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Ferroptosis is a new form of regulated necrosis characterized by iron-dependent
lipid peroxidation, leading to irreparable lipid damage, membrane
permeabilization, and necrotic cell death. Ferroptosis has recently been
implicated in the pathogenesis of multiple forms of heart disease such as
myocardial infarction, cardiac hypertrophy, heart failure, and various
cardiomyopathies. Important progress has also been made regarding how
ferroptosis is regulated in vitro and in vivo as well as its role in cardiac
homeostasis and disease pathogenesis. In this review, we discuss molecular
mechanisms that regulates ferroptosis in the heart, including pathways leading
to iron overload and lipid peroxidation as well as the roles of key organelles in this
process. We also discuss recent findings pertaining to the new pathogenic role of
ferroptosis in various forms of heart disease as well as genetic and pharmacologic
strategies targeting ferroptosis in the heart.
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1 Introduction

Apoptotic and/or necrotic cell death has been implicated in multiple forms of heart disease,
including ischemic myocardial injury, pathological remodeling, myocarditis, various forms of
cardiomyopathy, and drug-induced cardiotoxicity (Del Re et al., 2019). Apoptosis is the most
renowned form of regulated cell death mediated by death receptor or mitochondria dependent
signaling pathways, which is characterized by cytosolic shrinkage, membrane blebbing,
chromatin condensation, and DNA fragmentation, without loss of plasma membrane
integrity (Danial and Korsmeyer, 2004). In contrast, necrosis had long been regarded as an
unregulated process triggered by excessive pathological stress, characterized by cell swelling,
plasma membrane rupture, cell lysis, and inflammatory response (Edinger and Thompson,
2004). However, this notion has been overturned by emerging evidence revealing that necrosis
can also occur in a highly regulated and genetically controlled manner, termed “regulated
necrosis”. Indeed, a number of regulated necrotic cell death modalities have recently been
identified, including ferroptosis, necroptosis, pyroptosis, parthanatos, mitochondria-mediated
necrosis, and other regulated necrotic processes (Del Re et al., 2019).

Ferroptosis is a newly identified form of regulated necrosis characterized by iron-
dependent lipid peroxidation, leading to irreparable lipid damage, membrane
permeabilization, and necrotic cell death (Dixon et al., 2012; Stockwell et al., 2017).
Iron overload is a hallmark of ferroptosis, which promotes lipid peroxidation by
producing hydroxyl and alkoxyl radicals through the Fenton reaction (Papanikolaou
and Pantopoulos, 2005). Moreover, iron can also participate in enzymatic lipid
peroxidation by promoting the activation of arachidonate lipoxygenase (ALOX) (Pu
et al., 2022). Ferroptosis, regardless of the mechanisms of induction, is effectively
inhibited by iron chelators, such as deferoxamine, indicating that iron is critically
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involved in the execution of ferroptosis. Moreover, cellular
susceptibility to ferroptosis is closely regulated by iron
metabolism, including its import, export, utilization, and storage
(Tang D. et al., 2021). Accumulation of lipid peroxidation products
is another hallmark of ferroptosis. Glutathione peroxidase 4 (GPX4),
a glutathione (GSH)-dependent selenoenzyme, plays a crucial role in
preventing ferroptosis by converting toxic lipid hydroperoxides to
nontoxic lipid alcohols (Friedmann Angeli et al., 2014; Yang et al.,
2014). Failure of GPX4 to clear lipid reactive oxygen species (ROS)
leads to overwhelming lipid peroxidation and ferroptotic cell death
(Friedmann Angeli et al., 2014; Yang et al., 2014). Apoptosis-
inducing factor mitochondria-associated 2 (AIFM2, also known
as FSP1) has been identified as another key antioxidant protein
that acts parallel to GPX4 in suppressing phospholipid peroxidation
and ferroptosis (Bersuker et al., 2019; Doll et al., 2019). Moreover,
the enzymes involved in the peroxidation of polyunsaturated fatty
acids (PUFAs), such as acyl-CoA synthetase long-chain family
member 4 (ACSL4), lysophosphatidylcholine acyltransferase 3
(LPCAT3), and ALOXs, also play important roles in the
induction of ferroptosis (Dixon et al., 2015; Doll et al., 2017;
Kagan et al., 2017).

Ferroptosis has recently been implicated in the pathogenesis of
multiple forms of heart disease such as myocardial infarction,

cardiac hypertrophy, heart failure, and various cardiomyopathies.
New mechanistic insights have also been obtained regarding how
ferroptosis is regulated in vitro and in vivo as well as its role in
cardiac homeostasis and disease pathogenesis (Figure 1). Here, we
review recent findings pertaining to the new pathogenic role of
ferroptosis in various forms of heart disease as well as genetic and
pharmacologic strategies that target ferroptosis in the heart.
Molecular and cellular mechanisms of ferroptosis, especially
pathways leading to iron overload and lipid peroxidation as well
as new roles of key organelles, have recently been elucidated.
Emerging evidence also reveals that ferroptosis contributes to the
pathogenesis of acute cardiac injuries as well as chronic diseases by
inducing cell death, inflammation, and tissue remodeling.

