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Introduction: ECG Derived Respiration (EDR) are a set of methods used for
extracting the breathing rate from the Electrocardiogram (ECG). Recent studies
revealed a tight connection between breathing rate and more specifically the
breathing patterns during sleep and several related pathologies. Yet, while
breathing rate and more specifically the breathing pattern is recognised as a
vital sign it is less employed than Electroencephalography (EEG) and heart rate in
sleep and polysomnography studies.

Methods: This study utilised open-access data from the ISRUC sleep database to
test a novel spectral-based EDR technique (scEDR). In contrast to previous
approaches, the novel method emphasizes spectral continuity and not only
the power of the different spectral peaks. scEDR is then compared against a
more widely used spectral EDR method that selects the frequency with the
highest power as the respiratory frequency (Max Power EDR).

Results: scEDR yielded improved performance against the more widely used Max
Power EDR in terms of accuracy across all sleep stages and the whole sleep. This
study further explores the breathing rate across sleep stages, providing evidence
in support of a putative sleep stage "REM0" which was previously proposed based
on analysis of the Heart Rate Variability (HRV) but not yet widely discussed. Most
importantly, this study observes that the frequency distribution of the heart rate
during REM0 is closer to REM than other NREM periods even though most of
REM0 was previously classified as NREM sleep by sleep experts following either
the original or revised sleep staging criteria.

Discussion: Based on the results of the analysis, this study proposes scEDR as a
potential low-cost and non-invasive method for extracting the breathing rate
using the heart rate during sleep with further studies required to validate its
accuracy in awake subjects. In this study, the autonomic balance across different
sleep stages, including REM0, was examined using HRV as a metric. The results
suggest that sympathetic activity decreases as sleep progresses to NREM3 until it
reaches a level similar to the awake state in REM through a transition from REM0.
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1 Introduction

Vital signs are measurements that most closely reflect the
patient’s internal environment, traditionally including the body’s
temperature, blood pressure, respiratory, and Heart Rate (HR) (A
list of all abbreviations can be found at Table 1) (Sapra et al., 2023).
Even though studies have shown that increases in the breathing rate
can indicate critical illness before other vital signs show any change
(Nicolò et al., 2020; Chourpiliadis and Bhardwaj, 2022), it is often
overlooked as it is especially hard tomeasure in the clinical setting. A
recent study has also established a relationship between mortality
from cardiovascular disease and nocturnal respiration rate (Baumert
et al., 2019). Hence, there is a need for a non-invasive and accurate
method to measure how breathing arises, for example, when
investigating sleep disorders and apnea.

With the rise of obesity in the Western world, the prevalence of
sleep apnea has become increasingly concerning, with estimates that
70% of obese patients have a high risk of developing moderate to severe
obstructive sleep apnea (Ribeiro et al., 2020). Currently, sleep apnea is
classified into two main types: obstructive sleep apnea (OSA) and
central sleep apnea (CSA). In OSA, the airway is blocked due to muscle
relaxation, while in CSA, the brain stops signaling the respiratory
muscles to contract (Rana and Sankari, 2023). The current gold
standard for the diagnosis of sleep apnea is sleep polysomnography,
which has limited availability. In the case of sleep apnea diagnosis,
clinical practice relies heavily on invasive flow meters (Laratta et al.,
2017). The following paragraphs, discuss how a deeper understanding
of the role and interaction of cardiovascular and breathing mechanisms
during wakefulness and various sleep stages has broader implications
for understanding normal sleep and its disorders.

Sleep staging was introduced in the late 1960s (Rechtschaffen
and Kales, 1968) and was based mainly on EEG, alongside EMG and
EOG measures to classify sleep into 7 distinct sleep stages based on
the hallmarks of sleep present in each 30-s trial. Sleep staging was a
tremendous advance, but still left some of the sleep as undefined,
either because of noise in the measurements, or because the 30 s
segments contained hallmarks (characteristics) belonging to more
than one sleep stage. In 2007, new guidelines were introduced that
combined NREM3 and NREM4 to a single new NREM3 sleep stage.
Numerous additional instructions and criteria for classifying sleep
stages based on the percentage of hallmarks present in each 30 s trial
(Silber et al., 2007) were introduced. Neural networks have also been
utilized in automatic sleep classification using either single EEG
channels or by combining EEG with EOG at different weights to
better reflect human expert classification (Jia et al., 2022). In recent
years, methods have arisen that allow the transfer of knowledge from
more complex neural networks to lightweight ones, allowing small
devices with limited processing power to perform accurate
automatic sleep classification (Liang et al., 2023).

At the same time there were numerous suggestions for
elaboration of the sleep staging of early sleep, which were
recently summarized (Biabani et al., 2023). This review states
that “sleep onset bears a complex pattern associated with a
multitude of behavioural and physiological markers and remains
poorly understood”, with further adding that sleep onset “has
fluctuating and ill-defined boundaries”. The review concludes
with a plea for advances because “there is a recognized need for
an international consensus on what constitutes a true sleep onset”.

Furthermore, studies showing two distinct substates within REM
inspired the division of REM into microstates (Wehrle et al., 2007).
The case for separating REM into tonic and phasic sleep was
strongly supported by Simor and colleagues based on the
presence of eye movements (phasic REM) or absence of eye
movements (tonic REM) (Simor et al., 2016). While additionally,
showing that sensorimotor activity was mainly present during
phasic REM followed by frontoparietal activity likely linked to
environmental awareness (Simor et al., 2018). The same team
further showed that alpha and beta activity was present during
tonic REM while gamma activity was present during phasic REM
(Simor et al., 2019) with the series of papers concluding that phasic
and tonic REMmicrostates would facilitate the understanding of the
mechanisms and functions of REM sleep in healthy and pathological
conditions (Simor et al., 2020).

