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Introduction: This study aimed to develop a deep learning-based method for
interpreting magnetic resonance imaging (MRI) scans of temporomandibular
joint (TMJ) anterior disc displacement (ADD) and to formulate an automated
diagnostic system for clinical practice.

Methods: The deep learningmodels were utilized to identify regions of interest (ROI),
segment TMJ structures including the articular disc, condyle, glenoid fossa, and
articular tubercle, and classify TMJ ADD. Themodels employedGrad-CAMheatmaps
and segmentation annotation diagrams for visual diagnostic predictions and were
deployed for clinical application. We constructed four deep-learning models based
on the ResNet101_vd framework utilizing an MRI dataset of 618 TMJ cases collected
from two hospitals (Hospitals SS and SG) and a dataset of 840 TMJ MRI scans from
October 2022 to July 2023. The training and validation datasets included 700 images
from Hospital SS, which were used to develop the models. Model performance was
assessed using 140 images from Hospital SS (internal validity test) and 140 images
fromHospital SG (external validity test). The first model identified the ROI, the second
automated the segmentation of anatomical components, and the third and fourth
models performedclassification tasks basedon segmentation andnon-segmentation
approaches. MRI images were classified into four categories: normal (closed mouth),
ADD (closed mouth), normal (open mouth), and ADD (open mouth). Combined
findings fromopen and closed-mouth positions provided conclusive diagnoses. Data
augmentation techniques were used to prevent overfitting and enhance model
robustness. The models were assessed using performance metrics such as
precision, recall, mean average precision (mAP), F1-score, Matthews Correlation
Coefficient (MCC), and confusion matrix analysis.

Results: Despite lower performance with Hospital SG’s data than Hospital SS’s,
both achieved satisfactory results. Classification models demonstrated high
precision rates above 92%, with the segmentation-based model outperforming
the non-segmentation model in overall and category-specific metrics.

Discussion: In summary, our deep learning models exhibited high accuracy in
detecting TMJ ADD and provided interpretable, visualized predictive results.
These models can be integrated with clinical examinations to enhance
diagnostic precision.
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1 Introduction

Temporomandibular disorder (TMD) comprises various conditions
that result in pain and functional impairment of the masticatory muscle
and the temporomandibular joint (TMJ) (Ikai et al., 1997).
Epidemiological studies indicate that TMDs affect a significant
portion of the adult population. Estimates of TMD prevalence in
adults generally range from 5% to 12% globally. Anterior Disc
Displacement (ADD) is the most common subtype of TMD, with an
estimated occurrence of 30%–60% among TMD patients (Manfredini,
2009; Hugoson andMagnusson, 2011; Pantoja et al., 2019; Valesan et al.,
2021). Normally, the articular disc should remain positioned above the
condyle in open and closed mouth positions. ADD is diagnosed when
the disc displaces anteriorly in either position (Ikeda and Kawamura,
2013; Freudenthaler et al., 2022). The articular disc, situated between the
condyle and the glenoid fossa, is highly resilient and stable, helping to
alleviate the pressure exerted on the TMJ duringmandibularmovements
such as mastication. Consequently, positional or morphological
alterations of the disc can lead to the onset and progression of TMD
(Hall et al., 1995; Kurita et al., 2001; Takaoka et al., 2021). Studies suggest
that TMJ ADD can lead to malocclusion, mandibular retrusion, and
facial asymmetry, potentially leading to psychosocial issues for patients
(Bósio et al., 1998; Nebbe et al., 1999a; Nebbe et al., 1999b). Therefore,
this study primarily focuses on the TMJ ADD.

Magnetic resonance imaging (MRI) is widely recognized as the
criterion standard diagnostic modality for diagnosing TMJ disc
displacement, as it provides detailed visualization of the anatomical
structures and pathological changes of the TMJ (Honda et al., 2001;
Schiffman et al., 2014). However, the complexity of TMJ MR image
analysis is increased due to the often unclear and low-contrast
depiction of TMJ components and surrounding tissues, as well as
the morphological changes of the disc caused by disease progression.
MRI evaluation is typically subjective, with diagnoses varying
depending on the examiner’s experience and the MR sequences
used. Therefore, standardized MRI analysis is crucial to ensure
diagnostic accuracy and reproducibility.