2 Mechanism of ferroptosis

2.1 Iron overload

2.1.1 Iron regulation
The absorption of diet iron involves several steps, including the

uptake of iron from the intestinal lumen across the apical border of
the villus and its transfer across the basolateral border to the plasma

FIGURE 1
Ferroptosis in heart diseases. Ferroptosis has been implicated in the pathogenesis of multiple forms of heart disease such as myocardial infarction,
cardiac hypertrophy, and various cardiomyopathies. Pathological stress induces ferroptotic cell death in the heart via multiple mechanisms such as iron
overload, and lipid peroxidation, inhibition of xCT system, reduced GPX4 activity, increased ACSL4 activity, ferritinophagy, heme degradation, and
mitochondrial dysfunction.
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(Dev and Babitt, 2017). Extracellular iron in blood reversibly binds
to transferrin (TF), a glycoprotein that is essential for the transport
and cellular uptake of iron. Each transferrin molecule contains two
binding sites for ferric ion. Iron-loaded transferrin is transported to
the tissues, mainly erythroid marrow where it binds with transferrin
receptor protein 1 (TFR1) and is internalized through clathrin-
dependent endocytosis. The low pH environment in the endosome
causes the release of ferric iron from the TF-TFR1 complex and, a
transmembrane ferrireductase STEAP3 (six-transmembrane
epithelial antigen of prostate) reduces ferric iron to ferrous iron.
Next, DMT1 (divalent metal transporter 1) transports ferrous iron
from the endosome into the cytosol (Bersuker et al., 2019). The
carrier protein transferrin and TFR1 receptor are recycled back to
the ECF and cell surface, respectively. Iron can be stored in the
cytosol by the iron storage protein ferritin, which can chelate about
4,500 iron atoms (Chen et al., 2020). Iron enters the mitochondria
via mitoferrin 1 and 2 where it participates in heme biosynthesis and
hemoglobin production in developing erythroblasts (Shaw et al.,
2006). Ferritin is also present in the mitochondria, termed
mitochondrial ferritin (FTMT) (Santambrogio et al., 2007; Levi
et al., 2021). Iron can be exported out of the cell by ferroportin-1
(FPN1, also known as SLC40A1) (Donovan et al., 2000; Azucenas
et al., 2023). FPN1 is highly expressed in duodenal enterocytes,
hepatocytes and macrophages (D’Anna et al., 2009).

In mammals, the iron regulatory proteins (IRPs; IRP1 and IRP2)
are the central regulators of iron uptake, storage and export (Wang
L. et al., 2019). In iron deficient states, IRPs bind to the iron response
element (IRE) in the 3′UTR of target transcripts like TFR and DMT
to stabilize the mRNA and increase translation of mRNA. At the
same time, IRPs bind to the IRE in the 5′UTR of target transcripts
such as ferritin and ferroportin to suppress translation of these
proteins to combat iron deficiency. When iron levels are sufficient,
the IRP system is under suppression. IRP1 contains Fe-S cluster
which does not allow it to bind to IRE, and IRP2 is degraded by
ubiquitin ligase which is sensitive to iron levels (Chen et al., 2020).
Additionally, ferroportin levels are also regulated by hepcidin
(Berezovsky et al., 2022). Hepcidin prevents iron efflux from the
cells by binding to ferroportin and inducing endocytosis followed by
the degradation (Charlebois et al., 2022).

2.1.2 Mechanisms of iron overload
2.1.2.1 Ferritinophagy

Excess iron within the cell is stored in ferritin to prevent iron-
mediated lipid peroxidation and ferroptosis. Under conditions of
iron deficiency or high iron demand, ferritin undergoes autophagic
lysosomal degradation to increase the labile iron content within the
cells. However, elevated autophagy of ferritin, termed
ferritinophagy, can induce iron overload and ferroptosis. The
nuclear receptor coactivator 4 (NCOA4) serves as a specific cargo
receptor for transporting ferritin to lysosomes for autophagic
degradation (Mancias et al., 2014). Autophagy-related 5 and 7
(Atg5 and Atg7, respectively) genes are also critical for the
formation of autophagosome during the process of ferritinophagy
(Hou et al., 2016; Wen et al., 2019). The intracellular NCOA4 levels
are regulated by cellular iron load. In conditions of high cellular iron
levels, HERC2 (ECT and RLD domain-containing E3 ubiquitin
protein ligase 2) facilitates the ubiquitination of NCOA4,
marking it for degradation via the proteasome. This degradation

limits NCOA4 availability, thereby reducing its ability to transport
ferritin to lysosomes. In contrast, during iron deprivation, HERC2’s
hold on NCOA4 weakens, allowing a pool of NCOA4 to remain
unubiquitinated. This liberated NCOA4 can then bind to ferritin,
facilitating its transport to lysosomes for degradation, consequently
releasing iron for cellular utilization (Liu et al., 2020). It has been
shown that NCOA4-mediated ferritinophagy was activated
following pressure overload, leading to ferrous iron overload,
increased lipid peroxidation, cardiomyocyte death, and ultimately
heart failure in mice (Ito et al., 2021). Suppression of ferritinophagy
by NCOA4 silencing protected the cells from iron overload and
ferroptosis (Fang et al., 2021; Santana-Codina et al., 2021).

2.1.2.2 Heme degradation by heme oxygenase-1
Heme is a crucial component of various biological processes like

oxygen transport, electron transport, metabolism of drugs and
toxins and signal transduction (Seiwert et al., 2020). Heme
oxygenase (HO-1), a 32-kDa protein encoded by the Hmox1
gene, mediates the catabolism of heme into biliverdin, carbon
monoxide (CO), and iron (Fe2+) (Cruse and Maines, 1988).
Although HO-1 can elicit cytoprotective effects (Costa et al.,
2020; Seiwert et al., 2020), excessive HO-1 activation can lead to
iron overload, causing tissue damage and organ dysfunction
(Miyamoto et al., 2022). In sickle cell disease, excess systemic
heme has been shown to upregulate HO-1 expression and
exacerbate iron overload, leading to cardiac ferroptosis and
cardiomyopathy in mice (Menon et al., 2022). HO-1 upregulation
has also been shown to promote iron overload in beta-thalassemia
and anthracycline cardiotoxicity (Garcia-Santos et al., 2018; Fang
et al., 2019). Importantly, a recent study showed that HO-1 silencing
prevented simulated I/R-induced ferroptosis in cardiomyocytes
(Miyamoto et al., 2022). Intriguingly, both pro- and anti-
ferroptotic roles of HO-1 have been reported depending on cell
types and pathological conditions (Chiang et al., 2018). To explain
this discrepancy, accumulating evidence suggests that moderate
activation of HO-1 elicits a cytoprotective effect whereas
excessive and/or prolonged activation of HO-1 induces iron
overload, leading to ferroptotic cell death (Chiang et al., 2018).

