory are core functions in cognitive processing
and are closely related to emotional and attentional domains. In
2015, Jacobs et al. found that VNS can enhance elderly associative
memory for faces, while some studies have shown that taVNS has no
significant effect on vocabulary recognition memory (Mertens et al.,
2020). One possible explanation for this phenomenon is that taVNS
drives subjects to allocate more attentional resources to targets
related to faces and emotional cues through its enhanced
emotional effects, thereby reinforcing the encoding and
consolidation stages of memory. Research from the past has
shown that the amygdala controls explicit emotion and
declarative memory in the hippocampus. VNS can stimulate
these areas (Badran et al., 2018; Singh et al., 2022). It is worth
noting that Sun et al. (2021) found that taVNS significantly
improved subjects’ performance on spatial working memory tasks
using the n-Back paradigm, possibly related to taVNS activation of
the prefrontal lobe, but the neuroimaging mechanisms require
further study.

4.2 The effects of VNS on patients with
cognitive impairments

4.2.1 VNS and Epilepsy
The cognitive improvement effects of VNS in patients were first

reported by Clark et al. (1999). They found that moderate current
intensity (0.5 mA) VNS had the best effect on language memory
improvement in epilepsy patients, whereas higher intensities
(0.75–1.5 mA) led to reduced memory performance. Dodrill and
Morris (2001) divided epilepsy patients into high and low
stimulation groups and found no significant improvement in
cognitive function after 12–16 weeks of follow-up with iVNS,
although the high stimulation group experienced fewer emotional
and physiological problems compared to the low stimulation
group. Ghacibeh et al. (2006a), Ghacibeh et al. (2006b) used the
Hopkins Verbal Learning Test (HVLT) to study 10 epilepsy patients
implanted with iVNS. The results showed that there was no
significant improvement in the learning part of the HVLT.
However, the recognition and recall scores were significantly
higher than those in the sham group. This suggests that VNS
improves the encoding-consolidation phase of short-term
memory in people with epilepsy. However, Ghacibeh also found
a certain degree of decline in creativity and cognitive flexibility in

epilepsy patients after receiving iVNS. A study by Mertens et al.
(2022) compared the effectiveness of iVNS and taVNS in epilepsy
patients. They discovered that acute iVNS and taVNS had no effect
on language memory, but chronic iVNS over 6 weeks improved
patients’ immediate recall and delayed recognition. This suggests
that cumulative effects are one potential mechanism of VNS for
cognitive impairment therapy.

In addition to adult epilepsy, many scholars have studied the
effects of VNS on cognitive improvement in pediatric epilepsy
patients, but the results are still controversial (Aldenkamp et al.,
2001; Danielsson et al., 2008; Klinkenberg et al., 2013; Orosz et al.,
2014). The cognitive-functional efficacy of VNS in patients with
depression has also been studied to some extent. Unlike epilepsy
patients, Sackeim et al. (2001) found no significant correlation
between cognitive improvement in patients with major depressive
disorder and VNS current intensity. Fourteen depressed patients
who were implanted with VNS were studied for 2 years. It was found
that improvements in their depressive symptoms were strongly
linked to their attention and visuospatial working memory
(Desbeaumes Jodoin et al., 2018). It is inferred that VNS may
indirectly improve cognitive function by alleviating patients’
depressive symptoms.

4.2.2 VNS and Alzheimer’s disease
Two-thirds of dementia cases are diagnosed with Alzheimer’s

disease (AD), characterized by neuronal deposition of amyloid-β
plaques and neurofibrillary tau tangles, inflammatory activation of
glia, reduced synaptic capacity, and neuronal loss. The Sjogren team
conducted a series of studies on whether iVNS could improve
cognitive status in patients with AD. In 2002, Sjogren et al.
reported that 6 months after VNS implantation, seven out of
10 AD patients showed improvement in ADAS-cog scores, while
nine out of 10 patients showed improvement in MMSE scores. A
subsequent extended study of 17 AD patients after iVNS surgery
found amedian decrease of 4.8% in tau protein in cerebrospinal fluid
within 1 year, while phosphorylated tau protein increased by 5%,
providing new evidence for the physiological mechanisms of VNS in
cognitive improvement (Merrill et al., 2006).

