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Purpose: High-intensity functional interval training (HIFT) is predominantly
composed of high exercise training intensities (HiT) and loads. Both have been
linked to a higher risk of overtraining and injuries in inexperienced populations.
A polarized training approach is characterized by high amounts of low-intensity
training (LiT) and only approximately 5%–20% HiT. Compared to HIT-based
training, this approach can result in temporary training load and intensity
reductions without diminishing training gains. Thus, we aimed to examine
the effects of traditional (TRAD) HIFT vs. polarized (POL) HIFT on relevant
performance parameters.

Methods: Thirty athletes (15 females, age: 26.6 ± 5.0 years, height: 1.76 ± 0.13 m,
body mass: 79.6 ± 12.4 kg, prior experience: 2.3 ± 2.0 years, training volume:
6.1 ± 2.4 h/wk) were randomly assigned to 6 weeks of either POL (78% LiT,
22% threshold intensity training (ThT) to HiT) or TRAD (26% LiT, 74% ThT to
HiT). HIFT performance testing focused on maximal strength (squat: SQ1RM,
deadlift: DL1RM, overhead press: OHP1RM, high pull: HP1RM), endurance (peak
oxygen uptake: V ̇O2peak, lactate threshold: LT, peak power output (PPO), and
benchmark HIFT workout (Jackie: 1000 m rowing, 50 thrusters, and 30 pull-
ups for time).

Results: POL (785 ± 71 au) completed significantly (p ≤ 0.001; SMD = 4.55)
lower training load (eTRIMP) than TRAD (1,273 ± 126 au). rANCOVA revealed
no statistical relevant group×time interaction effects (0.094 ≤ p ≤ 0.986;
0.00 ≤ ηp2 ≤ 0.09) for SQ1RM, DL1RM, OHP1RM, high pull, V ̇O2peak, LT,
PPO, and Jackie performance. Both groups revealed trivial to moderate but
significant (rANCOVA time effects: p ≤ 0.02; 0.01 ≤ ηp2 ≤ 0.11; 0.00 ≤ SMD
≤ 0.65) performance gains regarding DL1RM, OHP1RM, HP1RM, and Jackie.
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Conclusion:Despite a notably lower total training load, conditioning gains were
not affected by a polarized functional interval training regimen.
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1 Introduction

High-intensity functional interval training (HIFT) is the basis
of CrossFit®, which has developed into a widely popular sport
(Claudino et al., 2018; Dominski et al., 2022; Fisker et al., 2017)
aiming at optimizing awide array of physical performancemeasures,
such as strength, endurance, stamina, flexibility, power, speed,
coordination, agility, balance, and accuracy domains (Glassman,
2002). With a focus on varying functional movements, HIFT
training incorporates key elements of gymnastics (e.g., handstand
and ring exercises), weightlifting exercises (e.g., barbell squats and
presses), and traditional cardiovascular activities (e.g., running or
rowing) as exercises (Fisker et al., 2017). These HIFT exercises
are typically performed quickly, repeatedly, and with comparatively
high training intensity, while the inter-set recovery time is
reduced (Sprey et al., 2016). Consequently, apart from strength
improvements (Ambroży et al., 2022), an increased maximal rate
of oxygen consumption (V ̇O2max) has been observed through a
HIFT-based training approach (Eather et al., 2016).

Previous studies have identified training intensity and its
distribution as crucial parameters that can be manipulated to alter
performancemarkers (Meeusen et al., 2006).High-intensity training
has been shown to improve endurance performance relative to
low-intensity training for various key endurance measures such as
V ̇O2max, time-trial performance, exercise economy, and time-to-
exhaustion (Helgerud et al., 2007; Seiler et al., 2013).

However, a high volume of high-intensity training can
adversely affect recovery, leading to reduced performance, disturbed
sleep, increased perceived fatigue, and a higher incidence of
respiratory tract infections (Hausswirth et al., 2019; Le Meur et al.,
2013). The recovery is not necessarily compromised by high
loads, unless the recovery period is insufficient to balance the
increased training stress. The relationship between stress, strain,
recovery, and adaptation is crucial—recovery that is inadequate
relative to the imposed training stress, particularly with heavy
or high-intensity loads, can impair adaptation and increase
the risk of negative outcomes such as overtraining, injury,
or illness (Meeusen et al., 2006). Thus, appropriate periodization
and recovery strategies are essential in mitigating these risks, while
optimizing performance gains.