Deep learning methods utilizing Convolutional Neural Networks
(CNNs) represent the forefront of artificial intelligence technology.
Due to their superior performance inmedical image recognition tasks,
encompassing both segmentation and classification, and the extensive
accessibility of open-source frameworks, CNNs have become a
predominant technology within the domain of medical image
analysis (Lee et al., 2022; Shafiq and Gu, 2022). The development
of effective predictive models for automatically detecting specific
pathological features in MRI requires training CNN algorithms on
large datasets of annotated images.

A literature review suggests that CNN-based models have
become pivotal in segmenting craniofacial bone structures from
MR images, with U-Net++ and U-Net variants particularly noted for
their proficiency in capturing intricate anatomical details (Nie et al.,
2017; Li et al., 2022). Subsequent research has effectively utilized a
range of deep learning approaches, including CNNs, U-Nets,
U-Net++, U-Net3+, DeepLabV3+, and Segnet, for automating the
segmentation of the TMJ disc in MR images (Ito et al., 2022; Nozawa
et al., 2022; Min et al., 2024). Among these, while Segnet
demonstrated comparative efficacy, DeepLabV3+ emerged as the
most effective for advanced semantic segmentation tasks. Moreover,
studies have employed deep learning and CNN-based methods for the

automated classification and detection of anterior disc displacement
(ADD) (Lee et al., 2022; Lin et al., 2022; Yoon et al., 2023). These
classification models, predicated on VGG16 and Resnet architectures,
have showcased promise in accurately identifying ADD. Additionally,
an algorithm has been developed in research to predict TMJ disc
perforation from MRI findings (Kim et al., 2021). This approach
involves experienced observers interpreting MRI images to extract
features related to disc morphology, bone marrow signal, the
relationship between the disc and condyle, joint space, and changes
in the condyle and fossa. These features are then utilized to construct
and validate predictive models using random forest and Multilayer
Perceptron (MLP) techniques. Despite its utility, manual feature
extraction may be more suitable for tasks with well-defined features
and smaller datasets. However, in our study, there is a need for models
that can autonomously learn features from raw images to excel in
complex tasks.

Considering our study’s dual objectives of segmenting and
classifying TMJ MR images, primarily focusing on classification,
we have selected Resnet101_vd as the backbone network due to its
robust feature extraction capabilities. Resnet’s residual connections
facilitate the training of deeply layered networks, enhancing feature
extraction for complex medical imaging data. Resnet101’s faster
training relative to VGG16, coupled with its superior performance
on standard datasets like ImageNet in terms of accuracy and
generalization, makes it an attractive choice. Moreover, its
flexibility supports both classification and segmentation tasks,
feasibly integrating with other models for feature sharing (He
et al., 2016). For the segmentation model, considering the complex
nature of medical images, especially MRIs, with their rich structural
details and noise, we employ ResNet101_vd combined with
DeepLabV3+. DeepLabV3+ utilizes atrous convolution and ASPP
strategies to capture multi-scale features, which is essential for
handling complex segmentation tasks and capturing fine details in
medical images (Chen et al., 2018; Wang et al., 2024). Consequently,
this study utilizes ResNet-101 as the backbone network, with the
segmentation model being DeepLabV3 + ResNet-101, and employs
ResNet101_vd for subsequent classification tasks.

Previous related studies have primarily focused on either image
segmentation or image classification. Currently, there are no studies
combining three key deep learning methods: Region of Interest
(ROI) identification, image segmentation, and image classification,
into a three-stage multi-task self-supervised learning approach to
enhance diagnostic accuracy. Additionally, prior research has been
conducted in laboratory settings, which may not fully reflect the
benefits of clinical practice. In the clinical diagnosis of TMJ ADD,
the real-time and accurate identification of the interaction between
the mandibular condyle and the articular disc on MRI, and the
prompt convey of this information to oral clinicians, is crucial for
accurate diagnostic decisions and appropriate treatment. Therefore,
the purpose of this study is to devise a deep learning-driven TMJ
ADD MR image analysis method and to investigate the clinical
applicability of deep learning networks. We have designed our
system around four core deep learning models: an ROI detection
model, a TMJ segmentation model, a segmentation-based
classification model, and a non-segmentation classification model,
to diagnose TMJ ADD. These models were deployed on high-
performance computing hardware and are capable of generating
artificial intelligence heatmaps, which serve as reliable diagnostic
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support for clinicians. The sequence of steps undertaken throughout
the research is illustrated in Figure 1.