Aside from tau protein levels, stress appears to be another
significant factor influencing AD (Caruso et al., 2018). Research
has found elevated cortisol levels in biological fluids such as plasma,
saliva, and cerebrospinal fluid in AD patients, which can exacerbate
disease progression. Chronic VNS has been shown to effectively
reduce serum cortisol levels, potentially improving the prognosis for
AD patients by mitigating stress severity (O’Keane et al., 2005).
While VNS can reduce cortisol and thereby delay the progression of
AD, research on the regulation of the hypothalamic-pituitary-
adrenal (HPA) axis in AD patients remains limited.
Understanding how VNS regulates cortisol and its mechanisms
to limit the negative impact of stress on individuals with brain
diseases is crucial.

Epel et al. (2004) found that psychological stress is associated
with telomere shortening. Currently, there is significant research
discussing the relationship between telomere length and AD. Most
studies suggest that shorter telomeres are associated with an
increased risk of AD (Hackenhaar et al., 2021). Previous case-
control studies and meta-analyses have shown the presence of
short leukocyte telomere length (LTL) in individuals diagnosed
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with AD (Boccardi et al., 2020). Short baseline LTL is associated with
a higher risk of developing AD (Koh et al., 2020) and all-cause
dementia (Honig et al., 2012), although some studies have found no
association between LTL and AD (Hinterberger et al., 2017).
Notably, another longitudinal time-to-event analysis study found
a nonlinear relationship between LTL and AD, with both short and
long LTL associated with an increased risk of AD (Fani et al., 2020).
Similar short and long-term LTL risk correlations have been
observed for amnestic mild cognitive impairment (aMCI),
considered a prodromal stage of AD (Roberts et al., 2014).

Telomere dysfunction induced by damage can occur regardless of
telomere length (Brandr, 2019). According to the neuro-immune-
senescence integrative model (NISIM; Ask and Sütterlin, 2022),
reduced vagal regulation capacity represents decreased splenic vagal
input and increased inflammation. NISIM posits that the prefrontal
cortex (PFC) influences splenic inflammation levels when exerting
regulatory effects on arousal through the vagus nerve. Research by
Torvald et al. suggests that the activity of the HPA axis is related to
telomere length, possibly indicating that HPA axis dysregulation leads to
increased inflammation levels and subsequent ROS-induced telomere
damage. This provides preliminary evidence for the potential clinical
intervention of vagus nerve stimulation in improving telomere
dysfunction and reducing peripheral inflammation levels.

Overall, VNS emerges as a promising intervention for AD,
targeting cognitive impairments through modulation of tau
proteins and addressing inflammatory and stress-related
pathways through cortisol and telomere regulation. Further
research is necessary to elucidate the precise mechanisms and
optimize VNS protocols for maximum therapeutic benefit.

4.2.3 VNS and Sleep
VNS has become an intervention for sleep disorders (Zhang S. et al.,

2021). Srinivasan et al. (2023) investigated the effects of taVNS on sleep
disorders exacerbated in elderly healthcare workers. The results showed
that taVNS significantly improved sleep quality and reduced anxiety.
taVNS may improve sleep quality by modulating the brain’s default
mode network (DMN) and salience network (SN). The DMN, active
during rest, is involved in self-relevant thoughts and introspection, with
its dysfunction associated with mental health issues such as anxiety and
depression, which in turn affect sleep quality. The SN is responsible for
processing significant sensory information and helps shift attention
from internal thoughts to external stimuli, maintaining goodmood and
sleep. Additionally, brain-derived neurotrophic factor (BDNF) plays a
crucial role in promoting neuroplasticity and recovery. Increased levels
of BDNF are associated with improved mood, cognitive function, and
sleep quality. taVNS may support brain health and enhance sleep
quality by increasing plasma BDNF levels.

Meanwhile, Werner et al. (2015) examined the relationship
between cardiac vagal control (CVC) and sleep quality in healthy
women, finding that higher levels of CVC, measured by high-
frequency heart rate variability (HF-HRV), were associated with
better sleep quality. This suggests that good autonomic regulation
and higher CVC can improve sleep quarters.