Therefore, the training schedule should ensure the frequency
of high-load training provides the required recovery time, and the
intensity distribution of each session also varies in a manner to
support effective recovery to avoid severe fatigue, stagnation, and
possibly overtraining (Rosenblat et al., 2019).

The intensity distribution of a training session is the volume
performed at various specified training intensities. Several studies
have examined the intensity distributions employed by endurance
athletes (Sperlich et al., 2023). These studies on sports such as
cycling, rowing, skiing, biathlon, running, swimming, speed skating,

and triathlon have reported approximately 75%–85% of the total
training volume is performed in the low-intensity zone, up to 20%
in the moderate-intensity zone, and up to 10% in the high-intensity
zone (Esteve-Lanao et al., 2005; Muñoz et al., 2014; Neal et al., 2011;
Seiler and Kjerland, 2006).This training intensity distribution (TID)
has been previously described as a pyramidal (PYR) or polarized
(POL) training model (Seiler and Kjerland, 2006; Sperlich et al.,
2023). The POL model is characterized by approximately 80%–95%
LiT (below the first lactate threshold) and approximately 5%–20%
HiT (above the second lactate threshold) while avoiding the
moderate threshold-based intensity zone (ThT, between the first and
second lactate thresholds) as much as possible (Röhrken et al., 2020;
Seiler and Kjerland, 2006; Sperlich et al., 2023). Regarding the PYR
model, slightly more moderate-intensity training is included than
high-intensity training, resulting in approximately 60%–90% LiT,
5%–30% ThT, and 2%–10% HiT (Röhrken et al., 2020; Seiler and
Kjerland, 2006; Sperlich et al., 2023). Both models are characterized
by (very) high volumes of low-intensity training (Esteve-Lanao et al.,
2005;Muñoz et al., 2014; Neal et al., 2011; Seiler andKjerland, 2006).
In contrast, the threshold training intensity distribution model
differs from the PYR and POLmodel, in that a significant percentage
of training (35%–55%) is completed in the moderate-intensity zone,
with a smaller percentage of training (45%–55%) completed in the
low-intensity zone (Seiler and Kjerland, 2006). Furthermore, the
HiT-based approach, where high-intensity training constitutesmore
than 30%–50% of the total training time, is rarely used in elite
endurance sports (Sperlich et al., 2023).

Based on the winning times of individual events (i.e., duration
from start to finish) at the CrossFit® Games (2017–2021), the
average load time is 9.0 min (95% confidence interval (95%CI)
1.4–11.6 min) for men and 8.8 min (95%CI: 1.4–11.5 min) for
women. Similarly, the normative scores of the CrossFit® open
workout between 2011 and 2022 revealed similar average load times
(Mangine et al., 2023). Given the duration and intensity required
to maintain a high level of performance throughout these events,
we can infer that CrossFit® competition primarily engages both
aerobic and anaerobic energy systems, placing it within the realm
of endurance-based activities. In sports with similar energy system
demands and load times (in competition), athletes often utilize
TID heavily focused on LiT, with at least 80% of LiT (Seiler and
Kjerland, 2006; Seiler, 2010; Sperlich et al., 2023; Stöggl and Sperlich,
2014). Consequently, reviews (Hydren and Cohen, 2015; Seiler and
Kjerland, 2006; S; Seiler, 2010; Stöggl and Sperlich, 2014) have
suggested that a polarized (POL) TID may elicit superior training
adaptations than high-intensity-focused approaches, particularly in
endurance sports.

Against this background, we examined the effect of polarized
vs. traditional HIFT training on relevant CrossFit® performance
surrogate parameters. Based on previous endurance sports-
related reviews and meta-analyses (Hydren and Cohen, 2015;
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Rosenblat et al., 2019; Seiler and Kjerland, 2006; Seiler, 2010; Stöggl
and Sperlich, 2014), we hypothesized that these findings could
be transferred to a HIFT training setting and may impact the
programming in HIFT. They may necessitate a re-evaluation of
current training paradigms, potentially leading to a shift in how
HIFT training is structured and implemented. This shift toward
a more polarized training intensity distribution approach could
influence not only the effectiveness and efficiency of training but also
aspects related to athlete health, injury prevention, and long-term
athletic development within the HIFT community.