Simultaneously, with the early human sleep studies preparing the
ground for sleep staging, work with animals was examining the role of
the brainstem in sleep. Specifically, prominent propagating waves
apparently originating in the brainstem during and around REMwere
identified, originally in the pons, lateral geniculate nucleus (LGN) and
occipital lobe of cats and labelled as Ponto-Geniculo-Occipital (PGO)
waves (Jouvet et al., 1959). In the last 4 decades of the 20th century
sleep research on humans and animals proceeded in rather separate
ways. Human studies helped establish sleep medicine, while animal
research slowly unraveled some of the mysteries of PGO wave
generation, distinguishing an immediate precursor (IP) and a long
lead (LL) generator preceding the onset of first propagating
component of the PGO wave in the LGN. The IP was located in
midbrain/pons peribrachial region (Mccarley et al., 1978). While the
LL generator was found in the medial pontine reticular formation
(mPRF) (McCarley and Ito, 1983). What is remarkable during this
period was that although the fact that REM sleep is associated “with
significant perturbations in autonomic nervous system” was known
for humans even before sleep stages were established (Snyder et al.,
1964) its significance was realized much later (Rowe et al., 1999).

Early in this century, the advent of deep brain stimulation provided
access to the electrophysiology of subcortical structures and produced
evidence consistent with the presence of PGOwaves in humans during
and before REM, roughly corresponding to the animal generators of
the IP and LL responses. Firstly, in the pontomesencephalic
tegmentum corresponding roughly to halfway between the animal
IP and LL generators, which were only incompletely associated with
eye movements, and were followed by characteristic cortical potentials
(Lim et al., 2007). Secondly, evidence for human PGO-like waves in the
sub-thalamic nucleus was found, occurring typically before and during
the bursts of rapid eye movements (Fernández-Mendoza et al., 2009).
In the last 2 years, two attempts have beenmade to synthesize the work
described in the last paragraphs supported by new data and analysis.
The most recent synthesis (Bueno-Junior et al., 2023) is based on a
study of the temporal structure of REM sleep in mice and humans.
They point out that at the moment “There is no consensus on how to
subdivide REM, both in terms of time binning and scoring criteria”.
They propose that respiration rate combined with oculomotor activity
could be a practical unifyingmeasure of REM structure in humans and
laboratory animals, as opposed to signals that are more accessible only
in the laboratory, such as theta oscillations and P-waves (the pontine
component that is often the term used instead of PGO waves in
rodent studies).
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The conclusion from the review of sleep staging evolution is that
there are good reasons for including in the sleep staging criteria that
now rely almost exclusively on the brain activity, criteria depending
on the two other organs that are known to be linked to brain activity
and influence sleep, the heart and the respiration. The introduction
of REM0 was a direct consequence of adding the heart rate variance
(Ioannides et al., 2022). The addition of measures of the activity of
the respiratory system would be greatly facilitated by the availability
of a fast, efficient and easy to use method for monitoring breathing,
and this is exactly what we propose in this work. REM0 was
suggested by (Ioannides et al., 2022) and is a period where slow
waves are present in the EEG similar to NREM2 and NREM3, but it
also has eye movements and heart rate surges (HRS) normally
associated with REM sleep (Žemaityt et al., 1986; Penzel et al.,
2003). The key distinction is that in REM0, HRS ride on an infra-
slow frequency (0.05–0.10H) and are coupled with both large EEG
graphoelements (K-complex multiples) and eye movements. Even
though, splitting REM into substages mainly phasic and tonic REM
based on the presence of eye movements is generally accepted
(Simor et al., 2016; Simor et al., 2020), REM0 tends to be
reclassified from periods not previously scored as REM which in
conjunction with its mixed NREM and REM nature, place it as a
putative new sleep stage.

The paragraphs above provide evidence supporting the need for a
non-invasive and accurate method to measure the breathing rate,
highlighting its importance as a measure with both theoretical and
clinical applications. Such a low-cost and non-invasive indicator has
applications in sleep research and very likely sleep medicine especially
sleep apnea, where it can provide economically viable solutions to
increase the rate of diagnosis or at least provide an early indication for
high-risk patients. A possible means to monitor the breathing rate in
both awake and sleep states appears to be the heart rate withmany ECG
Derived Respiration (EDR) methods already being proposed (Varon
et al., 2020a). It is known that respiration can influence the heart rate by
the effect of the vagal tone on pacemaker cells as commonly seen in
Respiratory Sinus Arrhythmia (RSA) (Yasuma and Hayano, 2004),
which results in an increase in the heart rate during inhalation and vice
versa. This physiological rhythm modulation adds a specific frequency
feature to the heart rate that can be isolated and quantified using
frequency decomposition methods as described in (Sohrt-Petersen,
2014). The RSA spectral perturbation appears best as a low-
frequency component that can be disentangled from the other
components by previous EDR techniques. Previous studies have
criticized frequency-based EDR methods because many frequency
components arise from non-breathing-related means (Varon et al.,
2020a). The methodology proposed in this study makes use of the
observation that the presence of other spectral perturbations in the same
frequency range are usually relatively short events appearing
intermittently; in contrast, the ones due to RSA are present all the
time. Therefore, the novel method can disentangle the true breathing
rate from other slow components by identifying the one component
that smoothly runs over long periods and hence, termed as spectral
continuity EDR (scEDR). This study demonstrates that the correct
selection of frequency components emerges naturally as the one with
the most principled continuity in the range of frequencies relevant to
breathing. The identification of the specific frequency component
related to breathing makes it possible to reconstruct a breathing-
related signal reliably from the heart rate, even in most of the

periods when other frequencies in the extended band around the
true breathing rate frequency are present. An important aim of this
work is to explore how stable and accurate an estimate of breathing rate
from the HR can scEDR provide, while not identifying advantages in
addressing other specific research questions and potential clinical
applications, which will be addressed in future studies.

This paper, firstly defines the novel scEDR method and then
proceeds to test it using data from the open-access ISRUC-Sleepwhole
night sleep polysomnography (PSG) dataset as described in (Khalighi
et al., 2016). For this paper, data from ten (10) healthy subjects
(subgroup III of the ISRUC database) is used to validate the method.
Additionally, eighteen (18) patients suffering from sleep apnea from
subgroup I of the ISRUCdatabase were used to further validate scEDR
method. The data include breathing rate extracted from pressure flow
meters, the gold standard for measuring breathing rate, which was
used to validate scEDR results. The paper then explores the normal
breathing patterns across different sleep stages using the latest five-
stage sleep staging (Iber, 2007; Silber et al., 2007). While later,
augmenting the investigation of sleep stages by including in the
analysis the newly suggested but not widely discussed REM0, as a
putative new sleep stage (Ioannides et al., 2022).