2 Materials and methods

2.1 Database establishment

This study was conducted based on clinical data from Shenzhen
Stomatology Hospital (Hospital SS) and Shenzhen University
General Hospital (Hospital SG) with approval from the Ethics

Committee of Shenzhen Stomatology Hospital (Protocol Code:
SZSK-20231221-1) and Shenzhen University General Hospital
(Protocol Code: KYLL-20221217A). Written informed consent
was obtained from all subjects involved in the study.

The study included TMJ MRI data from 618 patients, aged
19–40 years (mean age 28.9 ± 6.4 years), These patients presented
with TMJ-related symptoms between September 2022 and July
2023. Professionals with more than a decade of expertise in TMDs
utilized the Diagnostic Criteria for Temporomandibular Disorders
(DC/TMD) to diagnose TMJ ADD cases. The exclusion criteria
were as follows: 1. History of TMJ surgery; 2. History of tumors or
facial fractures; 3. Systemic diseases that may affect TMJ function,
such as rheumatic diseases and psychiatric disorders; 4. Lateral or
medial disc displacement; 5. MRI results showing indeterminate
signal intensity and contour of the joint disc structure; 6.
Inconsistent diagnoses by different clinicians. For patients with
multiple MRI scans, only the initial scan was included. These
exclusion criteria were implemented to guarantee the precision
and dependability of the study by minimizing potential
confounding factors. A total of 840 TMJ MR images were
included, and 700 and 140 images were obtained at the
Hospital SS and Hospital SG, respectively. Images were divided
into four groups: normal closed-mouth position (N-CMP), normal
open-mouth position (N-OMP), anterior disc displacement
closed-mouth position (ADD-CMP), and anterior disc
displacement open-mouth position (ADD-OMP). Of these
images, images obtained from Hospital SS were used with
140 images per group for the training dataset and 35 images
per group for the test dataset. During CNN model training, the
data was divided into a training set, which contained 80% of the
data, and an internal validation set, which encompassed the
remaining 20%, randomly for each experiment. All 140 images
from Hospital B were used for external validation.

2.2 Magnetic resonance imaging
examination

Since the TMJ disc is most distinctly visualized on proton
density-weighted imaging (PDWI) (Gibbs and Simmons, 1998),
this study exclusively utilized PDWI. For this study, MR images
of patients at Hospital SS were obtained using a 1.5 T scanner (uMR;
United Imaging, Shanghai, China) equipped with a TMJ coil.
Imaging parameters were as follows: PDWI was conducted with
a repetition time (TR) of 2,300 ms and an echo time (TE) of 47 ms;
matrix size 312 × 312; field of view (FOV) 282 × 120 mm; slice
thickness of 2.5 mm; and slice gap of 0.1 mm. In Hospital SG, images
were obtained with a 3T MRI scanner (Magnetom Skyra, Siemens
Healthineers, Erlangen, Germany) equipped with a head and neck
coil. Imaging parameters were as follows: PDWI was conducted with
a TR of 2,200 ms and a TE of 78 ms; matrix size 320 × 192; FOV
120 × 120 mm; slice thickness of 2.0 mm; and slice gap of 0.2 mm.

The focus of our investigation was to enhance diagnostic
accuracy of TMJ ADD, hence the primary emphasis was placed
on the oblique sagittal MRI positioning images. Sagittal scans were
oriented parallel to the anteroposterior direction of the mandibular
condyle head. MRI was conducted at maximum mouth open
position and closed-mouth (intercuspal) position. Odd-numbered

FIGURE 1
Diagrammatic representation of the research methodology.
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slices were acquired to ensure the midline image was central, with a
minimum of 7 images obtained on each side (Johnson et al., 2022; Fu
et al., 2020). For each patient, the image closest to the long axis and
transverse axis of the condyle, with the condyle located within the
central one-third of the image, was manually selected.