2 Methods

2.1 Participants

Based on a previous meta-analysis on polarized training
(Rosenblat et al., 2019), an a priori power analysis (α = 0.05,
study power (1−β-error) = 0.80, effect size partial eta squared (ηp

2)
= 0.06 (f = 0.26), correlations among repetitive measures = 0.6;
g∗Power, Version 3.1.9.6) (Faul et al., 2007) revealed a required
sample size of n = 28. Assuming a moderate dropout rate, 30 trained
HIFT athletes (Table 1) were enrolled in the present randomized
controlled interventional trial. The participant recruitment period
ranged from 1 December 2022 to 1 March 2023. All participants
were at least 18 years of age, had a previously weekly training
volume of at least three HIFT training sessions per week, showed
no health impairments, and were familiarized with the test and
training procedures prior to the start of the study. We recorded the
phase of the menstrual cycle for female participants and ensured
that testing did not occur during menstruation. The study protocol
complied with the Declaration of Helsinki and was approved by the
local ethical committee (144/2022). International ethical standards
were met (Harriss and Atkinson, 2015), and all participants signed
an informed written consent after receiving all relevant study
information. In addition, both groups did not differ (p ≥ 0.118;
SMD≤ 0.61) regarding height, age, bodymass, experience, and prior
training volume (Table 1).

2.2 Study design

This study was designed as a randomized controlled trial with a
parallel group design. All included athletes were randomly assigned
either to a time-matched polarized (POL) or usual (TRAD) HIFT
training group viaminimization (Scott et al., 2002). Thereby, gender,
age, height, body mass, and peak power output were used as
strata. Participants were instructed to avoid any strenuous exercise
2 days before each testing session. To control for potential circadian
interference with performance, all measurements were conducted at
similar times of the day for each participant.

2.3 Training procedure

During the 6-week intervention period, both groups trained
four times weekly using the same exercises. The TRAD group
trained as usual following a HIFT training regimen. The POL group

employed a polarized training approach. Thereby, the participants
aimed to stay below a target heart rate corresponding to the first
lactate threshold (Dickhuth et al., 1991) for three of four weekly
training sessions. During the fourth training session each week, the
participants aimed at meeting the high-intensity zone (i.e., reaching
a heart rate above the second lactate threshold (Dickhuth et al.,
1991)). The heart rates of both training groups were continuously
monitored during the endurance/HIFT training via a chest strap
(H9, Polar Electro Oy, Kempele, Finland). Training sessions of
both groups were supervised by certificated coaches. The HRs of
both groups were monitored and displayed in real-time to the
participants via the Polar Teams app (Polar Electro, Kempele,
Finland). In addition, the corresponding supervisor ensured that
the corresponding individual HR limits were adhered to via
verbal feedback. Thereby, live HR feedback was used to ensure
that athletes stayed within the required HR zones. Specifically,
the movement tempo, workload, or power was adjusted if the
HR was too low or too high. Certified coaches designed the
training workouts for both groups during pilot work prior to
the commencement of the experiment, and they supervised every
training session. Detailed descriptions of both training regimes
are given in supplemental files. To ensure that the prescribed
training regimes were consistently followed, dedicated HIFT classes
were established for both training groups in two separate HIFT
gyms. These classes were specifically designed to standardize the
training sessions, ensuring that all participants completed the same
workouts each week. By organizing exclusive classes, we eliminated
variability in workout routines and maintained strict adherence
to the intervention protocols. This setup mitigated the potential
confounding effects of differing day-to-day workouts typically seen
in regularHIFT gym/box schedules, thereby preserving the integrity
of our results. In line with previous interventional exercise studies
(Held et al., 2020; Held et al., 2021; Held et al., 2023; Held et al.,
2024), the training data of all endurance/HIFT-related parts were
monitored using a three-zone heart rate-based approach (Seiler,
2010): Accumulated training time below the first lactate threshold
(low-intensity training; LiT); between the first and second lactate
threshold (threshold training; ThT); and above the second lactate
threshold (high-intensity training; HiT) were recorded separately.
In addition, the training dose was monitored daily via an online
platform (PolarFlow, H9; Polar Electro, Kempele, Finland). Because
a three-zone model (Seiler and Kjerland, 2006; Seiler, 2010) was
used, heart rate-based eTRIMP (Eather et al., 2016) was calculated
based on the time spent in three HR zones, multiplied by a zone-
specific arbitrary weighting factor, and then summed to provide
a total TRIMP score: LiT weighting factor = 1; ThT weighting
factor = 2; HiT weighting factor = 3. Furthermore, wellbeing status
was recorded via the online platform. Thereby, negative events like
physical exhaustion, strain, or injury were reported.