2 Materials and methods

2.1 Data used experimental dataset

Subgroup I and III of the ISRUC-Sleep whole night
polysomnography (PSG) open-access dataset (Khalighi et al., 2016)
was used in this work. Subgroup III consists of 10 healthy subjects’ single
whole night sleep PSG recordings. This dataset provides recordings
from a plethora of sensors; most importantly for this paper, an ECG
electrode and pressure-based flow meters. This collection of data allows
for validation of the breathing rate extracted using scEDR. Additionally,
pulse oximeter andmicrophone channels are integrated that can be used
for testing for OSA. More details about the sensors used and the
subgroups can be found in Tables 3, 4 respectively found at
(Khalighi et al., 2016). The first part of the analysis applies scEDR to
the data from subgroup III to extract the breathing rate and to compare
the results with the gold standard analysis using the flow meter data
combined with the previously described spectral EDR method, which
selects the frequency with the highest power within the breathing
frequency. The follow-up analysis quantifies patterns of spectral
power distribution across the normal sleep cycle, with and without
the definition of REM0 periods. Eighteen (18) patients suffering from
sleep apnea were selected from subgroup I of the ISRUC dataset and
were also used to compare scEDR with the more widely used Max
Power EDR method (Section 2.6).

2.2 Breathing rate from direct pressure-
based flow measurements

The breathing rate was estimated using the pressure-based flow
channels. The flow channels show a crest and trough that each
corresponds to a single breathing cycle inhalation and exhalation,
respectively. The crests throughout time were first identified using
the standard MATLAB function “findpeaks”. The instantaneous
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(crest-crest) interval is the time period between two consecutive
crests and gives the duration of a single breathing cycle, hence the
instantaneous breathing rate (breath per second) frequency is
fBR � 1

(Crest−Crest) interval. Breathing rate in the standard units of
breaths per minute (bpm) is calculated as, BRpressure �

60
(Crest−Crest) interval (or in terms of the frequency of breathing),
BRpressure � 60xfBR.

2.3 Estimation of the heart rate

Heart rate was estimated using a single ECG lead. Firstly, the
R waves were detected and then the R-R interval was calculated.
Finally, the heart rate was calculated using the instantaneous
(R-R) interval (R to R interval) method where HR � 60

(R−R) interval .
For the computations, the Fieldtrip toolbox was used in
MATLAB. (Oostenveld et al., 2011; MathWorks Inc, 2022).

2.4 Time-frequency analysis using
morse wavelets

Time-frequency analysis (TFA) is a technique to deconstruct a
signal to its frequency contents for predefined time windows. There
are various TFA methods available however, this study utilized the
generalized Morse wavelets as described in (Lilly and Olhede, 2012)
due to their flexibility in specifying the wavelet characteristics. Morse
wavelets generate a Gaussian wavelet when γ = 3. Meanwhile, the
product of β and γ gives the time-bandwidth product. Increasing the
time-bandwidth product increases the frequency resolution at the
expense of time resolution. Various β parameters were tested to decide
on an optimal compromise for the time-frequency uncertainty; it was
decided that the best results were given for γ = 3 and β = 90 (best
compromise for the time-frequency uncertainty). In this study,
calculations were performed using MATLAB with the Lilly and
Olhede library (http://www.jmlilly.net/jmlsoft.html).

2.5 Reconstruction of breathing signal: the
spectral continuity EDR method (scEDR)

TFA analysis was applied as described in Section 2.4 to the heart
rate (HR) derived from the ECG measurement (Section 2.3). The
frequency in the range of 0.15–0.45 Hz was extracted using a
frequency step of 0.02 Hz and a time step of 50 ms (TFA
time–slice). For each time slice (i.e., for every 50 ms) the peaks
from the spectral power distribution are extracted. A threshold of
20% of the maximum power in each TFA time slice is used to select
the significant peaks across the whole frequency spectrum. Then the
selected peaks of all TFA time-slices are searched to identify adjacent
(in time) peaks of similar frequency that eventually form continuous
long-lasting tracks. scEDR selects the longest track; ergo, the
frequency of the peak across each TFA time slice is the breathing
frequency. The estimated breathing rate is given by the
multiplication of the extracted breathing frequency with sixty
(60) in the unit’s breaths per minute. We denote this sequence of
time-specific breathing rate extracted from the HR as BRscEDR.
Within the band associated with the respiratory effort, usually,

only one track maintains smooth continuity over prolonged
periods of time. Other traces of frequency peaks emerge and
dissolve as transient short-lived tracks in the time-frequency plane.
In cases where the respiratory component is absent (apnea), scEDR
selects a candidate track that could join with the previously valid
breathing track. A visual representation of the method is illustrated in
Figure 1 and is described in Section 3.1 of the results.

By using the results of the method and utilizing the existing TFA
analysis results, a signal that is a good estimation of the real
breathing pattern can be reconstructed. This is done by applying
the inverse Morse-wavelet function on the time-specific TFA values
of BRscEDR with a frequency window of ± 0.015Hz.

2.6 Maximum power EDR method

Maximum power EDR uses a similar method to the newly
proposed scEDR but instead of forming connections between
adjacent peaks across time and then selecting the longest track, it
rather selects the peak of highest power as the breathing frequency
(see a visual example in the first Figure of section 3.1). In Section 3.2
the Maximum Power EDR is used as a reference to compare the
accuracy of scEDR.

2.7 Calculating the mean error

The mean error gives a measure of the accuracy of the method
that extracts the breathing rate from the heart rate. The percentage
error is computed for the measured breathing rate relative to
pressure flow meters. The breathing rates are first averaged over
thirty (30) seconds corresponding to each sleep stage. The absolute
distance between the two rates gives the standard error in breaths
per minute. Dividing the standard error by baseline value and
multiplying the result by 100 gives the percentage error.

%Error � 100 ×
BREDR − BRPressure( )

BRPressure

Where, BRPressure is defined as the breathing rate as calculated
from the pressure-based sensors and BREDR is the breathing rate
extracted from the new scEDR, method.

2.8 Appending REM0 definition to
established sleep staging

The original sleep staging of human experts was updated
according to the automatic reassignment of stages to include the
putative sleep stage REM0, as described in (Ioannides et al.,
2022). In summary, this procedure uses the variability of the
heart rate (HRV) and Global Field Power (GFP) during the eyes
closed period before sleep onset to define corresponding
thresholds for the variability of HR and GFP. Periods with
HR variability lower than its threshold maintain the assignment
given to them by the human experts (irrespective of the GFP
variability). Periods with HR variability above its threshold are
reassigned according to the variability of the GFP: periods of
higher GFP variability than its threshold are reclassified as
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REM0 periods while periods of lower GFP variability than its
threshold are reclassified as REM.

