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Introduction: We assessed metabolic and hormonal responses to high-load
resistance exercise under varying normobaric hypoxia conditions with a
saturation clamp.

Methods: Employing a counterbalanced, crossover test design, ten well-trained
men participated in three exercise trials with normoxic or hypoxic gas mixtures to
maintain arterial oxygen saturation at −90% and 80% [moderate (MH) and severe
(SH) hypoxia, respectively]. The resistance exercise regimen comprised five sets
of 10 repetitions of barbell back squats at 70% of one repetitionmaximum, with 1-
min rest between sets. Metabolic and hormonal responses weremeasured before
normoxia or hypoxia exposures (Pre 1), 15 min after the exposures (Pre 2), and at
0-, 15-, and 30-min post-exercises (T0, T15, and T30, respectively).

Results: Compared to Pre 2, blood lactate concentrations and growth hormone
values were elevated at T0, T15, and T30 (p ≤ 0.001), while testosterone values
increased at T0 in all conditions (p ≤ 0.009). Epinephrine values increased
significantly from Pre 2 to T0 in SH only (p < 0.001). SH had significantly
higher blood lactate concentrations (p = 0.023), growth hormone (p = 0.050),
and epinephrine (p = 0.020) values at T30 compared to NM. Cortisol values were
elevated above Pre 2 at T15 in MH and SH, while lower testosterone values were
noted at T0 and T15 for SH compared to NM and MH (all p ≤ 0.05).

Discussion: Severe simulated hypoxia, achieved through a saturation clamp
during barbell back squats, may enhance metabolic and hormonal responses,
particularly 30 min post-session. Nevertheless, the acute effects of hypoxia
exposure seem to be overridden by the impact of high-load resistance exercise.
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Introduction

Engaging in resistance exercise under systemic hypoxia (RTH), with a reduced inspired
oxygen fraction (FiO2 0.120–0.160), is a popular intervention for improving muscular
strength, hypertrophy, and overall health (Ramos-Campo et al., 2018). Pioneers like
Nishimura et al. (2020) demonstrated greater improvements in muscle cross-sectional
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area and faster strength gains with 6-week moderate-intensity
resistance training (70% of one repetition maximum) in hypoxia
(FiO2 0.160) compared to normoxia. Subsequent studies
(Manimmanakorn et al., 2013; Innes et al., 2016; Yan et al., 2016)
support these benefits, although not all research consistently reports
such advantages (Ho et al., 2014; Törpel et al., 2020). Limited oxygen
availability, leading to metabolic accumulation and cell swelling, is
believed to preferentially recruit type II muscle fibers, potentially
influencing training adaptations (Scott et al., 2016). Moreover, acute
hypoxia, as a stressor, can elevate the production of hormones crucial
for regulating metabolic and anabolic processes (Athanasiou
et al., 2023).

Research on endocrine responses to acute resistance exercise in
hypoxia has produced mixed findings. Some studies report higher
levels of lactate, growth hormone and/or cortisol during the
0–60 min post-exercise period in hypoxia compared to normoxia
(Kon et al., 2010; Kon et al., 2012; Filopoulos et al., 2017), while
others show no significant differences (Ho et al., 2014). These
inconsistencies may stem from differences in resistance training
protocols such as the load lifted and exercise structure, as well as the
range of FiO2 levels applied (Timon et al., 2022). Exposure to
systemic hypoxia introduces notable inter-individual variability
(Chapman et al., 1998). For example, exposure to extreme
hypoxia (FiO2 0.110) for 4 h led to a significant decrease in
arterial oxygen saturation (SpO2) in all participants, with
individual SpO2 drops ranging from 12% to 36% (D’Hulst et al.,
2013). Consequently, relying on a fixed FiO2 as a marker of hypoxic
dose may result in considerable inter-individual variability in
metabolic and hormonal hypoxia responses (Soo et al., 2020).

A solution to this problem is the saturation clamp approach (Soo
et al., 2020), which requires adjusting the FiO2 for each individual to
maintain SpO2 at a target level. This method has been successfully
employed in RTH literature. For instance, Manimmanakorn et al.
(2013) implemented a 5-week training RTH program for netball
athletes, employing low-loads (thrice weekly, three sets of knee
extension and flexion to failure at 20% 1RM, FiO2 adjusted to
maintain SpO2 at −80%). The RTH group exhibited a higher
increase in repetitions at 20% 1RM compared to the normoxic
training control. While most studies using a saturation clamp have
focused on comparing physical performance, erythropoietin
expression, and body composition between young and older
adults using a single hypoxic dose of ~80–85% (Törpel et al.,
2019; Törpel et al., 2020), this approach has not been widely
applied to investigate acute metabolic and hormonal responses to
resistance exercise in varying levels of hypoxia.