2.4 Testing procedure

The testing procedure during pre and post testingwas conducted
on two separate lab visits. During the first lab visit, individual
lactate thresholds and peak oxygen uptake (V ̇O2peak)were assessed.
During the second lab visit, the strength- and HIFT-specific
performance data (details are given below) were assessed. Prior
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TABLE 1 Anthropometric data of the polarized (POL) and the traditional (TRAD) HIFT training groups.

Parameter POL TRAD t-test [p (SMD)]

Sample size n = 16 (8 females) n = 14 (7 females) ---

Age (yrs) Total: 25.3 ± 4.6
Females: 23.9 ± 3.6
Males: 27.0 ± 5.4

Total: 28.2 ± 4.6
Females: 29.4 ± 5.1
Males: 27.4 ± 4.4

0.118 (0.61)

Height (cm) Total: 175.9 ± 10.6
Females: 169.9 ± 9.2
Males: 182.9 ± 7.6

Total: 178.8 ± 10.1
Females: 171.6 ± 6.1
Males: 183.4 ± 9.7

0.465 (0.28)

Body mass (kg) Total: 81.1 ± 15.1
Females: 78.3 ± 16.8
Males: 80.6 ± 11.0

Total: 78.1 ± 10.6
Females: 69.7 ± 12.5
Males: 82.2 ± 7.4

0.396 (0.17)

Experience (yrs) Total: 2.0 ± 1.8
Females: 1.7 ± 1.0
Males: 2.6 ± 2.5

Total: 2.6 ± 1.7
Females: 1.7 ± 0.7
Males: 3.1 ± 2.0

0.478 (0.27)

Prior training (h/wk) Total: 6.6 ± 1.8
Females: 6.5 ± 3,4
Males: 6.6 ± 2.5

Total: 6.4 ± 1.8
Females: 5.7 ± 1.8
Males: 6.4 ± 1.9

0.652 (0.17)

Data are given as mean ± standard derivation. In addition, p-values of independent t-tests and standardized mean differences (SMD) are given as pairwise effect sizes.

to each lab visit, a standardized 10-min warmup of easy cycling
(with a heart rate corresponding below 2 mmol/L blood lactate
concentration) was performed.

To determine individual lactate thresholds and assess V ̇O2peak,
a combined incremental and ramp testing protocol was conducted
on a concentric cycle ergometer (Wahoo Kickr V5 Fitness WF133,
Wahoo Fitness, Atlanta, United States) until voluntary exhaustion.
Cycling was performed with clipless pedals, and participants were
instructed to remain seated. This setup revealed a high intraclass
correlation coefficient of 1.00 (95% confidence intervals 1.00–1.00)
for reliability measurements with a typical error of 3.1 W and 1.6%
(Zadow et al., 2018). The test started at a load of 50 W, which
was subsequently increased by 30 W every 3 min until reaching a
blood lactate concentration of 4 mmol/L, which was immediately
followed by the ramp protocol (starting at last step interval power,
30 W increment per minute). Prior to the start of the test, after
each 3-min step, and immediately after exercise cessation, blood
lactate samples (20 μL) were obtained from the earlobe (Biosen
C-Line; EKF Diagnostic Sales, Magdeburg, Germany). Lactate
concentrations of the step test were subsequently plotted against the
load (inW) and fittedwith a third-order polynomial function. Based
on this function, heart rate and power at the first lactate threshold
(minimal lactate equivalent; LT1) and second lactate threshold
(LT2 = LT1 +1.5 mmol/L) (Dickhuth et al., 1991) were estimated.
Heart rates (H9; Polar Electro, Kempele, Finland) and respiratory
gas exchange data were continuously recorded via a breath-by-
breath system comprising a validated metabolic analyzer (Zan Oxi
600, Zan Messgeräte, Germany). Prior to each measurement, this
spirometric system was calibrated following the manufacturer’s
recommendations. The highest consecutive oxygen uptake values
averaged over 30 s were considered as V ̇O2peak. All athletes were
verbally encouraged in a standardized manner until objective
exhaustion. Objective exhaustion level was verified using available
exhaustion criteria (Midgley et al., 2007). In addition, the reached