3 Results

3.1 Extraction of breathing rate from
heart rate

Part A of Figure 1 shows a heart rate signal in 100-s periods
on which TFA was performed. By performing the procedure
described above, a power distribution of power across frequency
at each time slice is produced as seen in part B2 of Figure 1. The
peaks of that power distribution are then localized and shown as
‘x’’s on the same figure. By combining the peaks in many
consecutive time slices, part B1 is then produced. These
combined peaks assist in utilizing predefined criteria for the
longest-lasting continuous sequence which is selected as the
respiratory component. Additionally, a threshold derived from
the wider spectrum (0.05–0.45 Hz) is used to eliminate
insignificant peaks in the 0.15–0.45 Hz band. From this
threshold, the breathing rate can then be estimated by
essentially monitoring the RSA. Part C shows the Breathing
rate (BR) extracted from the Heart rate using a yellow line
superimposed on the breathing rate monitored from a real-

time pressure flow channel shown with a black line. This
highlights the proximity of the estimated BR against the one
measured from the flow meters. For this specific section of data, a
maximum error of 0.2 breaths per minute was observed. The key
observations from the results of Figure 1 are that the BR extracted
from the scEDR analysis varies smoothly (Figures 1B1, 1C) and is
in excellent agreement with the flow meter results (Figure 1C),
even during periods where other frequencies close to the current
breathing frequency are present. The complete cross-subject
statistics are summarized in Table 2.

3.2 Extracted breathing rate and its error
across whole night sleep

Figure 2 shows a whole night recording for a few key metrics of
this study for a control subject. On the top row (Part A), the
instantaneous R-R heart rate is shown, in the second row (Part
B) the extracted breathing rate (Red) and the breathing rate as
measured from pressure-based flow meters are shown (Cyan). On
the third row (Part C), the hypnogram is displayed while the bottom
row (Part D) shows the percentage error between the measured and
the extracted breathing rate for each thirty (30) second interval. As
can be seen by comparing part A and B of Figure 2, any abrupt
increases in the heart rate are also reflected in both the extracted and

FIGURE 1
The steps to extract the breathing rate from the ECG (Heart Rate). (A) The Heart rate as it is derived from the ECG (as described in Section 2.3). (B1) an
‘x’marks the frequency and time of each peak of the TFA (as described in Section 2.4). Furthermore, the color of themarker indicates the relative power of
the peak in that time slice, where a darker red coloring corresponds to a higher power. A threshold of 20% of the time-slices maximum power is used to
reject insignificant peaks; however, in this figure, we included all identified peaks for completeness. (B2) The power distribution for time = 200s
which is also highlighted by 2 dash vertical black lines in (B1). An ‘x’ marker and a vertical dash line indicate the exact peak frequency with its color
matching the color seen in part B2. (C) The breathing rate for this selected time window with the yellow line indicating the breathing rate extracted from
the Heart rate while the black line indicates the breathing rate measured from the flow channel.
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measured breathing rate. A direct computation of the interaction of
the HR and BR could probe whether this correlation is due to an
interaction between the two systems, e.g., caused by arousal due to
internal or environmental disturbance. However, this effect could
also be due to artifacts caused by movement of the body or some

electronic noise in the recording system ergo, an artifact captured in
both pressure flow and ECG channels. This, however, is beyond the
scope of this work and it will be the goal of a future study. The same
spikes can also be seen in part D of Figure 2 where the percentage
error is displayed. Noisy trials like the ones generating the spikes
were not removed even though they are likely to be caused by body
movement to test the robustness of the scEDR method during
unexpected events and assess whether it can still produce useful
estimates of the BR. On part D, a dash horizontal line is drawn at the
five (5) % error mark. Most of the percentage error of the trials falls
below the 5% error mark (marked by the horizontal dotted line).
Large deviations are seen only during and around Rapid Eye
Movement (REM) sleep periods with the start and end (Section
2.8) delineated by a solid and dash vertical lines respectively.

3.3 Accuracy of results across sleep stages

The robustness of the results of the new method scEDR (as
described in Section 2.5) was tested against the previously patented
EDR method, which uses the Max Power to select the breathing
frequency (Strachan Iain Guy David, 2015) also described in (Bailon
et al., 2006) and in section 2.6. The Max Power EDR is a more widely
used spectral EDR technique that accepts the peak in the HR
frequency analysis with the strongest power as the breathing
frequency for that time slice. Table 2 shows the percentage error
for both the novel scEDR and the more commonly used Max Power
techniques to contrast the accuracy of these spectral EDR techniques
that both only utilize the HR and not ECG signal as input. The
results of other spectral EDR methods are comparable to the Max
Power method (see Table 3 of (Alikhani et al., 2018)). The
comparisons described in Section 2.7 are used to compute the
error and percentage error for each method (scEDR and Max
power). In each comparison, the results of each method are
compared against the results obtained with the gold standard
measurement (flow meter). The error across all sleep trials (8883)
was performed every 30 seconds and then compiled per sleep stage.
The comparison of these two methods demonstrates that the
introduction of the frequency continuity criterion improves
considerably the scEDR accuracy of the breathing rate compared
to that of the Max power method. Table 2 outlines the results of this
comparison presenting both the error and percentage error. The
percentage error calculated for each sleep stage with scEDR showed
a markedly decreased value and lower standard deviation (SD),

TABLE 2 The error and %error as explained in Section 2.7 comparing the Max Power method for extracting breathing rate that selects the peak with the
highest power compared to the newmethod described in this paper. The data are derived across the ten (10) healthy subjects using in total 8883 30-s sleep
stage periods. Results are broken down to the classical sleep stages as marked by the ISRUC sleep experts. One standard deviation is shown after the ± sign
to show the consistency of the results. For each entry the better result (lower error or percentage error) between the Max Power and scEDR is shown with
bold numbers.