The aim of this study was to evaluate the acute metabolic and
hormonal responses to high-load resistance exercise under varying
levels of normobaric hypoxia, employing a SpO2 clamp approach. We
hypothesized that the most severe hypoxic condition would lead to
increased blood lactate accumulation and anabolic hormone responses.

Methods

Participants

Ten well-trained men (mean age 21.2 ± 2.3 years; height 178.4 ±
2.7 cm; body weight 69.8 ± 6.3 kg), all experienced in resistance

exercise, participated in the study. Participants were recruited from
local sporting clubs and had a minimum of 2 years of resistance
training experience. They were classified as “Trained/Development”
(Tier 2) using established criteria (McKay et al., 2022). Throughout
the testing phase, none of the participants were using substances
(e.g., anabolic steroids, creatine, sympathoadrenal drugs) that could
potentially impact the study results. During the study, participants
resided at sea level in Beijing (China), and reported no exposure to
altitudes above 1,500 m within 6 months before the experimental
trials. The study was approved by Beijing Sport University Review
Board for Human Participants (no. 2017004A), with written
informed consent obtained from participants.

Study design

The study employed a single-blind, counterbalanced, crossover
test design. Initially, participants underwent a preliminary session in
normoxia, where they familiarized themselves with the correct
technique for performing a barbell back squat and determined
their one-repetition maximum mean (139.8 ± 16.3 kg) (Yan
et al., 2016). Subsequently, participants completed three separate
experimental sessions, during which they performed barbell back
squats while inhaling either a normoxic (normoxia) or hypoxic gas
mixture. In the hypoxic conditions, SpO2 was controlled at −90%
and 80% for moderate (MH) and severe hypoxia (SH), respectively.
Each session was separated by at least 2 weeks and conducted at the
same time of day (8.30–11.30 a.m.) for each participant.

Experimental sessions

After an overnight fast, participants arrived at the laboratory and
rested in a seated position for 30 min before the first blood collection
(Pre 1) outside the environmental chamber while breathing room air
(i.e., before exposure to normoxic or hypoxic gas mixtures). They then
entered the environmental chamber, rested (i.e., sitting position) for
an additional 15min with exposure to either normoxic or hypoxic gas,
and had the second capillary blood sample taken (Pre 2). Afterwards,
participants commenced with a warm-up set of 10 repetitions of
barbell back squats at 40% of 1RM, followed by the main exercise
consisting of five sets of 10 repetitions of barbell back squats at 70% of
1RM (97.8 ± 11.4 kg), with a 1-min rest period between sets. During
the squats, theywere instructed to achieve a knee angle of 90° andwere
assisted if they experienced fatigue during the final repetitions. Three
additional blood samples were collected immediately (T0), 15 (T15),
and 30 min (T30) after completing the resistance exercise. After the
initial blood sample (Pre 1), participants remained in the testing
environment until the final blood sample was collected. The exposures
continued until the experimental trial ended, at which points
participants left the environmental chamber. Participants could
consume water ad libitum throughout the session.

Saturation clamping

Participants were exposed to either normoxic or normobaric
hypoxic air in an environmental chamber (L.O.S.
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LOWOXYGEN SYSTEMS GmbH, Germany). The
“background” FiO2 inside the chamber was set at 0.209 for
normoxic air (NM) and 0.166 for both MH and SH
conditions. Participants also inhaled a gas mixture delivered
by a hypoxic generator (Hypoxico, Inc. New York,
United States), as adjusting FiO2 from this device has a faster
response rate on physiological markers including SpO2 than an
environmental chamber. Instead of fixing a specific simulated
altitude or FiO2 for the hypoxic conditions, SpO2 was clamped
at −90% and −80% in MH and SH, respectively. This was
achieved by continuously adjusting the FiO2 individually
during each trial, following a manual procedure that was
piloted in advance. Continuous monitoring of SpO2 was
conducted using a pulse oximeter (WristOx23150; Nonin
Medical, Inc., United States) placed on the forefinger of each
participant. For blinding purposes, participants consistently
breathed through the same set-up, including during normoxia.