2.2 Lipid peroxidation

2.2.1 Mediators of lipid peroxidation
Free PUFAs, crucial substrates in lipid peroxidation, are

incorporated into phospholipids by two pivotal enzymes:
ACSL4 and LPCAT3. Inhibition of ACSL4 and
LPCAT3 diminishes the availability of substrates necessary for
lipid peroxidation, thus enhancing resistance to ferroptosis (Li
and Li, 2020; Xu et al., 2020; Cui et al., 2021). During
ferroptosis, PUFA derivatives within cellular membranes, such as
the endoplasmic reticulum, mitochondria, lysosomes, and plasma
membrane, undergo lipid peroxidation either via non-enzymatic
Fenton reactions or enzymatic processes (Chen et al., 2021; Von
Krusenstiern et al., 2023). Several enzyme systems are involved in
lipid peroxidation, such as xanthine oxidase, cytochrome P450,
NADPH oxidase, cyclooxygenases (COX), and lipoxygenase
(LOX), many of which are iron dependent. LOX are iron
containing nonheme dioxygenases, encoded by six ALOX genes
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ALOX5, ALOX12, ALOX12B, ALOX15, ALOX15B, and ALOXE3,
which play an important role in ferroptosis (Mortensen et al., 2023).

2.2.2 Suppressors of lipid peroxidation
2.2.2.1 The system Xc

−-GSH-GPX4 axis
The antiporter system Xc

− is composed of two subunits,
SLC7A11 and SLC3A2, and functions to import cystine into cells
in exchange for glutamate. The cystine is degraded to cysteine, which
is used to synthesize GSH (Liu et al., 2021). GPX4 is a selenoprotein
that utilizes GSH to reduce lipid hydroperoxides, preventing lipid
peroxidation and decreasing oxidative damage to the cells. There
exist three isoforms of GPX4 localized to cytosol (cGPX4), nucleus
(nGPX4) and mitochondria (mGPX4), respectively. GPX4 is unique
among 8 known glutathione peroxides as it is the only enzyme
capable of reducing oxidized fatty acids and cholesterol
hydroperoxides. Mutations in GPX4 gene in humans led to
cardiovascular, cerebrovascular, neuromuscular, or renal
complications (Cheff et al., 2021). Deletion of GPX4, but not
other GPX isoforms, caused embryonic lethality in mice (Yant
et al., 2003; Yoo et al., 2012). Inducible ablation of GPX4 led to
acute renal failure and early lethality in mice (Friedmann Angeli
et al., 2014). Conditional deletion of GPX4 in neurons resulted in
rapid onset of paralysis in the adult mice (Chen et al., 2015).
GPX4 overexpression ameliorated, whereas GPX4 heterodeletion
exaggerated myocardial ischemia/reperfusion (I/R) injury and
doxorubicin-induced cardiomyopathy in mice (Miyamoto et al.,
2022; Tadokoro et al., 2023).

2.2.2.2 The GPX4-independent ferroptosis surveillance
Ferroptosis suppressor protein 1 (FSP1, also known as AIFM2)

has been identified as another key suppressor of ferroptosis. It
converts ubiquinone (Coenzyme Q10) to ubiquinol (Coenzyme
QH2), which effectively sequesters lipid peroxyl radicals (Doll
et al., 2019). FSP1 is primarily a cytosolic protein and gets
translocated to the plasma membrane following myristoylation of
its N-terminal. Apart from its role in modifying ubiquinone,
FSP1 also reduces vitamin K to its hydroquinone form, which
acts as a potent antioxidant against lipid peroxidation (Mishima
et al., 2022). Additionally, FSP1 contributes to the reduction of α-
tocopheryl radicals to α-tocopherol, which serves as an effective
scavenger of the lipid radicals. Interestingly, it has been shown that
FSP1 mediates resistance against ferroptosis by recruiting
endosomal sorting complexes required for transport (ESCRT)-III
for repairing the cell membrane (Zeng et al., 2022). The cells are also
equipped with other antioxidants such as vitamin E, thioredoxin and
peroxiredoxins (Llabani et al., 2019; Kuang et al., 2020; Hu et al.,
2021). Interestingly, nitric oxide (NO·) generated by inducible nitric
oxide synthase (iNOS) has been shown to substitute GPX4 inactivity
and suppress ferroptosis in macrophages (Kapralov et al., 2020). The
major pathways that regulate ferroptosis are illustrated in Figure 2.