2.3 Data description and preprocessing

MRI diagnostic criteria for disc displacement: At the closed-
mouth position, a line connecting the apex of the condyle and the
center of the condylar head defines line 1, while a line connecting
the posterior edge of the disc to the center of the condylar head
defines line 2. ADD is defined when the angle between these two
lines exceeds 15°. At the maximum mouth open position, the
disc’s intermediate zone should be situated between the condylar
head and the articular tubercle (Schiffman et al., 2014; Qian et al.,
2023). If the posterior band of the disc was anterior to the
condylar head, it was considered ADD (Figure 2). Region of
Interest (ROI) annotation, segmentation, and classification
labeling were performed by a physician with over 10 years of
head and neck MRI experience on the EasyDL platform. This
process involved: 1. Cropping Images to 480 × 480 pixels centered on
ROI; 2. Manual segmentation of TMJ MRI into four labels: TMJ disc,
condyle, temporal bone joint surface (including the glenoid fossa, and
articular tubercle), and other tissues; 3. Classification of segmented
and original images into four categories: N-CMP, N-OMP, ADD-
CMP, and ADD-OMP. After labeling, to mitigate dataset bias, a
physician with 22 years of experience reviewed the images to resolve
any discrepancies through discussion until a consensus was reached.
The consensus images formed the dataset, and the sample size for four
categories was standardized.

2.4 Model construction and deployment

Deep learning allows the network to autonomously select
features without manual intervention, necessitating a substantial
volume of data for model training. In this study, the deep learning
algorithm was constructed using Python version 3.11.8 (Python
Software Foundation, DE, United States). The implementation
utilized the ResNet101_vd deep learning framework with EasyDL
as the backend platform. The computational environment
comprised a single NVIDIA Tesla P40 GPU (24 GB VRAM), a
12-core CPU, and 40 GB of RAM. ResNet101_vd, a deep residual
network with 101 layers, was designed with various parameter
combinations to enhance model performance. EasyDL, developed
by Baidu, facilitated the complete process of model creation, data
upload, model training, and deployment.

Four different deep-learningmodels were trained. The first model
was an ROI detection model, centered on the condyle and including
the TMJ disc, condyle, temporal bone joint surface, and other tissues,
it was extracted and classified into four categories. The second model
segmented the TMJ region using augmented ROI MR images. After
segmentation on EasyDL, four labels were utilized: TMJ disc, condyle,
articular tubercle and fossa, and other tissues. Data augmentation
techniques included shear, translation, rotation, sharpening, color
posterization, and brightness adjustment. The output files, saved in
JSON format, were used for training the fourth model. The third and
fourth models were ADD classification models. The third model is a
non-segmentation classification model, directly identifying normal
disc-condyle relationships and ADD using augmented ROI MR
images. The fourth model is a segmentation-based classification
model, using segmentation from the second model to identify four
conditions: N-CMP, N-OMP, ADD-CMP, and ADD-OMP. Training
parameters included a base learning rate of 3e-5, epochs of 150,

FIGURE 2
Diagnosis of disc displacements in MRIs. (A)MRI diagnostic method for TMJ ADD. C is the center of the condylar head; Line 1 is the line passing over
the condylar apex and point C; Line 2 is the line passing over the posterior margin of the posterior band of the TMJ disc and point C; (B)N-CMP; (C) ADD-
CMP; (D) N-OMP; (E) ADD-OMP. The arrow points to the location of the TMJ disc.
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evaluation interval of 10, batch size of 1, and the optimizer
AdamWDL (Adam with Layer-wise Adaptive Learning Rates).
After classification by the third and fourth models, diagnoses were
categorized as normal, Anterior Disc Displacement with
Reduction (ADDWR) and Anterior Disc Displacement without
Reduction (ADDWoR), based on images captured with both the
mouth open and closed. To aid in interpreting the diagnostic
principles, an artificial intelligence technology interpretation
model with visualized heatmaps was employed using the Grad-
CAM (Gradient-weighted Class Activation Mapping)
visualization scheme. CAM images are heatmaps generated
from the input images and superimposed onto the original
images to represent the importance of each pixel to a specific
output class (Qian et al., 2023). Integration of the trained models
and parameters was performed using Python and deployed via
EasyDL, enabling the application of these models for clinical
diagnosis of TMJ ADD.

2.5 Performance metrics

In this research, a comprehensive set of performance metrics
was utilized to assess the efficacy of the deep learning models. This
assessment included metrics like precision, recall, mean average
precision (mAP), the F1-score, theMatthews Correlation Coefficient
(MCC), and an examination of confusion matrices, ensuring a
thorough quantification of model performance.