Sleep stage Eyes closed awake NREM1 NREM2 NREM3 REM Whole night

Error (Bpm)
Max power

1.57 ± 2.52 1.40 ± 2.24 1.29 ± 2.55 0.88 ± 2.23 1.44 ± 2.11 1.29 ± 2.39

Error (Bpm) scEDR 1.17 ± 1.65 1.02 ± 1.56 0.57 ± 1.09 0.24 ± 0.53 1.13 ± 1.61 0.75 ± 1.33

%Error (%)
Max power

10.70 ± 18.1 9.65 ± 16.6 9.09 ± 19.1 6.37 ± 17.6 9.45 ± 14.9 8.92 ± 17.79

%Error (%) scEDR 7.51 ± 11.06 6.54 ± 9.98 3.60 ± 6.96 1.49 ± 3.11 7.13 ± 10.46 4.77 ± 8.66

TABLE 1 Abbreviations used in the paper.

Abbreviation

TFA Time-frequency analysis

HR Heart Rate

IP Immediate Precursor

LL Long Lead

mPRF medial Pontine Reticular Formation

LGN Lateral Geniculate Nucleus

HRV HR variability

RSA Respiratory Sinus Arrhythmia

OSA Obstructive Sleep Apnea

ECG Electrocardiogram

PSG Polysomnography

REM Rapid Eye Movement

NREM Non-Rapid Eye Movement

EDR ECG Derived Respiration

scEDR Spectral Continuity ECG Derived Respiration

PPG Photoplethysmography

VLF Very Low Frequency (0.004Hz–0.05 Hz)

LF Low Frequency (0.05Hz–0.15 Hz)

HF High Frequency (0.15Hz–0.40 Hz)

SD Standard Deviation

PGO Ponto-Geniculo-Occipital

KCm K-Complex multiple

GSR Galvanic Skin Resistance

ATP Adenosine Triphosphate

AMP Adenosine Monophosphate
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which was particularly prominent in the NREM3 sleep stage
(Table 2). The more consistent errors substantiate the grounds
for a significantly refined analysis, mitigating uncertainties and
bolstering the reliability and credibility of the measurements.
Notably, Eyes Closed Awake (ECW), REM and NREM1 display
the most pronounced percentage error out of all the sleep stages and
the pre-sleep periods, with the lowest error recorded during the
NREM2 and NREM3 sleep stages. This is shown for each one of the
two methods, thus validating the previous remark based on visual
observation of Figure 2. scEDR shows an increased error during
ECW and REM that might hinder its ability to accurately monitor
breathing during those stages, but it nevertheless outperforms the
more widely used Max power EDR through all the stages of
sleep. The forthcoming sections of this paper will delve into a
comprehensive analysis of the factors contributing to the reduced
error and SD resulting from the application of scEDR methodology.

3.4 REM error and evidence for the putative
REM0 sleep stage

The breathing rate can increase during REM but also, and maybe
most importantly, it loses the stability and regularity seen during non-
REM (NREM) periods, i.e., between the REM periods. In general, the
method seems towork best in betweenREMperiods where the error is
the smallest and the cyan and red lines (Figure 2) are almost adjacent
to each other. During REM periods, the extracted and measured
breathing rates start to separate. Similar breathing patterns, lasting for

periods that are comparable to the duration of a continuous sleep
stage, are also seen in between REMperiods whereHRV should not be
prominent according to previous studies done in cats (Raetz et al.,
1991). These periods are classified by sleep experts mostly as
NREM2 and NREM3. The prominent and abrupt changes in
breathing and heart rate neither match what is expected during
NREM periods nor delineate transitions between NREM sleep
stages. According to the previous results from Figure 2 and
Table 2, most errors arise around and during the REM sleep stage.
To investigate possible correlates of this high error rate the spectra of
90-second-long periods from each sleep stage are extracted, including
REM0. The procedure of reassigning sleep stages to include REM0 is
described in Section 2.8. A similar table with Table 2 of this
manuscript can be found in Supplementary Table S1 containing
the same comparison for the sleep apnea patients while removing
periods marked as sleep apnea or hypopnea by the sleep experts.

The top row of Figure 3 (Parts A1, A2, A3, A4, A5, A6) shows the
HR for the representative segments of each sleep stage, including
REM0. The spectrum of the HR of each panel in the top row is
computed and displayed directly below (Parts B1, B2, B3, B4, B5,
B6). The percentage (across subject) of REM0 previously classified
(by the sleep experts) in the original sleep scoring was: 16.9% ECW,
15.2% NREM1, 31.7% NREM2, 28.1% NREM3 and 8.1% REM.
Additionally, a longer period contrasting the differences in the
morphology of the HR between REM0, and REM can be seen in
Supplementary Figure S1. The displayed spectra (Figures 3B1–B6)
show that during the ECW, NREM1, NREM2 and NREM3 sleep
stages, there is a very prominent peak in the High Frequency

FIGURE 2
The variation of key measures across whole night sleep; (A) The moving average of the heart rate (HR) using a two (2) second window. (B) BRpressure

(cyan line) and BRscEDR (red line) after the samemoving average is applied as for the HR in (A). (C) the hypnogram as determined by sleep experts. Vertical
black lines are used to show the boundaries andmark the transition to and away fromREM (asmarked by experts). A continuous (solid) black line connects
the level of a pre-REM sleep stage (hence, the onset boundary of a REM period) while a dotted black line connects a REM level to its post-REM sleep
stage (hence, the offset boundary of a REM period). (D) The percentage error in the estimate of BR by our method (BREDR ) relative to the gold standard
(BRpressure) as described in section 2.7. The boundaries of REM periods (as defined by the human experts) are transferred from row C to the other three
rows (A, B, D) as vertical black lines using the same convention (solid and dotted lines marking the onset and offset of REM periods defined by human
sleep experts).
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(0.15–0.40 Hz) band (HF) that corresponds to the breathing
component. Furthermore, this well-separated breathing peak is
the major contributor to the HF band’s total power. In contrast,
in the REM and REM0 stages, many peaks in the HF band are of
similar or even higher strength, therefore there is more than one
component, making significant contributions to the HF band’s total
power; the presence of the other peaks makes it difficult for Max
Power EDR method to select the actual breathing frequency. These
observations explain why during the REM and REM0 stages, the
breathing component is hard to select if the only criterion is the peak
strength and provide further support for the introduction of
REM0 as a distinct sleep stage.