2.3 Role of key organelles in ferroptosis

2.3.1 Mitochondria
Ferroptotic cells exhibit various aberrant morphological and

functional changes in mitochondria including, decrease in cristae,
reduced membrane potential, increased permeability, increased

iron, ROS and lipid peroxidation, and elevated DNA stress
(Dixon et al., 2012; Gan, 2021). Mitochondria depletion
prevented ferroptosis induced by cysteine-deprivation or erastin
(Gao et al., 2019). Moreover, mitochondrial DNA depletion or
mitochondrial ROS quenching inhibited ferroptosis induced by
RSL3 (Jelinek et al., 2018; Oh et al., 2022). Multiple mechanisms
may contribute to mitochondria iron overload in ferroptosis. For
example, increased mitochondrial iron uptake through iron
transporters, such as mitoferrin-1 (SLC25A37) and mitoferrin-2
(SLC25A28), can mediate mitochondrial iron overload (Paradkar
et al., 2009; Hung et al., 2013). Moreover, cytosolic iron is
translocated into mitochondria via the mitochondrial Ca2+ and
Fe2+ uniporter (MCU) in photodynamic therapy-induced
ferroptosis, leading to mitochondrial iron overload (Shui et al.,
2021). Defective heme biosynthesis in mitochondria can lead to
iron accumulation. Heme synthesis is a multistep process that
involves a sequential action of at least eight enzymes in
mammals. It begins in mitochondrial matrix where 5-
aminolevulinic acid (ALA) is produced by the action of
aminolevulinic acid synthase (ALAS). Disruption of ALAS-
dependent heme synthesis can impair iron utilization and trigger
ferroptosis (Paradkar et al., 2009). Moreover, under the influence of
different stressors, HO-1 can be upregulated and even translocated
to mitochondria (Bindu et al., 2011; Bansal et al., 2014). Indeed, we
recently found that oxidative stress promoted HO-1 translocation
and mitochondrial iron overload (Chen et al., 2023b). Within
mitochondria, Fe2+ is utilized for heme and Fe-S cluster synthesis
or stored in mitochondrial ferritin (MTFT). Several proteins
involved in mitochondrial iron metabolism have been implicated
in defense against ferroptosis. Iron-sulfur cluster assembly scaffold
protein (ISCU), for instance, plays a critical role in Fe-S cluster
synthesis and overexpression of ISCU suppresses ferroptosis (Du
et al., 2019). A cysteine desulfurase NSF1, which catalyzes the
abstraction of sulfur from amino acid l-cysteine also protects
against ferroptosis by preventing in mitochondrial iron overload
(Alvarez et al., 2017). Another important protein, frataxin (FXN), is
responsible for transferring iron to ISCU for the assembly of Fe-S
clusters. Decreased FXN levels, as seen in Friedreich’s ataxia, result
in mitochondrial dysfunction, iron accumulation, and ferroptosis
(Cotticelli et al., 2019). Additionally, ABCB7 and ABCB8, members
of ATP binding cassette (ABC) transporter family, are involved in
exporting Fe-S clusters from the mitochondria to the cytosol,
although their role in ferroptosis has not been directly examined
(Guo et al., 2022). MitoNEET (also known as CISD1), a redox
sensitive Fe-S cluster protein, regulates mitochondrial iron
metabolism and ROS balance by interacting with transferrin
receptor and voltage-dependent anion channel (VDAC) (Furihata
et al., 2018; Lipper et al., 2019). Loss of CISD1 facilitates erastin-
induced ferroptosis by increasing iron accumulation and oxidative
stress in cancer cells (Yuan et al., 2016).

Mitochondria generate a significant amount of ROS at multiple
sites such as, electron transport chain and tricarboxylic acid cycle,
which interact with Fe-S clusters to release free iron and promote
ROS generation via the Fenton reaction. Therefore, the combination
of high iron levels and potential for ROS generation make
mitochondria an optimal site for ferroptosis. Accumulation of
mitochondrial lipid ROS has been detected in cells undergoing
ferroptosis, while mitochondria-targeted ROS scavengers can
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inhibit ferroptosis in various cell types (Yamada et al., 2020; Jiang
et al., 2022). On the other hand, mitochondria are also equipped
with numerous antioxidant systems to combat ferroptosis (Ali et al.,
2022). Several mitochondria-associated antioxidant proteins,
including GPX4, SOD2, and MGST1, play a crucial role in
protecting mitochondria from oxidative damage during
ferroptosis (Chen J. et al., 2022). The inner membrane of
mitochondria also functions as a site for synthesizing Coenzyme
Q (CoQ) - a redox-active cofactor essential for FSP1 activity that
provides protection against ferroptosis. Mitochondrial dysfunction
has been associated with reduced levels of CoQ, which increases
ferroptosis susceptibility (Mourier et al., 2015; Kühl et al., 2017).
Mitochondrial dihydroorotate dehydrogenase (DHODH) has been
shown to suppress ferroptosis by oxidizing DHO to orotate by using
CoQ as electron acceptor (Mao et al., 2021). The role of
mitochondria in ferroptosis is illustrated in Figure 3.

Accumulating evidence suggests that mitochondria-mediated
ferroptosis contributes to the pathogenesis of heart disease. For
example, mitochondria-mediated ferroptosis plays a key role in
DOX-induced cardiomyopathy (Tadokoro et al., 2023). DOX
downregulated GPX4 and induced excessive lipid peroxidation
through DOX-Fe2+ complex in mitochondria, leading to
mitochondria-dependent ferroptosis. Inhibiting ferroptosis by
targeting mitochondrial-mediated pathways markedly attenuated
DOX-induced cardiac toxicity (Fang et al., 2019). Mitochondria-
mediated ferroptosis also mediates diabetic cardiomyopathy as well
as catecholamine overload induced cardiomyopathy (Chen et al.,
2023c; Chen et al., 2023a). Moreover, targeting mitochondrial ROS
production effectively inhibits ferroptosis in cardiomyocytes
(Sumneang et al., 2020; Chen et al., 2023a), offering a promising
therapeutic option for the treatment of heart diseases by inhibiting
ferroptosis.