2.5.1 Precision
This metric reflects the proportion of accurately identified true

positive cases out of all predicted positive instances, and is calculated
as follows:

Precision � True Positives
True Positives + False Positives

2.5.2 Recall
Quantifies the fraction of true positive cases accurately identified

by the model among all actual positive instances. It is calculated
using the formula:

Recall � True Positives
True Positives + FalseNegatives

2.5.3 Mean Average Precision (mAP)
Defined as the arithmetic mean of the Average Precision (AP)

scores across all classes, mAP synthesizes the overall performance of
a classification model. AP is computed from the area under the
precision-recall (P-R) curve, which is created by adjusting the
decision threshold. The mAP formula is presented here:

mAP � 1
N

∑
N

i�1
APi

where N represents the total number of classes, and APi represents the
average precision for the ith class. ThemAP spans a scale from0 to 1, with
values closer to 1 indicating superiormodel performance across all classes.

2.5.4 F1-score
The F1-score provides a balanced measure by combining

precision and recall through their harmonic mean, capturing the
balance between false positives and false negatives. It is calculated as:

F1 � 2 ×
Precision × Recall
Precision + Recal

FIGURE 3
Example of ROI detection. On the left, the blue rectangle indicates the retained region after model prediction. On the right, the representative
images show the retained regions after model prediction for the following conditions: N-CMP, N-OMP, ADD-CMP, and ADD-OMP, respectively.
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2.5.5 MCC
A value that ranges from −1 to 1, used to measure the

performance of binary or multiclass classification models,
providing a balanced metric that reflects both the model’s
sensitivity (True Positive Rate, TPR) and specificity (True
Negative Rate, TNR). The formula for calculating MCC is:

MCC � TP × TN( ) − FP × FN( )�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√

MCC takes into account the true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN) of the model’s
predictions, a higher MCC value indicates better model
performance. An MCC of 0 indicates that the model’s
performance is equivalent to random guessing, while an MCC of
1 indicates perfect model predictions.

2.5.6 Top-1 accuracy
These metrics are instrumental in assessing the efficacy of multi-

class classification models. Top-1 accuracy indicates the proportion
of instances where the model’s highest probability prediction
corresponds to the correct class.

These metrics collectively furnish a robust assessment of model
performance, enabling a nuanced understanding of the models’
diagnostic capabilities across various dimensions.

3 Results

The ROI detection model consistently identified a minimal
region sufficient for diagnosing TMJ ADD (Figure 3), including
regions retained after predictions for N-CMP, N-OMP, ADD-CMP,

and ADD-OMP. In the internal validity test conducted at Hospital
SS, the model achieved a mAP, precision, and recall of 100%, with an
F1-score of 1 at a threshold of 0.8. In the external validity test
conducted at Hospital SG, the model’s performance was slightly
lower but still achieved good results. The model achieved a mAP of
97%, precision of 95.8%, recall of 97.9%, and an F1-score of 0.97 at a
threshold of 0.7 (Figure 4).

At Hospital SS, the internal validity test demonstrated that the TMJ
segmentation model had a mean Average Precision (mAP) of 94.86%, a
precision of 94.05%, a recall of 95.11%, and an F1-score of 0.95 at a
threshold of 0.8. For the external validity test conducted at Hospital SG,
the model’s performance was slightly lower but still resulted in
satisfactory outcomes. The model achieved a mAP of 90.4%, a
precision of 91.4%, a recall of 90.7%, and an F1-score of 0.91 at the
same threshold of 0.8. The average recognition rates for the TMJ disc,
condyle, articular tubercle fossa, and other tissues were 83.43%, 100%,
96.01%, and 100%, respectively. Representative examples of segmentation
are shown in Figure 5, demonstrating close alignment between model
predictions and manual segmentations. We assessed the algorithm’s
performance, finding higher accuracy in segmenting hard tissues such
as the glenoid fossa and articular tubercle, with the disc being the most
challenging to identify (Figure 6).