Blood sampling and analysis

Blood samples were drawn from an antecubital vein through an
intravenous catheter at several time points: in normoxia (Pre 1),
15 min after exposure to either normoxia or hypoxia at rest (Pre 2),
as well as immediately after, 15 and 30 min after exercise (T0,
T15 and T30, respectively). Participants remained in the testing
environment until the final blood sample was collected. After
collection, the serum was separated by centrifugation at
5,000 rpm for 5 min and stored at −80°C until analysis. The
storage time from collection to analysis was within 72 h.

Commercial test kits were used to measure the concentrations
of growth hormone (Access Ultrasensitive hGH assay; Catalog No.
33580; Beckman Coulter, Inc., Brea, CA, United States),
testosterone (Access Testosterone; Catalog No. 33560; Beckman
Coulter, Inc., Brea, CA, United States) and cortisol (Access
Cortisol; Catalog No. 33600; Beckman Coulter, Inc., Brea, CA,
United States) using an automatic immunoassay system (Unicel
DXI 800; Beckman Coulter, Inc., United States). The epinephrine
concentration was determined using an enzyme immunoassay kit
(CatCombi ELISA; Catalog No. RE59242; IBL International
GmbH, Germany), while blood lactate concentration was
measured using an automatic lactate analyzer (Biosen C-line;
EKF diagnostic GmbH, Germany).

Statistical analysis

All statistical analyses were conducted using IBM SPSS
Statistics for Windows, version 25.0 (IBM Corp., Armonk, NY,
United States). Descriptive statistics are presented as mean ± SD.
To evaluate the effects of high-load resistance exercise under
varying normobaric hypoxia conditions on metabolic and
hormonal responses, we employed generalized estimating
equations (GEE) for each outcome variable. GEE was chosen
for its robustness in handling repeated measures and correlated
data inherent in our crossover study design. Each GEE model
included a single metabolic or hormonal response variable as the
dependent variable, with oxygen condition (NM, MH, and SH),

time points (Pre 1, Pre 2, T0, T15, and T30), and their interaction
as the main independent variables. An exchangeable correlation
structure was used to account for repeated measures within
participants, assuming equal correlation between all time points.
The Pre 2 value was included as a covariate to control for its
influence on the outcome variables. To assess the effectiveness of
the SpO2 clamping procedure, we analyzed SpO2 data using a GEE
model with SpO2 as the dependent variable, and the same
independent variables (oxygen condition and time points) and
their interaction. The Pre 1 value was included as a covariate. An
exchangeable correlation structure was also applied. Post-hoc
analyses were performed using the least significant difference
(LSD) method to adjust for multiple comparisons following the
GEE analysis. Statistical significance was set at p ≤ 0.05.

Results

Figure 1 demonstrates the effectiveness of the SpO2 clamping
procedure. Compared to Pre 2, blood lactate concentrations and
growth hormone values were elevated at T0, T15, and T30 (p ≤
0.001; Figure 2), while testosterone values increased at T0 in all
conditions (p ≤ 0.009; Figure 3). Epinephrine values increased
significantly from Pre 2 to T0 in SH only (p < 0.001).
Additionally, SH had significantly higher blood lactate
concentrations (p = 0.023), growth hormone (p = 0.050), and
epinephrine (p = 0.020) values at T30 compared to NM. Cortisol
values were elevated above Pre 2 at T15 in MH (p = 0.007) and SH
(p = 0.034). Lower testosterone values were noted at T0 and T15 for
SH compared to NM and MH (p ≤ 0.023).

FIGURE 1
Arterial oxygen saturation levels before and following resistance
exercise while inhaling either normoxic (NM) or hypoxic gas mixtures
with controlled arterial oxygen saturation of −90% and 80% for
moderate (MH) and severe hypoxia (SH), respectively. Mean ± SD
(n = 10). Arterial oxygen saturation was obtained before exposure to
normoxia or hypoxia (Pre 1), 15 min after exposure (Pre 2), as well as
immediately after, 15 and 30 min after exercise (T0, T15, and T30,
respectively), while participants remained in the testing environment.
The Gy bar indicates the resistance exercise period. a, b, and c

significant difference NM vs. SH, NM vs. MH, and MH vs. SH,
respectively (p < 0.05).
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Discussion