FIGURE 2
Mechanisms of ferroptosis. Ferroptotic cell death is triggered by iron-fueled excessive lipid peroxidation. Transferrin-TFR1 complex undergoes
endocytosis and ferric iron is reduced to ferrous iron by the ferrireductase STEAP3. Iron is sequestered by ferritin or contribute to the LIP. HO-1
dependent heme degradation andNCOA4-mediated ferritinophagy also add iron to the LIP. Lipid peroxidation of PUFAs ismediated by the action of iron-
dependent enzymes such as LOXs and CYP450 or iron catalyzed Fenton reactions. Glutamate cysteine exchanger mediates the exchange of
extracellular cystine for intracellular glutamate. Once inside the cell, cystine is reduced to cysteine – a precursor for the synthesis of GSH. The activity of
GPX4 depends on GSH to reduce lipid hydroperoxides and protect cell membranes from oxidative damage. ACSL4, Acyl-CoA synthetase long-chain
family member 4; LPCAT3, Lysophosphatidylcholine acyltransferase 3; STEAP3, Six-Transmembrane Epithelial Antigen of the Prostate 3; DMT1, divalent
metal transporter 1; LIP, labile iron pool; HO-1, hemeoxygenase-1; LOX, Lipoxygenase; CYP450, Cytochrome P450; GSH, Glutathione (reduced form);
GSSG, Glutathione disulfide (oxidized form); GPX4, Glutathione peroxidase 4.
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2.3.2 Lysosomes
Lysosomes play a crucial role in ferroptotic cell death through

various mechanisms such as the activation of autophagy, release of
lysosomal cathepsins, and accumulation of lysosomal iron or nitric
oxide (Chen et al., 2021). Ablation of several autophagy related
(ATG) genes, such as ATG3, ATG5, ATG6, ATG7, ATG8 and
ATG13, has been shown to suppress ferroptosis, while activation of
selective autophagy pathways prompts ferroptosis by targeting
different cargoes. These include nuclear receptor coactivator 4
(NCOA4)-mediated ferritinophagy, sequestosome 1-mediated
SLC40A1 degradation, chaperone-mediated autophagy (CMA) of
GPX4, lipophagy-dependent breakdown of lipid droplets and
mitophagy-mediated mitochondrial degradation (Wu et al., 2019;
Liu et al., 2020; Li et al., 2021; Rizzollo et al., 2021; Bengson et al.,
2023). Moreover, signal transducer and activator of transcription 3
(STAT3) has been shown to mediate erastin-induced ferroptosis
through activation of cathepsin B. In contrast, pharmacological
inhibition of lysosomal enzymes such as cathepsins and vacuolar
H+ ATPase suppresses erastin-induced ferroptosis (Gao et al., 2018).
These findings suggest that lysosomal pathways are important
mediators and potential molecular targets of ferroptosis.

Lysosome-mediated ferroptosis has been shown to mediate the
pathogenesis of heart failure. Lysosomal function is essential for
intracellular iron metabolism. Lysosomal damage promotes the
accumulation of iron and lipid peroxides, leading to the activation
of ferroptosis. Improving lysosomal ferroptosis protected against heart
failure in a mouse model with cardiomyocyte-specific knockout of the
mitochondrial translation factor p32 (Yagi et al., 2023).

2.3.3 Endoplasmic reticulum
The ferroptosis-inducing agents such as Erastin and RSL3 have

been shown to trigger endoplasmic reticulum (ER) stress (Lee et al.,
2018; Shin et al., 2018). ER stress plays a critical, yet complex role in
regulating ferroptotic cell death via the eukaryotic translation
initiation factor 2A (EIF2A)/activating transcription factor 4
(ATF4) pathway (Dixon et al., 2014). ATF4 inhibits ferroptosis
by increasing the stability of GPX4 via HSPA5 upregulation or by
promoting the expression of SLC7A11. Moreover, ER stress
promotes membrane repair during ferroptosis via Ca2+-mediated
ESCRT III activation. In contrast, ATF4 can upregulate ChaC
glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1)
expression which in turn degrades GSH, thereby contributing to

FIGURE 3
Mitochondrial regulation of ferroptosis. Iron is transported viamDT,MFRN1/2, and possibly VDAC into themitochondria, where it is utilized for heme
and Fe-S cluster synthesis. FXN transfers iron to ISCU and NFS1 serves as the sulfur donor for Fe-S cluster synthesis. Fe-S clusters are exported from the
mitochondria to the cytosol via ABCB7 to allow the assembly of the cytosolic Fe-S containing proteins. Iron is sequestered by mitoferritin (mFT) or
contributes to the labile iron pool within mitochondria (mLIP). Excess iron can lead to lipid peroxidation and ROS formation. ETC and TCA cycle also
contribute to the mitochondrial ROS pool. GPX4 and DHODH represent two major antioxidant enzymes in mitochondria to prevent ferroptosis.
Abbreviations: mDT, mitochondrial divalent transporter; VDAC, Voltage-Dependent Anion Channel; CISD1, CDGSH Iron Sulfur Domain 1; CoQ10,
CoenzymeQ10; CoQ10H2, CoenzymeQ10 (reduced form); DHODH, Dihydroorotate Dehydrogenase;mGPX4, Mitochondrial Glutathione Peroxidase 4;
GSSH, Oxidized Glutathione; GSH, Reduced Glutathione; MFRN1/2, Mitoferrin 1/2; mFT, Mitochondrial Ferritin; ISCU, Iron-Sulfur Cluster Scaffold Protein;
FXN, Frataxin; ABCB7, ATP Binding Cassette Subfamily B Member 7; PUFA, Polyunsaturated Fatty Acids; ACSL4, Acyl-CoA Synthetase Long Chain Family
Member 4; LPCAT3, Lysophosphatidylcholine Acyltransferase 3; LOX, Lipoxygenase; CYP, Cytochrome P450.
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ferroptosis (Chen et al., 2017; Wang N. et al., 2019). ER can suppress
PUFA-mediated ferroptosis by promoting the biosynthesis of
MUFA primarily catalyzed by the ER enzyme - stearoyl-CoA
desaturase (SCD) (Sen et al., 2023). ER also regulates ferroptosis
sensitivity, potentially via STING1-dependent autophagy or
mitochondrial fusion (Smith, 2021; Zhang Z. et al., 2022).