Based on the criteria for ADD, we included additional confusing
images for incremental training to enhance the model’s ability to
differentiate borderline cases for the two classification models. Both
Model 3 andModel 4 exhibited high performance.However, to enhance
overall diagnostic accuracy, when evaluating the combined results from
both internal validity tests at Hospital SS and external validity tests at
Hospital SG, the segmentation-based classification model significantly
improved the predictive accuracy, as shown in Table 1, the overall
predictive accuracy further increased from 0.9220 to 0.9691.

FIGURE 4
F1-score under different thresholds for the ROI model and TMJ segmentation model.
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Additionally, there was a noticeable improvement in the
precision and F1 score for each classification category
(Table 2). The MCC for the binary classifications of N-CMP
versus ADD-CMP and N-OMP versus ADD-OMP is presented
in Table 3. In the classification task of TMJADD, the models
from Hospital SS demonstrated outstanding performance at

Hospital SS, with MCC values ranging from 0.939 to 0.953 for
differentiating N-CMP from ADD-CMP and 1.000 to 0.942 for
distinguishing N-OMP from ADD-OMP. This indicates a high
level of discriminative ability and generalizability. In contrast,
the models from Hospital SG exhibited slightly lower MCC
values of 0.795 to 0.853 and 0.858 to 0.942 for the same

FIGURE 5
Representative examples of segmentation models.

FIGURE 6
Representative images of model missegmentation. The first row shows the original MR images. The second row presents the manually segmented
images by experts (blue regions). The third row depicts the images with model missegmentation (red regions).
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classification tasks, yet still demonstrated robust distinguishing
and generalization capabilities. These results confirm the overall
reliability of the model in providing effective diagnostic support
for clinical practice.

The confusion matrix heatmaps for Model 3 and Model 4 are
illustrated in Figure 7. Representative images for these models are
provided in Figure 8.

EasyDL has developed a mobile application allowing users to
capture TMJ MRI images using a smartphone camera or upload MRI
images from a computer. The application leverages the trainedmodels
to perform real-time image recognition, providing image classification
and confidence scores. Diagnosis based on the integration of MR
images from both the open-mouth and closed-mouth positions can
ascertain the condition as normal, ADDWR, or ADDWoR.

TABLE 1 Performance Metrics of two classification models.

Model Hospital Top1 accuracy Precision Recall F1-score

Non-segmentation classification model Hospital SS 95.82% 95.86% 95.96% 95.85%

Hospital SG 88.58% 88.57% 88.67% 88.59%

Total 92.20% 92.22% 92.32% 92.22%

Segmentation-based classification model Hospital SS 99.53% 99.57% 99.58% 99.57%

Hospital SG 94.29% 94.29% 94.38% 94.30%

Total 96.91% 96.93% 96.98% 96.94%

TABLE 2 Performance Metrics for each classification of two classification models.

Classification Hospital Precision F1-score Recall

Non-segmentation classification model N-CMP Hospital SS 100.00% 96.15% 92.59%

Hospital SG 85.71% 88.24% 90.91%

Total 92.86% 92.19% 91.75%

N-OMP Hospital SS 97.14% 96.87% 96.59%

Hospital SG 91.43% 91.43% 91.43%

Total 94.29% 94.15% 94.01%

ADD-CMP Hospital SS 93.71% 94.80% 95.91%

Hospital SG 88.57% 86.11% 83.78%

Total 91.14% 90.45% 89.85%

ADD-OMP Hospital SS 92.57% 95.58% 98.78%

Hospital SG 88.57% 88.57% 88.57%

Total 90.57% 92.07% 93.68%

Segmentation-based classification model N-CMP Hospital SS 100.00% 100.00% 100.00%

Hospital SG 91.43% 92.75% 94.12%

Total 95.71% 96.38% 97.06%

N-OMP Hospital SS 100.00% 100.00% 100.00%

Hospital SG 97.14% 97.14% 97.14%

Total 98.57% 98.57% 98.57%

ADD-CMP Hospital SS 100.00% 99.15% 98.31%

Hospital SG 94.29% 91.67% 89.19%

Total 97.14% 95.41% 93.75%

ADD-OMP Hospital SS 98.29% 99.14% 100.00%

Hospital SG 94.29% 95.65% 97.06%

Total 96.29% 97.39% 98.53%
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4 Discussion

Despite the capability of MRI to provide definitive diagnoses
for TMJ disc disorders, previous studies have indicated poor
reproducibility in TMJ MRI diagnostics due to variations in

physician experience (Coombs et al., 2019; Costa et al., 2008).
This inconsistency arises from the fact that ADD is often
accompanied by disc deformation, perforation, and fibrosis,
which obscure the disc boundaries on MRI. The morphology
and positioning of the disc exhibit substantial variability among

TABLE 3 MCC for N-CMP vs. ADD-CMP binary classification and N-OMP vs. ADD-OMP binary classification models.

