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Editorial on the Research Topic
Torpor and hibernation: metabolic and physiological paradigms

Torpor or heterothermy manifest a state of depressed metabolism and feature specific
metabolic, cellular and molecular adaptations that often are seasonal (Jastroch et al., 2016;
Giroud et al., 2021). The exact mechanisms and functioning of these extraordinary
adaptations are poorly understood. Yet their unraveling will advance our understanding
of the orchestration of hibernation and may inspire research related to obesity and
metabolic syndrome (Martin, 2008), cardiovascular and metabolic dysfunctions (Nelson
and Robbins, 2015; Bonis et al., 2018), ischemia-reperfusion injuries (Drew et al., 2001;
Kurtz et al., 2006), immune depression (Bouma et al., 2010), and longevity of animal species
(Keil et al., 2015). Collectively, the Research Topic covers three main aspects on metabolic
and physiological changes associated to the phenotype of torpor across several
heterothermic species: (i) seasonal metabolic and somatic changes in hibernators; (ii)
thermogenic mechanisms, cryoprotection and resistance to metabolic depression; and (iii)
mechanisms enabling the induction of a torpid state or “synthetic torpor.”

Hibernators undergo marked seasonal changes in energy metabolism with large
differences between an active reproductive season and a period of metabolic depression
conveying winter survival. To accommodate seasonal fluctuations, fat-storing hibernators
particularly master the circannual cycle of promoting storage or mobilizing lipids. The
energy balance of hibernators is regulated by several hormones notably during pre-
hibernation fattening (Florant and Healy, 2012). Insulin control of carbohydrate and
lipid metabolism is central in regulating cycles of intermittent fasting in mammalian
hibernators. Blanco et al. examine glucose and insulin dynamics across the feast-fast cycle in
fat-tailed dwarf lemurs (Cheirogaleus medius), the only obligate hibernator among primates,
showing mechanisms involved in lean-season insulin resistance. In the same vein, Heinis
et al. highlight the main metabolic pathways occurring during hibernation by reporting the
polar metabolomic profile of white adipose tissue isolated from active and hibernating
thirteen-lined ground squirrels (Ictidomys tridecemlineatus).
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While hibernation interrupts the reproductive cycle in many
heterothermic mammals, some hibernating bats engage in mating
during hibernation. Sato et al. report males of little horseshoe bats
(Rhinolophus cornutus) retaining sexual behavior and copulating
with females during hibernation. Forced mating appears to increase
chances of male bats to obtain a mate while avoiding pre-mating
female selection, whereas forced copulations induced arousal in
torpid females, which then cannot opt for higher-quality males. The
seasonal metabolic changes occurring in hibernators are also
associated with changes in individuals’ somatic maintenance such
as variations in telomeres, the protective endcap of chromosomes.
During hibernation, periodic rewarming, known as interbout
arousals, are associated with high metabolic costs including
telomeres shortening which can be lengthened in case of extra-
energy available during the winter (Giroud et al., 2023) or during the
active season (Hoelzl et al., 2016). Galindo-Lalana et al. investigate
telomerase activity, a key mechanism in telomere elongation, in the
garden dormouse (Eliomys quercinus) that shows high telomerase
activity across seasons except prior to hibernation due to diversion
of resources to increase fat reserves before overwintering.

Besides their seasonal adaptations to overcome challenging
conditions, hibernators display powerful metabolic and protective
mechanisms, including thermogenesis and cold resistance, to
accommodate the physiological extremes and metabolic depression.
During arousals, body temperature rapidly rises from 1°C to 40°C
requiring tight thermoregulation tomaintain rheostasis. Hunstiger et al.
reveal differential timing of protein and metabolite abundance of non-
shivering thermogenic pathways across different organs in Arctic
ground squirrels (Urocitellus parryii), indicating distinct thermogenic
functions. To extent the understanding of thermoregulatory
mechanisms and activation of pro-survival factors during
hibernation, Emser et al. studied the mitochondrial single-nucleotide
polymorphism m.3017C>T in the evolutionarily conserved gene MT-
SHLP6. In-silico analysis indicates the protein truncating
polymorphism to be more abundant in heterotherms. Transcript
abundance of MT-SHLP6 in thirteen-lined ground squirrel’s brown
adipose tissue, a key thermogenic organ, is also high before hibernation
and during arousal and low during torpor and after hibernation.

Most mammals adapt thermal physiology to normothermic
temperatures with large deviations leading to organ dysfunction
and death. Conversely, hibernators resist long-term cold states, a
current knowledge which is now summarized by Sone and
Yamaguchi. During torpor, hibernators also suppress blood
clotting to survive prolonged periods of immobility and
decreased blood flow that would otherwise lead to potentially
lethal clots. Yet, upon arousal hibernators must quickly restore
normal clotting activity to avoid excess bleeding. De Vrij et al.
review the mechanisms underlying inhibition of hemostasis in
multiple species of hibernating mammals in perspective of
medical applications to improve cold preservation of platelets
and antithrombotic therapy.

The induction of a torpid state in humans, named “synthetic
torpor,” holds large potential for either long distance space travel or
treatments of specific medical conditions, and constitutes an active
line of research. To identify underlying mechanisms of torpor, the
brain is thought to orchestrate various physiological changes within
the organism (Drew et al., 2001). The physiological mechanisms
facilitating the switch from an active state to a hibernation

phenotype remain to be elucidated. The Siberian chipmunk, a
food-storing hibernator, activates AMPK, a protein playing a
central role in feeding behavior and metabolic regulation in
response to starvation. Kamata et al. report phosphorylation of
AMPK in brain of hibernating chipmunks and absence of such in the
non-hibernating phenotype, corresponding with differences in
lifespan. In the same vein, hyperphosphorylated Tau protein is
the hallmark of neurodegeneration. Squarcio et al. elucidate the
molecular mechanisms underlying reversible hyperphosphorylation
of brain Tau protein during a hypothermic state of “synthetic torpor.”
Although still far from application in larger non-heterothermic
species, such as swine or humans, the overall similarity in Tau and
microglia regulation between natural and “synthetic torpor” offers
perspective on safe metabolic reduction in non-hibernating species.

Collectively, this Research Topic summarizes key relevant
knowledge into understanding the state of hibernation by
highlighting various adaptations associated with cryoprotection and
resistance to metabolic depression. We hope that this Research Topic
will constitute a solid ground for future collaborative and
multidisciplinary research efforts toward the understanding of the
hibernation phenotype leading to unravel the mechanisms of torpor
induction and maintenance in homeotherms for the development of a
state of “synthetic torpor” applicable to humans and other non-
heterotherms for therapeutic treatments.
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