3.5 Spectral heart rate variability across
sleep stages

Figure 4 shows the distribution of the LF/HF ratio and the VLF/
HF ratio separated per sleep stage across all 8893 30-s sleep trials.
Both ratios decrease from the awake state to the NREM3 sleep stage,
and they then increase again in the REM0 and REM stages where
they reach similar levels to that of the awake stage (Figures 4A, B).
From the previous arguments, it can be inferred that the
parasympathetic system gains increased influence as sleep
progresses to the NREM3 stage until the sympathetic system
retakes control during REM sleep stages. Interestingly, an
inspection at the bottom boxplots of Figure 4 (Figures 4C, D),
where the distribution of the power in the LF and VLF bands are
shown, reveals that the LF power for both REM and REM0 sleep

stages is higher than that in the awake state. Meanwhile, for the VLF
band, REM has a similar power to that of the awake state while
REM0 reaches a higher spectral power than the awake state.

4 Discussion

4.1 Advantages of spectral continuity
EDR (scEDR)

EDR, i.e., extracting the breathing rate (BR) from ECG was first
introduced in the 1980s (Moody, 2008). Since then, the field has
evolved into two main classes of methods: the first set of methods
used the morphology of the ECG signal and the second class
employed the spectral decomposition of either the ECG or the
Heart rate (Sohrt-Petersen, 2014). Although methods that extract
the breathing rate from the heart rate are often clumped together
into the wider EDR methods family, this might be misleading as
Heart rate can often be derived from methods other than ECG such
as directly from the heart rate derived from photoplethysmography
(PPG). Some of these measures are often simpler and cheaper to
implement in daily monitoring such as PPG, nowadays present in
many smart wristwatches (Ghamari et al., 2018). Therefore, to make
breathing monitoring as widely available as possible, this study
focused on frequency-based EDR methods that only require the
heart rate and not the ECG signal and how we can improve them.
Although, scEDR, has shown an increased accuracy against the more
widely used Max Power EDR and achieves an error of less than 5%
for the whole sleep, scEDR has some limitations particularly during

FIGURE 3
Frequency distribution of the heart rate across typical sleep stage periods. The figure has two rows, the top row [Parts (A1–A6)] shows the heart rate
across time for ninety (90) seconds, while the bottom row [Parts (B1–B6)] shows the frequency distribution usingmorse wavelets for the above heart rate
series. The placement of the dashed line indicates the peak corresponding to the breathing frequency, while its color defines the LF/HF ratio (the lighter
shade of green indicates a higher LF/HF ratio). All-time series displayed (top row) were selected from the same subject and all from the third sleep
cycle except ECW which was selected at the start of the experiment.
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ECW, NREM1 and REM stages where the percentage error against
the flow meters is between 6.5% and 7.5%. Furthemore, this study
has only performed scEDR on sleep data and therefore requires
further testing to ensure scEDR’s accuracy during the awake and
high intensity exercise states.

Previous studies have already used discrete wavelet
transformation to extract the breathing signal from the heart rate
or ECG signal (Yi and Park, 2002; Zhao et al., 2008). This study takes
a different approach to extract breathing. Instead of extracting the
breathing signal and then calculating the breathing rate, the specific
frequency components corresponding to respiration is firstly
identified and subsequently, the inverse Morse wavelet transform
is applied to reconstruct the breathing signal in a small frequency
window. By doing so, this method avoids using the whole HF band
(0.15–0.40 Hz) to reconstruct the breathing signal as it is often
thought to be the “cardiac parasympathetic modulation” (Hedman
et al., 1995) and not just the breathing component. Furthermore,
older methods used a peak detection algorithm to just select the
strongest frequency (Max power in section 2.6) within the HF band
based on the assumption that the breathing frequency is the major
contributor to the HF band (Strachan Iain Guy David, 2015). As a
consequence, spurious abrupt changes in BR can emerge. These are
due to components not related to breathing but characterized by
similar frequencies, becoming briefly stronger than the true BR and
hence misidentified as the BR. The new method, scEDR, avoids the
problem by imposing a continuity constraint and a dynamic
threshold (see section 2.5). Most of the time, it is possible to
extract a single continuous BR estimate. The litmus test
supporting the validity of the method is that the continuous

smooth scEDR-reconstructed estimate of BR coincides with the
gold standard BR measured from the flow sensors, as demonstrated
in the displays of Figure 1.

The holy grail of measuring any quantity, especially when
related to medicine and human subjects, is to be able to measure
accurately, in real time and with the least discomfort to the patient.
Current flow meters provide high accuracy and real-time data,
nevertheless, they use invasive and expensive equipment. A
recent study was able to extract breathing rate non-invasively by
relating the PPG signal’s envelope modulations with respiratory
activity (Sultan and Saadeh, 2022). However, they concluded that
they could not monitor breathing activity continuously and required
further research to improve their method’s robustness. Achieving
the goal of reliable and widely available real-time pulmonary
monitoring requires triple capability: 1) extraction of the
breathing rate 2) extraction of a breathing analogue signal and 3)
performing the two extractions in almost real-time without the need
for a large volume of data (given a small buffer window to avoid the
edge effect). The proposed method, scEDR, attempts to deliver this
seemingly impossible triad. This is based on the ability to extract the
smooth continuous record of respiration from the heart rate,
i.e., Respiratory Sinus Arrhythmia (RSA). The success of scEDR
implies that the RSA persists and remains smooth, at least in healthy
subjects during awake state and sleep, although we have not yet
tested the awake state, except for the ECW part of the ISRUC data.
There are indications from our preliminary investigations that this
may also be the case during episodes of sleep apnea, but addressing
this in more detail to make a statement about future clinical uses
requires more research and is beyond the scope of this work. As can

FIGURE 4
Different measures of spectral heart variability across all trials (8889) for all 10 subjects of ISRUC subgroup III separated across sleep stages including
REM0. The frequency bands used were defined according to the accepted standards (Shaffer and Ginsberg, 2017). (A) Boxplots across different sleep
stages for the ratio between the Very Low Frequency (VLF) band (0.004–0.05 Hz) and High Frequency (HF) band (0.15–0.40 Hz). (B) Boxplots for the ratio
between the Low Frequency (LF) band (0.05–0.15 Hz) and HF. (C) Boxplots illustrating the power in the VLF band. (D) Boxplots illustrating the power
in LF band.