Hospital True-
positive

False-
positive

False-
negative

True-
negative

MCC

non-segmentation classification
model

N-CMP
VS

ADD-
CMP

Hospital SS 700 175 0 11 164 0.939

Hospital SG 140 30 4 3 31 0.795

N-OMP
VS

ADD-
OMP

Hospital SS 700 170 2 6 162 0.953

Hospital SG 140 32 2 3 31 0.853

segmentation-based classification
model

N-CMP
VS

ADD-
CMP

Hospital SS 700 175 0 0 175 1.000

Hospital SG 140 32 3 2 33 0.858

N-OMP
VS

ADD-
OMP

Hospital SS 700 175 0 0 172 1.000

Hospital SG 140 34 1 1 33 0.942

FIGURE 7
Confusion matrix heatmaps for Models 3 and 4.
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patients, complicating the accurate detection and segmentation
of the disc.

Over the past decade, the utilization of deep learning techniques
within the medical field has become increasingly widespread. Deep
learning consists of computational models with multiple processing
layers. For instance, in this study, Model 2 is a neural network
trained to identify structures in the TMJ region, such as the articular
disc. Each image, sized 480 × 480 pixels (totaling 230,400 pixels), is
fed into the input layer, which consists of 230,400 neurons
corresponding to each pixel. The output layer consists of neurons
equal in number to the labels. Between the input and output layers,
one or more hidden layers are present to process the data. Each
neuron’s input in a given layer is the output from one or more
neurons in the previous layer. Due to the multiple layers, these
models are termed deep neural networks. Information passes from
one layer to another through channels, each with associated weights.
Each input value is multiplied by its respective weight, summed, and
added to a bias value. This outcome is subsequently processed by a
nonlinear function known as the activation function, which
determines the activation state of the neuron. Neurons that are
activated relay information to the subsequent layer. This process
continues until the penultimate layer, where the activated neurons in
the output layer represent the content of the input image. During
training, weights and biases are continually adjusted until the model
achieves optimal performance, thus enabling the neural network to
analyze MRI images and provide reproducible and accurate results.

Our study introduces several innovative aspects of the field: 1.
For the first time, we integrated four deep learning algorithms for
three-stage multitask learning in TMJ ADDMRI image recognition;
2. We compared and cross-validated our segmentation-based
classification model with the non-segmentation classification
model to enhance diagnostic accuracy; 3. For cross-checking, our

study tested themodel on completely independent datasets from two
hospitals; 4. We applied the industrial EasyDL platform to the field
of TMJ MRI examination, deploying the model on mobile devices,
thereby facilitating convenient TMJ ADD classification diagnosis
through smartphone image capture or upload in clinical settings.

Our findings indicate that for the complex anatomical region of
the TMJ in MRI, segmentation models can deeply understand the
image content by extracting detailed information and eliminating
background noise. Utilizing the results of image segmentation
models for subsequent image classification enhances both the
accuracy and robustness of the classification process. However,
these advantages come with certain trade-offs, including
increased computational costs, the requirement for larger training
datasets, and extensive annotation.

In analyzing classification model errors, we found that borderline
cases and restricted mouth opening, which blurs the distinction
between open and closed-mouth images, were the primary causes
of low recognition rates. This suggests that incorporating geometric
judgment based on a coordinate system according to diagnostic
standards may improve accuracy in identifying borderline cases in
future studies. The recall rates of all models were lower when tested
with images from Hospital SG compared to Hospital SS. This
discrepancy may be due to the models being exclusively trained on
data from Hospital SS, resulting in diminished external validity.
Variations in imaging features across data domains could contribute
to this issue. Model performance can be influenced by several factors.
For instance, MRI scanners from different hospitals vary in magnetic
field strength, resolution, and contrast, affecting image quality and the
accuracy of feature extraction. Additionally, variations in imaging
protocols, including slice thickness and acquisition angles, as well as
environmental conditions during MRI scanning, operator expertise,
and post-processing methods, can impact image quality. Demographic