The arousal and wake-promoting effects of VNS have been
demonstrated in animal studies and are well-known side effects of
VNS treatment for epilepsy and depression. Winter et al. (2024)
suggested that VNS may be a promising non-drug treatment for
narcolepsy. Moreover, VNS may further stabilize neural networks

and improve sleep quality during sleep, reducing the risk of seizures
(Vespa et al., 2021). However, research on VNS for sleep disorders is
still limited, and further high-quality randomized controlled trials
are needed to verify its efficacy.

4.2.4 VNS and other diseases
Furthermore, studies have found that VNS has certain

therapeutic effects on alcohol dependence (Wang et al., 2021)
and COVID-19-related symptoms. Recent studies, including
those by Azabou et al. (2021), have highlighted the potential of
VNS to modulate the immune response in COVID-19 patients. This
modulation is believed to occur via CAP activation, leading to
reduced levels of pro-inflammatory cytokines such as TNF-α, IL-
1β, and IL-6. They found that VNS significantly reduced pro-
inflammatory cytokine levels, suggesting a potential mechanism
for alleviating the hyperinflammatory state often seen in severe
COVID-19 cases.

In another study, Colzato et al. (2023) demonstrated that long
COVID, characterized by persistent symptoms such as “brain fog,”
anxiety, depression, and cognitive deficits, is believed to be
associated with brainstem dysfunction and disrupted vagal
signaling. Studies suggest that taVNS may help ameliorate these
symptoms by enhancing vagal activity and directly activating
brainstem nuclei involved in cognitive and affective regulation.
Also, taVNS is a non-pharmacological intervention that can be
self-administered, making it a practical and accessible treatment
option. Its safety profile is favorable, with minimal adverse effects
reported compared to other invasive vagus nerve
stimulation methods.

Expanding on these findings, Zheng et al. (2024) conducted a
pilot study on the efficacy of taVNS in a female cohort with Long
COVID. The study included 24 female patients who underwent a 10-
day t-VNS intervention. Results demonstrated significant
improvements in cognitive functions, anxiety, depression, and
sleep post-intervention, with sustained benefits observed at a 1-
month follow-up. However, olfactory performance did not show
significant improvement, indicating the need for further
investigation into this specific symptom.

Despite of novel findings in researches, several limitations need
to be addressed. First, the studies reviewed often have small sample
sizes and lack diversity in patient demographics, particularly the
study by Zheng et al. (2024), which focused exclusively on female
patients. This limits the generalizability of the results to the broader
population. Also, the variability in VNS protocols, such as
stimulation parameters and duration, complicates the comparison
of outcomes across studies. Moreover, the pilot nature of these
studies means that long-term safety and efficacy data are limited.
The studies primarily report short-term benefits, and there is a need
for longitudinal research to determine the sustained impact of VNS
on COVID-19-related symptoms. At the same time, potential side
effects should not be ignored (Mastitskaya et al., 2021), such as voice
alteration, cough, dyspnea, dysphagia, etc.

5 Conclusion

VNS as a neuroregulatory technique holds promising
applications in both clinical practice and research. As more
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clinical trials are done, more expert opinions are published, and
non-invasive stimulation devices and closed-loop feedback
stimulation technology get better, the use of VNS is moving
toward more standardized and varied growth. VNS has been
proven effective in modulating various cognitive domains in
healthy individuals, and it shows potential benefits in improving
cognition in treatment-resistant epilepsy, depression, Alzheimer’s
disease, addictive disorders, and sleep disorders. However, there is
currently a lack of comparative studies between different VNS
stimulation modalities. Moreover, the differential effects of online
VNS versus offline VNS on cognitive psychology remain unclear.
Existing clinical trials often provide broad assessments of cognitive
functions in patients without detailed scrutiny of various cognitive
processing stages. To address these gaps, future research should
delve deeper into these areas.

Overall, VNS represents a promising avenue for enhancing
cognitive function across different patient populations. Continued
research efforts are crucial to elucidating the optimal protocols,
mechanisms of action, and specific cognitive domains that can
benefit most from VNS interventions.
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