High-load resistance exercise supersedes
the acute effects of hypoxia exposure

In partial agreement with our hypothesis, it was observed that
SH, but not MH, during high-load resistance exercise using a
saturation clamp may slightly enhance metabolic and hormonal
responses, particularly 30 min post-session, compared to normoxia.
This finding occurred despite employing brief inter-set rest periods
(1 min), high-load resistance exercise (70% of one repetition
maximum) that recruited large muscle mass (barbell back
squats), substantial exercise volume (five sets of 10 repetitions),
and providing a significant hypoxic stimulus for all participants
(Ramos-Campo et al., 2018). Notably, resting plasma growth
hormone levels were previously found to increase only following
hypoxic resistance training in severe hypoxia (FiO2 0.136), with no
such increase noted in moderate hypoxia (FiO2 0.158) or normoxia
(Namboonlue et al., 2020). Our findings align with the study by Ho
et al. (2014), who reported that low-intensity squat exercise (30% of
1RM) performed under mild simulated hypoxia (FiO2 0.150;
SpO2 −92%) did not induce significantly greater hormonal
responses in growth hormone, total testosterone, and cortisol
than normoxia. However, other studies have shown that
performing bench press and leg press at 50%–85% of 1RM in
severe normobaric hypoxic conditions (FiO2 0.130; SpO2

~82–85%) induced larger blood lactate accumulation as well as
greater growth hormone and epinephrine responses than in the
normoxic condition. Interestingly, other anabolic hormones such as
testosterone or cortisol remained unchanged (Kon et al., 2010; Kon
et al., 2012). Despite achieving consistent SpO2 values between
conditions through our saturation clamp approach, high-load
resistance exercise likely supersedes the acute effects of hypoxia
exposure in well-trained men.

Concomitance between metabolic and
hormonal responses

Overall, the magnitude and time course of changes in metabolic
and hormonal responses during the 30-min post-exercise period
were consistent with prior studies using fixed FiO2 levels ranging
from 0.126 to 0.160 (Kon et al., 2010; Kon et al., 2012; Yan et al.,
2016). The stimulation of growth hormone secretion during exercise
is believed to be influenced by the accumulation of metabolic by-
products, such as lactate or H+ (Gordon et al., 1994). The acidic
muscle environment may stimulate sympathetic nerve activity
through chemoreceptive reflexes (Victor and Seals, 1989), leading
to increases in growth hormone, norepinephrine, and lactate levels
(Buresh et al., 2009). However, in several studies (Kurobe et al., 2015;
Yan et al., 2016; Namboonlue et al., 2020), changes in blood lactate
concentrations did not fully explain the observed changes in growth
hormone. Resting plasma growth hormone levels, for instance, were
elevated only following hypoxic resistance training in severe hypoxia
(FiO2 0.136), with no increase observed in moderate hypoxia (FiO2

FIGURE 2
Blood lactate concentration (A), growth hormone (B), and
epinephrine (C) before and following resistance exercise while
inhaling either normoxic (NM) or hypoxic gas mixtures with controlled
arterial oxygen saturation of −90% and 80% for moderate (MH)
and severe hypoxia (SH), respectively. Mean±SD (n = 10). Arterial
oxygen saturation was obtained before exposure to normoxia or
hypoxia (Pre 1), 15 min after exposure (Pre 2), as well as immediately
after, 15 and 30 min after exercise (T0, T15, and T30, respectively),
while participants remained in the testing environment. The gray bar
indicates the resistance exercise period. 1, 2, and 3 significantly different
between time points for NM, MH and SH, respectively (p < .05). a

significant difference NM vs. SH (p < 0.05).
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0.158) or in normoxia (Namboonlue et al., 2020). In our study, blood
lactate concentrations peaked at T0, while growth hormone values
were highest at T15 in all conditions. Resistance training
predominantly targets type II muscle fibers, associated with a
higher release of lactic acid and growth hormone (Schoenfeld,
2010). However, the mechanisms underlying growth hormone
production and release during and after hypoxic resistance
training remain uncertain, and the precise role of growth
hormone in this context is not fully understood. The significantly
higher blood lactate concentrations, growth hormone, and
epinephrine values at T30 in SH compared to NM in our study
may suggest an alteration in muscle fiber recruitment (shifting from
predominantly Type I to Type II) in the more severe hypoxic
condition. This indirectly supports the notion of a slightly
heightened anabolic response associated with RTH compared to
equivalent training in normoxia due to a greater accumulation of
metabolic by-products (Scott et al., 2015a).