FIGURE 8
Representative image examples that typify the performance of Models 3 and 4.
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differences in patient populations across hospitals, such as age, gender,
and disease severity, may also affect image presentation. These factors
underline the necessity of ensuring dataset diversity and quality for
enhancing model generalizability in medical image analysis across
different hospitals. Future research should integrate data from
multiple hospitals for model training and utilize data augmentation
techniques to simulate diverse imaging conditions. This approach will
enhance the model’s adaptability to varied data and improve its
accuracy and reliability in clinical settings. Furthermore, fine-tuning
models based on specific application requirements is essential for
optimizing performance.

Despite the observed discrepancies, the recall rates at both hospitals
exceeded 88%, indicating the models’ potential for clinical applicability
and their high external validity. The accuracy of both hospitals exceeded
85%, however, the positive predictive value was lower for data from
Hospital SG compared to Hospital SS. This discrepancy can be
attributed to a higher incidence of false positives recorded in SG
Hospital, particularly in the bilaminar zone in the closed-mouth
position and the articular tubercle region in the open-mouth
position. The connection between the posterior band of the articular
disc and the bilaminar zone may contribute to this phenomenon, as the
normal bilaminar zone consists of loose connective tissue that appears
hyperintense signal. Anterior displacement of the disc is typically
associated with morphological abnormalities, as well as a thickening
in the retrodiscal area of the TMJ. Disease progression may lead to disc
rupture, resulting in bone-to-bone contact and ultimately causing
blurred posterior band boundaries of the TMJ disc on MRI.
Additionally, the characteristics of PDWI may also influence the
outcomes, indicating that future studies should consider integrating
various imaging sequences for model training.

Previous studies have highlighted the limitation of deep learning
models in that they provide prediction results without logically
explaining the derivation process (Ozsari et al., 2023). Grad-CAM
heatmaps address this by illustrating the importance of pixels
influencing model decisions. The color map in Figure 1 shows
that colors closer to the right indicate higher pixel importance.
Grad-CAM maps for Models 3 and 4 reveal that the areas relied
upon for classification are the disc and condyle regions, suggesting
that the model classifies MRI by analyzing the position of the disc in
relation to adjacent structures, such as the condyle and the articular
tubercle. This recognition pattern parallels the diagnostic approach
employed by clinicians to classify TMJ ADD, indicating that the
model achieves the anticipated performance standards.

Given the critical importance of accurate TMJADDdiagnosis, a deep
learning-based TMJ ADD recognition system will provide convenience
for clinicians, enhancing diagnostic and treatment accuracy and
effectiveness for young physicians and primary healthcare facilities.

Although the developed models demonstrate high accuracy, our
study has several limitations: 1. Two-Center Data and Limited Dataset:
The dataset was sourced from two centers, and the limited number of
images used for training may not adequately reflect the variations in
hardware and imaging techniques across different medical institutions.
This limitation could hinder the model’s generalizability and introduce
bias. Furthermore, themodel may not fully capture the diversity of TMJ
conditions across different populations or healthcare settings. To
address these limitations, future research should incorporate multi-
center datasets and employ transfer learning and federated learning
approaches to enhance the model’s generalizability and adaptability,

ensuring it meets the needs of diverse populations and healthcare
environments. 2. Limited to Sagittal MRI Images: The developed
models are designed to evaluate sagittal MRI images. However,
precise diagnosis of TMJ disc displacement frequently necessitates a
thorough interpretation of images from both sagittal and coronal
planes. Consequently, the current models are not optimized for
identifying less common posterior and mediolateral displacements
that may be clinically relevant; 3. Opaque Data Processing with
EasyDL: The data processing workflow using EasyDL and the
application functions as a “black box,” preventing us from gaining
detailed insights into the processing steps.

To enhance and validate model performance, further
development of deep learning algorithms is necessary for the
comprehensive identification of multi-planar MR image data.
Additionally, extensive multicenter studies are essential to
enhance and confirm the model’s robustness and accuracy.

In summary, deep learning technologies, exemplified by
Convolutional Neural Networks, have demonstrated substantial
promise in multiple domains. We believe these advancements
will play an increasingly crucial role in diagnostic research and
clinical practice of TMDs.
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