power during this testing procedure was defined as peak power
output (PPO).

To determine the one-repetition maximum (1RM) of the squat,
deadlift, overhead press, and high pull, a repetition maximum
(XRM) test for each exercise was performed for each exercise using
the Lombardi (Lombardi, 1989) formula (CV = 3.4%, ICC = 0.94)
(García-Ramos et al., 2019). During this XRM testing (Lombardi,
1989), a training set was performed with 95% of the presumed 1RM
until failure (Steele et al., 2017). Participants performed two warm-
up setswith approximately 30%–40%and 50%–60%of the presumed
1RM prior to the testing set. During these XRM testing procedures,
the correspondingHIFT competition standards that define technical
movement execution, such as squat deep below parallel, were
applied. All strength tests were supervised by certificated strength
coaches. Subsequently, HIFT-specific performance was assessed via
the benchmark workout “Jackie” (Mangine et al., 2018). This HIFT-
based benchmark workout consisted of completing 1,000 m rowing
(Concept2/Type D, Morrisville, United States), 50 thrusters (males:
20 kg; females: 15 kg), and 30 pull-ups as fast as possible.

2.5 Statistics

Data are presented as means ± standard deviation. Normal
distributionwas verified via the Shapiro–Wilk test (p≥0.1). Variance
homogeneity was visually verified via residual plotting (Kozak
and Piepho, 2018). Separate independent t-tests were computed
to examine differences in anthropometric (age, height, body mass,
experience, and prior training volume) and training data (LiT,
ThT, HiT, total training time, and eTRIMP) of POL vs. TRAD.
Several separately conducted 2 (group: POL vs. TRAD) × 2
(time: PRE vs. POST) repeated measurement variance analyses
with covariate (rANCOVAs) (Vickers and Altman, 2001) were
computed forV ̇O2peak, lactate threshold, peak power output, Jackie,
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squat 1RM, high pull 1RM, deadlift 1RM, and overhead press
1RM using baseline (pre) test parameters as covariates. rANCOVA
effect sizes were given as partial eta-squared (ηp

2) with ≥0.01,
≥0.06, and ≥0.14 indicating small, moderate, and large effects,
respectively (Cohen, 1988). In the case of significant group × time
interaction effects, Bonferroni post-hoc tests were subsequently
computed. For pairwise effect size comparison, standardized mean
differences (SMD) were additionally calculated (trivial: SMD < 0.2,
small: 0.2 ≤ SMD < 0.5, moderate: 0.5 ≤ SMD < 0.8, and large
SMD ≥ 0.8) (Cohen, 1988). All statistical analyses were conducted
using R (version 4.0.5) and RStudio (version 1.4.1106) software.
Wellbeing status was evaluated using a contingency table for the
incidence of poor wellbeing, physical overexertion, or injury in POL
vs. TRAD groups. Thereby, a Fisher’s exact test was conducted to
determine the significance of the differences.