It has been shown that Inhibition of endoplasmic reticulum
stress could alleviate ferroptosis and cell injury (Li W. et al., 2020).
CHOP-mediated ER stress has also been shown to play an important
role in I/R injury (Dixon et al., 2014). Moreover, iron overload in the
ER triggers ferroptosis during cardiac I/R injury (Miyamoto et al.,
2022). Therefore, these studies suggest that ERS induced by
ferroptosis contributes to the pathogenesis of cardiac I/R injury.

2.4 Crosstalk between ferroptosis and other
cell death pathways

Emerging evidence reveals that ferroptosis may crosstalk with
other cell death pathways. Ferroptosis is a type of autophagy-
dependent cell death (Zhou et al., 2020). Ferroptosis inducers
promote the activation of autophagy, leading to the accumulation
of autophagic vesicles. NCOA4-mediated autophagy, termed
ferritinophagy, induces ferritin degradation and iron overload,
promoting oxidative stress and ferroptosis. Elevated lipid
peroxidation in ferroptosis also promotes GSDMD-mediated
pyroptosis. Indeed, it has been shown that deletion of GPX4 led
to lipid peroxidation-dependent caspase 11 and GSDMD cleavage
(Kang et al., 2018). Elevated mitochondrial ROS during ferroptosis
may also promote necroptosis, possibly by increasing the
autophosphorylation of RIPK1 (Zhang et al., 2017). Moreover,
the release of damage-associated molecular pattern molecules
(DAMPs) from the plasma membrane pore is a common feature
of necrotic cell death such as ferroptosis, pyroptosis, and
necroptosis. The release of the DAMPs triggered by ferroptosis
may further promote pyroptosis and necroptosis. The significance of
ferroptosis-pyroptosis crosstalk in heart disease needs to be further
investigated.

3 Ferroptosis in heart diseases

3.1 Myocardial ischemia/reperfusion injury

Myocardial ischemia/reperfusion (I/R) injury can occur
during the restoration of blood supply to the acutely ischemic
heart and contributes to the final infarct size (Zhang et al., 2023).
Ferroptosis has recently been implicated in the pathogenesis of
myocardial I/R injury (Han et al., 2023). I/R injury causes iron
overload characterized by increased cardiac nonheme iron levels
and ferritin expression (Fang et al., 2019). During I/R injury,
there is also a time-dependent increase in ACSL4 levels with a
concomitant decrease in GPX4 activity (Tang L.-J. et al., 2021).
Pharmacological inhibition of ferroptosis with ferrostatin-1 or
dexrazoxane has been shown to reduce cardiac infarct size
following I/R (Fang et al., 2019). Moreover, inhibiting
ferroptosis can also provide long-term benefits against
I/R-induced cardiac remodeling and fibrosis. In patients

undergoing coronary artery bypass grafting (CABG) surgery,
infusion of an iron chelator deferoxamine also suppressed
reperfusion-induced oxidative damage (Paraskevaidis
et al., 2005).

3.2 Heart failure with preserved ejection
fraction (HFpEF)

Iron overload has been linked to endothelial dysfunction,
impaired excitation-contraction coupling of cardiomyocytes,
myocardial inflammation and tissue fibrosis, which all contribute
to the development of HFpEF (Li et al., 2022). A recent study reveals
that obesity-induced HFpEF leads to an upregulation in iNOS
activity while reducing GPX4 activity. Further, treatment with an
anti-diabetic agent, Imeglimin has been shown to prevent HFpEF by
inhibiting myocardial production of iNOS and restoring myocardial
expression of GPX4 (Kitakata et al., 2021). Tandem Mass Tag
(TMT)-based proteomics studies reveal that ferroptotic metabolic
pathways contribute to the development of HFpEF (Ma et al., 2022).
Additionally, rats with HFpEF exhibited an increase in Fe2+

concentration and lipid peroxidation products, accompanied by
increased expression of TFR1 and ACSL4 proteins. Moreover,
there was a significant decrease in GSH concentrations and
downregulation of xCT and FTH1 expression in HFpEF (Ma
et al., 2022). These findings suggest that ferroptosis may
contribute to the pathogenesis of HFpEF.

3.3 Hypertrophic cardiomyopathy (HCM)

Dysregulation of iron metabolism and increased lipid
peroxidation have been implicated in cardiac hypertrophic
remodeling (Tang et al., 2019; Fan et al., 2022). Recent studies
further revealed that ferroptosis plays a role in hypertrophic
cardiomyopathy. It has been shown that xCT, a key regulator of
ferroptosis, prevents cardiac hypertrophy by inhibiting ferroptosis
(Zhang X. et al., 2022). xCT knockout aggravated angiotensin II
(Ang II)-induced cardiac hypertrophy, fibrosis, and dysfunction
(Zhang X. et al., 2022). Similarly, loss of ferritin H, a key iron
storage protein, led to hypertrophic cardiomyopathy by inducing
cardiac ferroptosis, which was rescued by overexpression of xCT
(Fang et al., 2020). Moreover, overexpression of TRIM44, a
deubiquitinase, promoted pressure overload-induced cardiac
hypertrophy via activation of TLR4/NOX4-mediated ferroptosis
(Wu et al., 2023).