Variability in metabolic and
hormonal responses

Despite controlling SpO2 experimentally, participants showed
significant variability in hormonal responses to acute resistance
exercise, with or without hypoxia. This variability in post-exercise
blood lactate concentration, growth hormone, and other hormonal
responses across all time points and conditions is likely influenced
by factors beyond hypoxia exposure. This is reinforced by the
observation that growth hormone increased significantly from
Pre 1 to Pre 2 in both SH and NM conditions, but not in MH;
however, the changes with 15 min of passive hypoxic exposure are
likely not clinically relevant. Testosterone increased only in SH.
Higher, though not statistically significant, testosterone values were
previously observed 15 min after exposure to both normoxic and
hypoxic (FiO2 0.130) mixtures (Kon et al., 2012). Individual
differences in hypoxic tolerance, genetics, and baseline fitness
levels are probably contributors (Deldicque, 2022). Practitioners
should recognize substantial between-individual differences in both
the magnitude of adjustments to a resistance exercise protocol and
responses to a given hypoxic stimulus. While the exact cause of this
variability is beyond the scope of this study, our results underscore
that the potential for hypoxia to enhance hormonal responses to
resistance exercise is highly individualized, with some participants
exhibiting stronger responses than others, even with a saturation
clamp approach.

Arterial oxygen saturation

In our study, employing a saturation clamp, hypoxic exposure
increased SpO2 response variability between participants
compared to NM, particularly at T0, and to a lesser extent at
both T15 and T30. Visual inspection of Figure 1 also suggests a
comparable magnitude between MH and SH. Taken together, this
suggests that exercise, in addition to hypoxia exposure, might have
influenced SpO2 readings, especially when monitored from the
finger where blood flow may have been limited during squatting.

FIGURE 3
Testosterone (A), cortisol (B), and testosterone/cortisol ratio (C)
before and following resistance exercise while inhaling either
normoxic (NM) or hypoxic gasmixtureswith controlled arterial oxygen
saturation of −90% and 80% for moderate (MH) and severe
hypoxia (SH), respectively. Mean ± SD (n = 10). Arterial oxygen
saturation was obtained before exposure to normoxia or hypoxia (Pre
1), 15 min after exposure (Pre 2), as well as immediately after, 15 and
30 min after exercise (T0, T15, and T30, respectively), while
participants remained in the testing environment. The gray bar
indicates the resistance exercise period. 1, 2, and 3 significantly different
between time points for NM,MH and SH, respectively (p < 0.05). a and c

significant difference NM vs. SH and MH vs. SH, respectively (p < 0.05).
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During back squat and deadlift exercises, prior observations noted
SpO2 dropping from 95% in normoxia to −90% in moderate
hypoxia (FiO2 0.160) and −75% in severe hypoxia (FiO2 0.130),
with greater variability observed in the latter (Scott et al., 2015b).
Similar to this study, the prevailing method for controlling SpO2

during hypoxic exposure involves manual adjustments to the
individual’s FiO2 (Mira et al., 2021). One limitation is that the
frequency and magnitude of manual adjustments in FiO2 depend
on the discretion of investigators, introducing potential inter-rater
reliability issues. To eliminate potential inter-rater differences
from the manual approach, FiO2 adjustments were conducted
by a single experimenter familiar with the equipment to
minimize bias. With technological advancements, automatic
FiO2 adjustments for SpO2 clamping are likely to be more
reliable and accurate. Supporting this, automatic methods for
heart rate clamping are more accurate than manual approaches
(e.g., power output adjustments every 30 s by 0.5 or 10 W) during
submaximal intensity continuous cycling (Li et al., 2024). Others
have employed automatic saturation clamps by the hypoxicator
using a biofeedback control system (Manimmanakorn et al., 2013;
Törpel et al., 2019; Törpel et al., 2020), but data about the accuracy
and reliability of this practice are lacking. Therefore, a more robust
approach involving real-time and continuous adjustments to SpO2

is needed for achieving precise saturation clamps that can be
practically applied.

Limitations and additional considerations

Several methodological considerations should be taken into
account when interpreting our findings. Firstly, with the
exception of one study in professional rugby players (Mayo et al.,
2018) and one involving female netballers (Manimmanakorn et al.,
2013), all RTH studies conducted so far focused on untrained
participants or recreationally trained athletes (Deldicque, 2022).
This limits the generalizability of our findings, particularly to
individuals with different demographics, where gender differences
in the endocrine and metabolic responses to hypoxic exercise have
been noted (Raberin et al., 2023).