3 Results

3.1 Training data

POL (785 ± 71 au) revealed statistically significantly (p ≤
0.001; SMD = 4.55) lower eTRIMP values (Figure 1A) than
TRAD (1,273 ± 126 au) for the total 6-week training program.
Training data (Figure 1B) revealed no between-group differences
(p = 0.938; SMD = 0.03) in total training volume for POL (602 ±
20 min) and TRAD (601 ± 60 min). POL (472 ± 57 min) showed
significantly (p ≤ 0.001; SMD = 7.39) higher LiT volume than
TRAD (157 ± 29 min). In contrast, TRAD significantly (p ≤ 0.001;
SMD ≥ 2.25) completed more ThT (POL: 78 ± 41 min vs. TRAD:
216 ± 71 min) and HiT (POL: 52 ± 19 min vs. TRAD: 228 ±
70 min) training volume. Thus, POL and TRAD revealed a training
intensity distribution (LiT, ThT, and HiT) of 78.4%, 13.0%, and 8.6%
and 26.1%, 35.9%, and 37.9%, respectively. A significant difference
was observed in the comparison of wellbeing status between the
POL and TRAD groups. The incidence of poor wellbeing, physical
overexertion, or injurywas significantly lower in the POLgroup than
in the TRAD group, as indicated by Fisher’s exact test (p-value =
0.019). The odds ratio was 0.12, with a 95% confidence interval of
0.01–0.82, suggesting that participants in the POL group were less
likely to experience adverse wellbeing outcomes.

3.2 Performance data

Regarding the performance data, the 2 × 2 rANCOVA revealed
no statistically relevant group × time interaction effects (p ≥ 0.094;
ηp

2 ≤ 0.09) for all output parameters (Figures 2, 3; Table 2). In
contrast, both groups revealed significant (rANCOVA time effects:
p ≤ 0.02; 0.01 ≤ ηp

2 ≤ 0.11; 0.00 ≤ SMD ≤ 0.65) performance gains
regarding DL1RM, OHP1RM, HP1RM, and Jackie.

4 Discussion

This randomized controlled trial examined the effects of a time-
matched polarized vs. traditional HIFT training regimen on relevant
strength- and endurance-related performance outcomes. We found

that relevant maximal strength, endurance, and CrossFit® related
adaptations did not differ between groups, including performance
gains in the deadlift, overhead press, and high pull strength and
HIFT-specific exercises (Jackie benchmark workout).

Our main finding is that these similar adaptations were induced
via a notably lower (about 40% less) total training load (eTRIMP)
(Eather et al., 2016) in the polarized vs. traditional HIFT training
group. In addition, our polarized training group reported relevant,
less negative wellbeing notes than the traditional HIFT training
group. This suggests that previously observed inadequate recovery,
which can lead to undesirable effects such as decreased performance,
disturbed sleep, increased perceived fatigue, and a higher incidence
of respiratory tract infections (Hausswirth et al., 2019; Le Meur et al.,
2013), via high amount of HIT might be reduced via the used
polarized approach.However, it is important to note that proponents
ofHIT training do not recommend performing high volumes ofHIT
on consecutive days (Tibana et al., 2018), as it is suggested that a
recovery period of 48–72 h is needed between full HIT sessions.

As strength andHIFT-specific performance gains via traditional
HIFT indicated, HIT is a powerful stimulus in enhancing endurance
performance (MacInnis and Gibala, 2017). Thereby, HIT requires a
high energy turnover with an accumulation of reactive molecules
and energy intermediates (Hawley et al., 2014). Subsequently, these
metabolites accumulate and activate PGC-1alpha, which triggers
mitochondrial biogenesis (Chandel, 2015).

At the same time, a significant percentage of HIT is a risk
factor for adverse training effects, i.e., non-functional and functional
overtraining (Meeusen et al., 2013). Particularly, traditional HIFT
training revealed increased cortisol levels, which might indicate
relevant stress in terms of fatigue and recovery demands (Faelli et al.,
2020). Furthermore, a recentHIFT-related review (Jacob et al., 2020)
revealed increased hormonal, metabolic, and inflammatory stress
marker levels via traditional HIFT training.Therefore, our polarized
HIFT training approach with a reduced amount of HIT might be
useful to reduce such potential negative effects.