3.4 Doxorubicin-induced cardiomyopathy

Doxorubicin (DOX) induces cardiotoxicity, referred to as DOX-
induced cardiomyopathy, which limits its clinical use as a
chemotherapeutic agent (Rawat et al., 2021). The mechanism of
DOX-induced cardiomyopathy remains incompletely understood,
but recent studies have highlighted a prominent role of ferroptosis in
pathogenesis. Fang et al. identified ferroptosis as a key mechanism
for DOX-induced cardiomyopathy in mice (Fang et al., 2019).
Importantly, inhibition of ferroptosis with ferrostatin-1 and
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dexrazoxane effectively attenuated DOX-induced cardiomyopathy.
Mechanistically, they revealed that mitochondrial iron overload
and lipid peroxidation play a key role in DOX-induced myocardial
ferroptosis. Tadokoro et al. also showed that mitochondria-dependent
ferroptosis plays a key role in DOX cardiomyopathy (Tadokoro et al.,
2023). GPX4 expression was markedly downregulated during DOX
cardiomyopathy, accompanied by increased lipid peroxidation in
mitochondria. Importantly, transgenic overexpression of
GPX4 ameliorated, whereas heterodeletion of GPX4 exacerbated
DOX cardiomyopathy. Abe et al. further showed that DOX
induces mitochondria-dependent ferroptosis by intercalating into
mitochondrial DNA (mtDNA) (Abe et al., 2022). Moreover, DOX
also disrupts heme synthesis and impairs iron utilization by
downregulating 5′-aminolevulinate synthase 1 (Alas1), leading to
mitochondrial iron overload and ferroptosis.

3.5 Other cardiomyopathies

Ferritinophagy-mediated ferroptosis has been shown to contribute
to the pathogenesis of septic cardiomyopathy (Li N. et al., 2020).
Recent findings reveal a role of islet cell autoantigen 69 (ICA69)-
STING signaling and transmembrane protein 43 (TMEM43) in
lipopolysaccharide (LPS)-induced cardiomyocyte ferroptosis and
cardiomyopathy. Ablation of ICA69 decreased STING trafficking
and improved overall cardiac function by targeting LPS-induced
ferroptosis. ICA69 levels are also positively correlated with the
severity of sepsis in humans (Kong et al., 2022). Overexpression of
TMEM43 inhibited LPS-induced ferroptosis with increased levels of
SLC7A11 and GPX4, revealing a protective role of TMEM43 against
sepsis-induced cardiomyopathy (Chen Z. et al., 2022).

A growing body of evidence highlights the role of ferroptosis in
diabetic cardiomyopathy (DCM). The advanced glycation end-
products (AGEs) that accumulate in cardiac tissue with the onset
of diabetes, can induce ferroptosis as evident by increasedMDA levels,
upregulation of COX2, and downregulation of ferritin and SLC7A11.
Moreover, activation of AMPK/NRF2 pathways with sulforaphane
protects heart against AGE-induced ferroptosis (Wang X. et al., 2022).
In contrast, Nrf2 signaling can also exert detrimental effect to the
heart, particularly when autophagy is impaired such as in chronic in
type 1 diabetes (Zang et al., 2020).

Ferroptosis has recently emerged as a potential contributor to
radiation-induced cardiomyopathy (RICM) (Wang B. et al., 2020).
Radiation exposure induces ROS production, which triggers lipid
peroxidation and subsequent ferroptosis (Lei et al., 2020).
Endothelial cell injury caused by radiation is an early event in
RICM, leading to the release of cytokines and chemokines such
as IL-6, IL-8, TGF-β, TNF-α, and IL-1β (Li X. et al., 2019; Li W et al.,
2019; Wang C. et al., 2020). Increased ROS production and lipid
peroxidation further contribute to endothelial cell damage,
myocardial fibrosis, and cardiomyopathy (D’Oria et al., 2020;
Jiang et al., 2021). Activation of the STING pathway and
subsequent induction of interferon gamma and COX2 expression
have been observed following radiation exposure (Lemos et al., 2020;
Storozynsky and Hitt, 2020). Moreover, damaged endothelial cells
release danger-associated molecular patterns (DAMPs), such as high
mobility group box 1 (HMGB1), which promote ferroptosis and
inflammation (Dyer et al., 2018; Zhou et al., 2018; Green, 2019).

3.6 Targeting ferroptosis in heart disease

Ferroptosis as a potential target for the treatment of heart disease
has been explored in various experimental models. Genetic or
pharmacologic inhibition of ferroptosis has been shown to illicit
cardioprotective effects in these studies (Table 1). Therefore, anti-
ferroptosis therapies may hold a tremendous promise for the
treatment of heart disease in humans. Several drugs currently in
clinical use have been shown to target ferroptosis. For example,
dexrazoxane (DXZ) has been used to treat doxorubicin-induced
cardiotoxicity, which reverses DOX-induced ferroptosis mainly by
chelatingmitochondrial iron (Ichikawa et al., 2014). Several other iron
chelators, including deferoxamine (DFO), deferiprone (DFP), and
deferasirox (DFX) are clinically approved formanaging iron overload-
related diseases. In addition, N-acetylcysteine (NAC) has been shown
to inhibit ferroptosis by targeting cysteine metabolism. NAC has been
clinically shown to improve neurodegeneration-related symptoms by
increasing cysteine levels and facilitating the synthesis of GSH (Monti
et al., 2016). Notably, edaravone, a radical-trapping antioxidant
clinically approved for treating acute ischemic stroke and
amyotrophic lateral sclerosis, has been shown to inhibit ferroptosis
under various pathological conditions (Homma et al., 2019).
Thiazolidinediones (TZDs), such as rosiglitazone, pioglitazone, and
troglitazone, are approved to treat adult type 2 diabetes, which have
suppressing ferroptosis activity by selectively inhibiting ACSL4 (Doll
et al., 2017). Of note, a screening of a library consisting of FDA-
approved drugs has led to the successful identification of multiple
ferroptosis inhibitors (Tan et al., 2024), which offers new therapeutic
possibilities for the treatments of ferroptosis-related diseases.