Secondly, substantial heterogeneity exists in the applied
exercise stimulus across the RTH literature, encompassing
differences in lifting velocity, load, and rest periods. For
instance, benefits have been observed using loads ranging from
20% to 90% of 1RM (Deldicque, 2022; Benavente et al., 2023). Our
study, like some others, utilized a moderate-load hypertrophy-
based training prescription (e.g., 4 sets of 10 repetitions with 70%
1RM and 60 s rest; Nishimura et al., 2020). On the other hand,
other studies incorporated heavy strength training sessions
focusing on maximal strength (e.g., 2–4 sets of 3–6 repetitions
with >75% 1RM and 180 s inter-set rest; Innes et al., 2016). There
are also instances of light-load exercises seemingly targetting
muscular endurance development (e.g., 3 sets to failure with
20% 1RM and 30 s rest; Manimmanakorn et al., 2013). Future
studies employing different exercise structures should investigate
whether more severe hypoxia could acutely enhance metabolic and
hormonal responses compared to lower severities or normoxia.
Another key methodological consideration is that our design,
based on previous studies (Kon et al., 2012; Kon et al., 2021),

required participants to remain in the chamber post-exercise,
facilitating comparison with existing literature. Different
hormonal responses might have occurred if participants had
not stayed in the environment for 30 min after exercise until
the final blood sample was collected. Caution is needed when
generalizing our findings to conditions where the post-RTH
recovery period is consistently performed in normoxia.

Thirdly, a crucial aspect in designing RTH programs is the
metabolic stress created (Deldicque, 2022). Hypoxia
fundamentally reduces oxygen availability, acutely altering
metabolic processes essential for energy production. Due to the
absence of near-infrared spectroscopy measurements in our study,
it is challenging to ascertain whether severer hypoxia severities are
more effective in causing a greater decline in muscle oxygenation
during resistance exercise (Girard et al., 2022). Importantly,
Benavente et al. (2023) found no significant effects of moderate
(FiO2 0.143–0.160) versus severe (FiO2 = <0.142–0.110) hypoxia
on RTH efficacy. Therefore, exercise programs should be tailored
to leverage the metabolic challenge posed by hypoxia. While our
study only modified SpO2 levels, practitioners should always
consider the hypoxic dose along with the exercise stimulus
demands when planning RTH programs. While beneficial
effects of hypoxia over normoxia have been found with
intensities ranging from 20% to 90% of 1-RM, moderate-load
exercise (70% of 1-RM) with inter-set rest periods of 1 min and
FiO2 inducing SpO2 levels ranging from 80% to 90% follows
current recommendations for structuring RTH workouts
(Deldicque, 2022). Considering exercise to failure as an
additional variable, distinct from other exercise structure
elements (e.g., inter-set recovery period, load lifted) or the
severity of hypoxia, may amplify metabolic stress. It can not be
ruled out that performing the final set or sets of the back squat
exercise to failure could have generated additional metabolic stress
(Deldicque, 2022), potentially resulting in more pronounced
differences between conditions.

Finally, the implementation of high-load circuit-style
resistance training in hypoxia emerges a promising RTH
approach (Martinez-Guardado et al., 2019; Ramos-Campo et al.,
2018). However, this intervention encounters challenges,
especially when training large groups simultaneously in a
climatic chamber or hypoxic tent. To date, the practice of
surreptitiously adjusting FiO2 levels for a consistent reduction
in SpO2 requires participants to wear a facemask connected to a
hypoxicator. Therefore, the application of RTH using a saturation
clamp is currently confined to individuals executing isolated
localized or whole-body movements. Analogous to the
automatic heart rate clamp approach during aerobic exercise (Li
et al., 2023), technological development is essential to
automatically control the internal load of resistance exercise
(i.e., SpO2 levels or muscle oxygenation status using near-
infrared spectroscopy) across various hypoxic conditions.

Conclusion

Achieving sever hypoxia through a saturation clamp during
barbell back squats may enhance metabolic and hormonal
responses, especially 30 min after the session. Nevertheless, the
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impact of high-load resistance exercise appears to surpass the acute
effects of hypoxia exposure in well-trained men.
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