In the context of other endurance training (cross-country
skiing, rowing, cycling, running, speed skating, and swimming), a
recent review (Sperlich et al., 2023) revealed that successful athletes
use either polarized or pyramidal training intensity distribution
patterns characterized by a high amount (60%–90%) of LiT, with
lesser amounts of ThT and HiT. However, regular incorporation of
some high-intensity training is essential for optimal adaptation
in motor units needed for competitive exercises (Foster et al.,
2022). Thereby, the effectiveness of more polarized and pyramidal
training, compared to threshold or high-intensity-based training,
can be attributed to differential mitochondrial signaling pathways
(Burnley et al., 2022; Foster et al., 2022) and potential adverse effects
of excessive high-intensity training (Foster et al., 2022). Twoprimary
signaling pathways for mitochondrial proliferation, one involving
calcium signaling (associated with high-volume training) and the
other involving AMPK signaling (linked to high-intensity training),
converge on PGC1-α expression (Bishop et al., 2019; MacInnis et al.,
2019; van der Zwaard et al., 2021). Thereby, a recent meta-analysis
(Rosenblat et al., 2019) and review (Foster et al., 2022) supposed
superior training effects of a polarized/pyramidal approach
compared to threshold or high-intensity focused approaches.
In contrast, our data revealed similar performance adaptations
via polarized/pyramidal and threshold HIFT training. However,
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FIGURE 1
Training load (A), training distribution (B), and wellbeing status (C) data of the polarized (POL) and the traditional (TRAD) HIFT training groups. Thereby,
training impulse (eTRIMP) values are given as means with standard derivations. Individual data are plotted as grey dots. Regarding the training
distribution data, low-intensity training (LiT), threshold training (ThT), and high-intensity training (HiT) data are given in green, yellow, and red,
respectively. Data are given as mean ± standard deviation. Wellbeing status is given as TRUE if no negative marks like physical exhaustion, strain, or
injury were reported. Otherwise, FALSE was given as well-being status.

FIGURE 2
Squat 1RM (A), deadlift 1RM (B), high pull 1RM (C), and overhead press 1RM (D) data of the polarized (POL) and the traditional (TRAD) HIFT training
groups. Data are given as mean ± standard deviation. Individual data are given in gray. In addition, percentual mean change scores are given for
POL and TRAD.

monotonous high-intensity training may disrupt homeostasis,
causing inflammatory responses and delayed autonomic recovery
(Meeusen et al., 2006; Seiler et al., 2007). These observations are
supported by empirical evidence (Billat et al., 1999; Esteve-Lanao
et al., 2007), indicating that excessive higher-intensity training may
not be well tolerated. Our results regarding the well-being status
might support these hypotheses.

We initially intended to compare polarized vs. traditional HIFT
training. However, analysis of the training intensity distribution data
showed that the polarized training group was better characterized

by a pyramidal training distribution, and the high-intensity training
group was better characterized by a threshold training distribution.
This discrepancy could be partly explained by the heart rate-
based time-in-zone approach employed in this study. Based on the
delayed heart rate response to a HIT session (Plews et al., 2014),
a time-in-zone method displays delayed heart-rate elevations and
underreports time in HIT compared to a sessions-goal method
(Sylta et al., 2014). Regardless, our traditional HIFT group revealed
approximately 37% HIT, which is remarkably higher than the
HIT amount of other endurance-related athletes (Sperlich et al.,
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FIGURE 3
Jackie (A), lactate threshold (B), peak power output (C), and V ̇O2peak (D) data of the polarized (POL) and the traditional (TRAD) HIFT training groups.
Data are given as mean ± standard deviation. Individual data are given in gray. In addition, percentual mean change scores are given for POL and TRAD.

TABLE 2 Performance data of the polarized (POL) and the traditional (TRAD) HIFT training groups.

Parameter TRAD pre TRAD post SMD POL pre POL post SMD Time × group
rANCOVA (p
[ηp2])

Time
rANCOVA (p
[ηp2])

Jackie (s) 671 ± 120 599 ± 99 0.65 741 ± 171 668 ± 153 0.46 0.986 (0.00) 0.002 (0.01)

High pull (% body
mass)

77.5 ± 18.4 86.9 ± 19.2 0.51 69.7 ± 24.8 73.6 ± 22.8 0.17 0.094 (0.09) 0.001 (0.11)

Squat (% body mass) 118.5 ± 29.1 121.6 ± 28.4 0.11 107.4 ± 35.0 113.9 ± 33.0 0.12 0.265 (0.03) 0.172 (0.02)

Overhead press (%
body mass)

51.6 ± 8.3 55.0 ± 8.2 0.41 53.3 ± 17.4 56.1 ± 16.0 0.19 0.760 (0.00) 0.020 (0.00)

Deadlift (%body
mass)