The clinical application of ferroptosis-related targets is still in its
infancy. Iron metabolism-related indicators, such as serum iron,
serum ferritin, transferrin and soluble transferrin receptors, have
been used to monitor the progression of heart disease. For example,
patients with elevated serum ferritin showed a higher incidence of
acute myocardial infarction than those with reduced serum ferritin
(Moradi et al., 2015). Moreover, elevated levels of soluble ferritin
receptors corelates with a higher risk of coronary atherosclerotic
heart disease (Braun et al., 2004). Hepcidin concentration has also
been used to predict the risk of myocardial infarction or
cardiovascular death (Zeller et al., 2018). Notably, elevated levels
of ferritin and hepcidin were associated with a higher risk of heart
failure in women (Klip et al., 2017). Other biomarkers of ferroptosis,
such as lipid peroxidation products, might also be useful in
monitoring the progression of heart disease.

4 Conclusions and perspectives

Recent studies clearly demonstrate that ferroptosis contributes
significantly to the pathogenesis of multiple forms of heart disease
including acute cardiac injury and chronic disorders. Genetic or
pharmacologic inhibition of ferroptosis showed beneficial effects
under pathological conditions such as myocardial infarction and
heart failure. Recent studies also provide new mechanistic insights
into the regulatory mechanisms of ferroptosis, including new
pathways that positively or negatively regulates ferroptosis
signaling and the crosstalk between different subcellular
compartments in orchestrating ferroptotic cell death. Numerous
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studies have demonstrated that cardiomyocytes undergo ferroptosis in
response to pathological stress in vivo and in vivo. Ferroptosis of other
cell types in the heart, including endothelial cells, smooth muscle cells
andmacrophages, has also been shown to play a role in the pathogenesis
of certain forms of heart disease (Leng et al., 2021). The relative
contribution of ferroptosis in different cell types to disease
pathogenesis warrant further investigation under various disease
conditions. Notably, interaction between ferroptosis and other modes
of cell death, such as pyroptosis, necroptosis, and autophagy, increases
the complexity of these pathways. Various cell death processes contribute
to the loss of cardiac cells in heart diseases, and their specific roles in
disease pathogensis need further investigation. It will be important to
develop new diagnostic tools for assessing ferroptosis in vivo, given the
lack of reliable and specific biomarkers for ferroptosis. Targeting
ferroptosis represents an important therapeutic opportunity for the
treatment of heart disease. Pharmacological inhibitors of the

ferroptosis pathway have been developed for use in experimental
settings, such as iron chelators and lipophilic antioxidants. However,
given that adverse effects have been observed with these compounds
(Miller et al., 2005; Tebbi et al., 2007), the identification of newmolecular
targets of the ferroptosis pathway and the development of novel
ferroptosis inhibitors will be important for anti-ferroptosis therapies.
Targeting the ferroptosis pathway represents a promising therapeutic
strategy for various forms of heart disease, although these approaches
warrant further investigation in clinical studies.
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Dexrazoxane
Ferrostatin-1

↓ infarct size
↓ cardiac remodeling

Fang et al. (2019)

Zileuton ↓ infarct size
↓ tissue injury

Gonca (2017)

ABCB8 TG ↑ cardiac function
↓ cardiac remodeling

Chang et al. (2016)

2,2′-bipyridyl ↑ cardiac function
↓ cardiac remodeling

Dexmedetomidine I/R injury (ex vivo) ↓ infarct size Wang et al. (2022b)

Liproxstatin-1 ↓ infarct size Feng et al. (2019)

mGPX4 TG ↑ cardiac function
↓ cardiac injury

Dabkowski et al. (2008)

FTH1 KO Hypertrophic cardiomyopathy ↑ cardiac remodeling Fang et al. (2020)

xCT KO ↑ cardiac remodeling Zhang et al. (2022a)

NCOA4 KO ↓ cardiac remodeling Ito et al. (2021)

Dexrazoxane
Ferrostatin-1
Mito TEMPO
Zinc protoporphyrin IX

DOX-induced cardiomyopathy ↑ cardiac function
↓ cardiac remodeling
↓ cardiac injury

Rocha et al. (2016), Fang et al. (2019)

GPX4 TG ↑ cardiac function
↓ myocardial atrophy

Tadokoro et al. (2020)

GPX4 KO ↑ cardiac function
↑ myocardial atrophy

Tadokoro et al. (2020)

FUNDC2 KO ↑ cardiac function
↓ cardiac remodeling

Ta et al. (2022)

Ferrostatin-1 Post-transplant cardiomyopathy ↓ cardiac remodeling Li et al. (2019a)

MitoTEMPO Diabetic cardiomyopathy ↓ tissue remodeling
↑ cardiac function

Ni et al. (2016)

Pioglitazone ↑ cardiac function
↓ cardiac injury

Clarke et al. (2017), Doll et al. (2017)

Deferiprone
Dexrazoxane
Ferrostatin-1

Sepsis-induced cardiac injury ↓ tissue injury
↑ cardiac function
↑ cell survival

Li et al. (2020a)
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