Frontiers in Physiology frontiersin.org09

Orphanides et al. 10.3389/fphys.2024.1446868

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1446868


be seen in the didactic work of Section 3.1 and illustrated in the
visual representation of the method shown in Figure 1, the
continuity constraint endows scEDR with the capability of
accurately monitoring RSA even in periods with other artifacts
introducing components with frequencies close to the breathing
frequency. In summary, despite some promising findings in our
limited work so far, more studies must be performed to allow a good
evaluation of its potential, particularly on a wider range of age
groups including elderly and teenage subjects. An accurate
extraction of breathing patterns for elderly patients may have
useful clinical applications however, studies have shown a weaker
RSA pattern in old age (Masi et al., 2007). Therefore, even though
due to scEDR’s continuity filter enhanced detection of RSA was
shown, future studies may be required that focus on applying scEDR
specifically on elderly patients.

4.2 Spectral heart rate variability across
sleep stages

Previous studies have suggested that the Low Frequency/High
Frequency (LF/HF) ratio of the heart rate spectral decomposition can
be used as an indicator for the autonomic balance (Task Force of the
European Society of Cardiology and the North American Society of
Pacing and Electrophysiology, 1996) and that increases in the VLF
(0.004–0.05 Hz) band are associated with a higher risk of morbidity
(Wang et al., 2012). To that effect, LF activity (0.05–0.15 Hz) is
thought to be increased by the sympathetic nervous system while, HF
activity (0.15–0.40 Hz) is mostly affected by the parasympathetic
system even though our results show that the breathing rate is a major
contributor to this band. Hence, a high LF/HF activity means that the
sympathetic system is currently in control while a low LF/HF indicates
that the effects of the parasympathetic system predominate.

The results described in sections 3.4 and 3.5 and presented in
Figures 3, 4 show that during sleep the (LF/HF and VLF/HF) ratios
vary extensively in healthy subjects. While in awake state and all
sleep stages except REM (and the putative REM0 period) these ratios
are largely determined by a dominant peak at high frequencies, well
above 0.2 Hz, which is greatly reduced for REM and REM0. Given
the role of these ratios for the autonomic balance and particularly
the putative association of increases of the VLF (0.004–0.05 Hz)
band with a higher risk of morbidity, there is an urgent need to
disentangle the mechanisms involved in the variations we have
observed during normal sleep and study them in detail in pathology,
both during sleep and awake state.

4.3 REM0 implications

In previous studies, REM0 periods were defined based on
distinctive patterns in the HR. Initially, these observations related
to surges in HR in periods when PGO waves were encountered in
cats (Rowe et al., 1999). In the end, the definition of REM0 relied on
HR variability, which has a clear-cut definition and algorithmic
implementation. Under this definition periods of light, deep sleep
and REM are re-classified under the putative REM0 sleep stage
(Ioannides et al., 2022). The EEG patterns encountered during
REM0 appeared as anomalies in the hypnogram derived from the

classical 7-stage sleep classification (Rechtschaffen and Kales, 1968).
These anomalies contained adjacent periods with features
characterizing distinct sleep stages and consequently, they
corresponded to periods when the sleep staging rules were most
difficult to apply. Consequently, these anomalies appeared where
sleep experts usually disagreed on the sleep staging definition. The
latest amendments (Iber, 2007; Silber et al., 2007) are an attempt to
force uniformity in sleep scoring. The new rules for sleep staging
simply forced a choice of one or other sleep stage by defining
thresholds of the percentages of grapho-elements belonging to one
or other of the classical sleep stages and the amalgamation of
NREM3 and NREM4 into a single sleep stage for deep (or slow
wave) sleep, the new NREM3 sleep stage (Silber et al., 2007). The old
anomalies were hidden by these definitions, but careful inspection of
the resulting hypnogram revealed important physiological changes
in the middle of one continuous sleep stage (Ioannides et al., 2022).

From the results of this study seen in Sections 3.2, 3.3, most of the
errors from the max Power and the scEDR methods arise during and
around REM. The reason can be seen in Section 3.4 where typical
spectral maps extracted from the HR are shown for each sleep stage. In
contrast to the other sleep stages REM and REM0 stand out as the only
sleep stages where there are multiple prominent peaks in the HF band.
According to classical sleep staging during REM sleep, the EEG and
Magnetoencephalography (MEG) closely resemble that of the awake
state mostly in the beta and gamma frequency band (Cavelli et al., 2017;
Simor et al., 2020) while duringNREM sleep brain activity is dominated
by the low frequencies (Dijk, 1995; Nir et al., 2011). REM0 poses an
interesting intermediate sleep stage where a unique combination of
features are present. The EEG and MEG power is dominated by the
lower frequencies most closely resembling NREM2 and NREM3;
nevertheless, at the times of the surges, the low-frequency carriers of
the multiple K-complexes (KCm) coexist with strong high-frequency
power (beta and gamma bands), which however have a smaller impact
in the overall wide-band power, as seen in Figure 3 of this study
(Ioannides et al., 2022). Also, the heart rate and breathing rate pattern
most closely resemble those patterns in REM sleep. These observations
enhance the claim of REM0 as a putative distinct sleep stage that was
suggested in a previous publication (Ioannides et al., 2022).

Sleep normally progresses in sleep cycles of around ninety (90)
minutes each going from awake or NREM1 to NREM3 and finally to
the REM stage completing the cycle. During each sleep cycle changes
are encountered in both the EEG and MEG brain activity (as
described above) and in the physiological state as shown in
section 3.5. Specifically, the LF/HF and VLF/HF exhibit a “u-
shape” curve between Awake and REM, as seen in Figures 3A, B.
If assume that LF/HF is positively correlated with sympathetic
activity, we can infer that in REM sleep and the awake state, the
sympathetic dominance is at similar levels. Furthermore,
sympathetic activity drops from awake as sleep progresses to
reach its lowest levels during NREM3 and then rebounds to
awake-like levels through the passage from REM0. These findings
are in line with previous studies that described a similar transition
through sleep (Trinder et al., 2001; Sumi and Kadotani, 2022). We
conclude that the analysis with REM0 provides tentative support for
the variation of the autonomic balance in accordance with the cited
literature in this paragraph.