153.0 ± 37.5 163.0 ± 33.9 0.29 140.1 ± 33.2 148.0 ± 36.2 0.24 0.546 (0.02) 0.001 (0.02)

Lactate threshold
(W)

176 ± 22 176 ± 30 0.00 197 ± 29 200 ± 32 0.10 0.681 (0.01) 0.961 (0.01)

Peak power output
(W)

305 ± 51 308 ± 51 0.06 299 ± 42 306 ± 46 0.16 0.485 (0.02) 0.621 (0.02)

V̇O2peak
(mL/min/kg)

48 ± 5 47 ± 6 0.20 45 ± 9 45 ± 9 0.00 0.328 (0.02) 0.100 (0.01)

Data are given as mean ± standard deviation. Effects of 2 (group: POL vs. TRAD) × 2 (time: PRE vs. POST) repeated measurement variance analysis with covariate (rANCOVA) interaction and
time effects are given. rANCOVA effect sizes were given as partial eta-squared (ηp

2).

2023). Despite, on average, the TRAD group being classified as
THR and the POL group as PYR at the individual level, four
participants from the TRAD group demonstrated a dominant HIT
TID, while two participants from the POL group exhibited a
polarized TID. Therefore, our data suggest that despite the same
training program within groups, different TID patterns can emerge
on an individual level.

Because the typical duration of polarized training interventions
ranged from 4 to 16 weeks (Rosenblat et al., 2019), the short
intervention period (6 weeks) of our study might be seen
as a limitation. However, previous performance benefits of
specific intensified training programs have been associated with
interventions that are shorter than 8 weeks and mesocycles of

comparable length (Billat, 2001; Ronnestad et al., 2016). To date,
the benchmark workouts Karen, Fran, Grace, Helen, Filthy-50,
and Fight-Gone-Bad have been examined in scientific publications
(Mangine et al., 2018; Mangine et al., 2022; Tibana et al., 2022).
None of those workouts were used, and only one HIFT-specific
benchmark workout (Jackie) was used in this study. For better
comparability, future research should consider integrating these
previously examined benchmark workouts (Mangine et al., 2018;
Mangine et al., 2022; Tibana et al., 2022). Moreover, the squat and
V̇O2peak tests used in this study have previously been characterized
as relevant performance surrogate parameters in HIFT (Bellar et al.,
2015; Dexheimer et al., 2019; Martínez-Gómez et al., 2019; Meier
et al., 2021; Zeitz et al., 2020). Another limitation concerns the
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method used to calculate the training load. Although we employed
the heart rate-based method, Falk Neto et al. (2020) concluded
that session RPE was more accurate than TRIMP-based methods
to represent the overall training load of HIFT sessions. Apart
from this, the repetition completion rate was also suggested as an
easy and accurate tracking approach for intra- and inter-workout
comparisons (Mangine and Seay, 2022). However, it should be noted
that the concept of polarized training primarily uses heart rate-
based approaches and not RPE or repetition completion rate (Seiler
and Kjerland, 2006; Sperlich et al., 2023). Therefore, future research
should investigate the integration and combination of heart rate-
based methods with alternative approaches, such as those based
on RPE or repetition completion rate. Finally, the current athletes
revealed a relatively large variance regarding the corresponding
output parameters, indicating a relevant heterogeneity of the
sampling group. Therefore, future research should recruit more
homogeneous groups of athletes, use longer intervention periods,
and incorporate such RPE-based approaches.

In conclusion, the current data revealed similar performance
adaptations via a time-matched polarized/pyramidal HIFT
training approach compared to a threshold HIFT training
approach. In addition, the polarized/pyramidal HIFT training
approach was characterized by a substantially lower total
training load (eTRIMP) (Edwards et al., 1994). Accordingly, a
polarized/pyramidal HIFT training approach might be a promising
option to reduce inadequate recovery. The practical applications of a
polarized/pyramidal training approach in HIFT include optimizing
training adaptationwhileminimizing recovery needs.This approach
can be particularly beneficial for athletes seeking to maintain
high performance levels over extended periods, as it allows for
adequate recovery between high-intensity sessions. Future research
could investigate these aspects and their effects when increasing
the weekly training load using a workload-matched comparison
between polarized/pyramidal and threshold HIFT training settings.
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