Previous animal experiments have shown that Adenosine
Triphosphate (ATP) production is strongly associated with delta
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waves during NREM sleep especially in the first sleep cycles (Dworak
et al., 2010) where coincidentally, REM0 was also found to be at its
longest (Ioannides et al., 2022). Additionally, low ATP levels were
found to increase the duration of NREM sleep (Kalinchuk et al.,
2003) and a higher AMP/ATP ratio produces stronger “EEG Slow
wave activity (0.5–4 Hz)” during NREM sleep (Chikahisa and Séi,
2011). REM0 is in an interesting position where it has both slow
wave activity in the form of K-complex multiples (KCm), but KCm
events with increased gamma band activity are found during heart
rate surges. Similar heart rate surges are also present during REM
sleep, nonetheless without any slow wave activity or large grapho-
element in the EEG or MEG. These surges are likely linked with the
increase in the LF and VLF bands seen during those periods
(Figure 4). The increase in the LF and VLF bands between
REM0 and the NREM stages further cements its position as an
independent sleep stage. Therefore, we suggest that REM0 might
serve as a middle ground to prepare the body for the energy-intense
functions of REM (Ioannides et al., 2009; Ioannides, 2018).

The current sleep classification system is mostly based on the so-
called hallmarks of sleep, large EEG/MEG grapho-elements (Colten
et al., 2006) mostly ignoring other physiological measures such as the
Heart rate. Even when muscle tone and eye movements are mentioned
in the manual they mostly serve as a verification of the sleep stage and
not as an indicator. Our results further strengthen the case for
REM0 inclusion in the sleep staging definition; however, we do not
currently have enough data to argue whether REM0 should be included
in the existing mostly EEG/MEG-based classification or whether
another set of sleep stage classifications based on physiological
indicators should be introduced to include REM0 like epochs. A
similar dual system classification exists when classifying the
menstrual cycle which consists of two overlapping cycles the ovarian
and the uterine cycle (Haroun, 2016; Thiyagarajan et al., 2022).
Similarly, if a two-system sleep classification system were introduced
the existing classification mostly based on the hallmarks of sleep would
be kept, while a new classification system would be introduced that
considers the physiological indicators of heart rate, breathing rate,
muscle tone, eye movement but further include other important but
overlooked measures, e.g., galvanic skin resistance (GSR).

4.4 Real-life applications and clinical
significance

Currently, there is a gap in themedical setting where an accurate yet
low-costmethod formeasuring the breathing of a patient does not exist.
Previous EDR techniques utilized mostly the ECG, avoiding the use of
HR because of the intrusion of other non-breathing components. The
scEDR method avoids this problem, as extensively described earlier,
allowing accurate breathing rate estimates from the HR. Therefore, an
argument can be made for implementing our method alongside pulse
oximeters, commonly used in PPG studies by making use of new
powerful microchips. Such a combination could provide, using a single
and widely available clinical sensor, the breathing rate in addition to the
heart rate and blood saturation already provided routinely with the
pulse oximeter. An outcome of this integration would be a new class of
pulse oximeters thatmeasure both cardiac and pulmonary components.
Such data could serve as the basis for future studies to validate scEDR’s
accuracy in the clinical setting as this study has only validated scEDR’s

efficacy using sleep data of healthy subjects. An outlook arising for a
future study would be to examine whether there is a correlation between
the tidal volume, i.e., the wave height from mass flow meters and the
wave height from the reconstructed breathing component. Previous
studies have already investigated the relationship between tidal volume
and RSA and found a multifactorial relationship. In this study, the
authors found that increasing the breathing frequency between seven
(7) and forty (40) breaths perminute shows a decrease in the RSAwhile
oxygen content also affects the strength of RSA. Nevertheless, the
authors established a strong positive linear correlation between tidal
volume and RSAwhen controlling the breathing frequency (Hirsch and
Bishop, 1981).

Sleep apnea is a condition that is currently mostly undiagnosed in
the population (Heinzer et al., 2015), but is nevertheless associated with
an increased risk of many comorbidities (Schreib et al., 2020;
Kalaydzhiev et al., 2023). Attempts to automatically detect sleep
apnea have been made in the last years either using deep learning
from ECG data (Zhang et al., 2021; Kumar Tyagi and Agrawal, 2023) or
even by detecting differences in the frequency power spectrum of EEG
(Saha et al., 2019). Alongside the development of these techniques, there
has been an unprecedented rise in the use of smartwatches, a lot of
which are being advertised as health monitoring devices. A common
feature is the inclusion of PPG sensors utilized as a blood oximeter that
provide many health indices including the heart rate (Massoomi and
Handberg, 2019). Smartwatches are already being assessed for their use
in monitoring patients with atrial arrhythmia (Bumgarner et al., 2018;
Koshy et al., 2018). Our proposed method in contrast with existing
methods performs well with just the heart rate (available on most
smartwatches) and does not require the ECG signal. Therefore, a new
application would be to integrate the methods described in Section 2.5
with smartwatches that have built-in PPG sensors. This would be a
tremendous advancement in decreasing the prevalence of undiagnosed
sleep apnea.

4.5 Conclusion

By taking a different approach to ECG Derived Respiration, this
study utilized the heart rate in contrast to ECG signal morphology as
our primary metric. It subsequently performed a time-frequency
analysis on the heart rate and selected long-lasting spectral
components to identify the most probable peak frequency
corresponding to the RSA. This approach allows the extraction of
breathing rate from just pulse oximeters thus making scEDR more
friendly towards a clinical setting if future studies validate its accuracy
using awake and exercise data. The validation test of the extracted
breathing rate for 10 healthy subjects with whole-night sleep using
scEDR yielded an error of 4.77% (8.92% when using the max power
method) against the pressure flow meter-derived respiration. By
observing that most of the error was focused during and near REM
periods, this study investigated the power distribution of the heart rate
during typical sleep stages, considering the putative REM0 sleep stage.
This revealed an increase in the number of spectral components present
in the High-frequency band (0.15–0.40 Hz) only during REM and
REM0. However, these high-frequency components were markedly
lower in terms of power than the single clear high-frequency peak
encountered in awake state and all other sleep stages. The Heart rate
spectral distribution shows REM0 to be closer to REM even though
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using classical sleep staging (EEG) it would be often classified as
NREM2 or NREM3 and even NREM1 and REM in some cases.
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