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Background: The pan-immune-inflammation value (PIV) is an emerging
biomarker quantitatively reflecting the systemic immune-inflammatory status.
The predictive value of PIV has been well-established across various clinical
settings. However, its role in chronic obstructive pulmonary disease (COPD)
remains unclear and necessitates further investigation.

Methods: Data from NHANES 1999–2018 were filtered. Logistic regression
analyses were used to assess the correlation between COPD prevalence and
PIV in all participants. COX regression analyses and Kaplan-Meier survival curves
were used to investigate the relationship between COPD all-cause mortality and
PIV in COPD patients. Restricted cubic spline (RCS) analyses and piecewise linear
regression analyses were additionally employed to explore the correlation
between PIV and COPD. Subgroup analyses were performed to further clarify
the effects of other covariates on the associations. Sensitivity analyses were
employed to assess the robustness of the results.

Results: A total of 28,485 participants aged 40 years and older were recruited for
this study. After fully adjusting for covariates, higher PIV levels were independently
associated with increased COPD prevalence (OR = 1.67; 95% CI: 1.39–2.01) and
all-cause mortality (HR = 2.04; 95% CI: 1.41–2.95). The COPD prevalence curve
exhibited an inflection point at Log10-PIV of 2.24, showing no significant
correlation on the left side (OR = 0.86; 95% CI: 0.45–1.64) but a positive
correlation on the right side (OR = 2.00; 95% CI: 1.57–2.55). The COPD all-
cause mortality curve displayed an inflection point at Log10-PIV of 2.38,
indicating a negative correlation on the left side (HR = 0.23; 95% CI:
0.12–0.44) and a positive correlation on the right side (HR = 4.12; 95% CI:
2.62–6.48). Subgroup analyses with interaction tests showed that the strength
of the correlation between PIV and COPD prevalence was influenced by race,
smoking status, and BMI (all p for interaction <0.05). The relationship between PIV
and COPD all-cause mortality was unaffected by any covariates (all p for
interaction >0.05).
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Conclusion: Elevated PIV levels are associated with increased COPD prevalence.
COPD patients with either elevated or reduced PIV levels experience higher all-
cause mortality. Further large-scale, longitudinal studies are required to
corroborate these findings.
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1 Introduction

Chronic obstructive pulmonary disease (COPD) is a prevalent
chronic airway disease characterized by persistent airway inflammation
leading to irreversible airflow limitation (Christenson et al., 2022; Rao
et al., 2020). According to the World Health Organization, COPD is the
third leading cause of death globally, causing 3.23 million deaths in 2019
(WorldHealthOrganization, 2024). It is estimated that between 2020 and
2050, the direct and indirect costs of COPD worldwide will reach
4.326 trillion US dollars, imposing a significant burden on the global
economy and society (Chen et al., 2023). Although COPD can affect
individuals of all age groups, it ismost common in those over 40 years old
(Agustí et al., 2020). The pathogenesis of COPD is complex and
heterogeneous, influenced by various factors, including environmental
and genetic factors (Christenson et al., 2022). Novel and improved
biomarkers for airway diseases may help address the clinical and
biological complexities of COPD and facilitate precision medicine
(Agusti et al., 2016). Further research is needed to discover reliable,
measurable, and clinically relevant biomarkers to enhance COPD
prevention and improve the prognosis of COPD patients.

The pan-immune-inflammation value (PIV), also known as the
aggregate index of systemic inflammation (AISI), is a recently developed
biomarker that relies on peripheral blood counts, calculated by using the
counts of neutrophils, platelets, monocytes, and lymphocytes, which is
believed to be indicative of systemic inflammation (Guven et al., 2022;
Yang et al., 2022). Previous studies have demonstrated an association
between PIV or AISI and the severity as well as clinical outcomes of
numerous immune and inflammation-related diseases, including
esophageal cancer (Feng et al., 2023), non-small cell lung cancer
(Zhai et al., 2023), abdominal aortic calcification (Jin et al., 2024),
and myocardial infarction (Murat et al., 2023). It is noteworthy that a
recent study has investigated the prognostic role of AISI in COVID-19
patients with COPD(13). Large-scale studies examining the association
between PIV and COPD, however, remain absent.

To address this knowledge gap, we utilized a substantial sample of
individuals aged 40 and older from the National Health and Nutrition
Examination Survey (NHANES) to assess the association between PIV
levels and the COPD prevalence and all-cause mortality. We also
employed restricted cubic spline (RCS) curves and segmented linear
regression to explore their nonlinear relationships and applied
subgroup analyses to identify specific populations.

2 Methods

2.1 Study design and participants

The National Health and Nutrition Examination Survey
(NHANES) is a nationwide survey conducted by the National

Center for Health Statistics (NCHS) under the Centers for
Disease Control and Prevention to collect data on the health of
the population. It has been conducted biennially since 1999. We
used publicly available NHANES data from 1999 to 2018 for this
study. Each NHANES survey cycle underwent rigorous evaluation
and approval by the NCHS Research Ethics Review Board, and all
participants provided written informed consent (CDC, 2024a). The
dataset is available publicly on the NHANES website (CDC, 2024b).

Our study initially screened 101,316 participants fromNHANES
1999–2018, excluding the following: 1) individuals with missing
COPD data; 2) individuals younger than 40 or equal to 80 or older
than 80; 3) individuals with missing PIV data; 4) individuals with
incomplete covariate data (e.g., BMI, CVD, hypertension, diabetes).
Ultimately, a total of 28,485 participants were included in this
study (Figure 1).

FIGURE 1
Flowchart of participant selection for this study. NHANES,
National Health and Nutrition Examination Survey; COPD, Chronic
Obstructive Pulmonary Disease.
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2.2 Assessment of COPD

In accordance with the 2024 Global Initiative for Chronic
Obstructive Lung Disease (GOLD) guidelines (GOLD, 2024) and
the methodology used in previous studies (Huang et al., 2023a; Liu
et al., 2024), we defined COPD as the presence of any of the
following: (Christenson et al., 2022) forced expiratory volume in
1 s (FEV1)/forced vital capacity (FVC) <0.7 after bronchodilator
inhalation; (Rao et al., 2020) individuals aged 40 or older with a
history of smoking or chronic bronchitis who were currently
undergoing COPD treatment, including inhaled corticosteroids,
mast cell stabilizers, leukotriene modifiers, and selective
phosphodiesterase-4 inhibitors; (World Health Organization,
2024) a positive response to any of the questions, “Has a doctor
or other health professional ever told you that you had COPD?”
“Has a doctor or other health professional ever told you that you had
chronic bronchitis?” or “Has a doctor or other health professional
ever told you that you had emphysema?”.

2.3 Assessment of PIV

The PIV was calculated as neutrophil count (10̂ 9/L) × platelet
count (10̂ 9/L) × monocyte count (10̂ 9/L)/lymphocyte count (10̂ 9/
L). Log10-PIV represents the logarithmic transformation of PIV
with base 10, applied to address the skewed distribution of PIV.

2.4 Mortality data collection

We utilized NHANES data from 1999 to 2018 and prospectively
correlated it with National Death Index (NDI) mortality data, with
follow-up extending December 31, 2019. The primary outcome
assessed in this study was all-cause mortality, defined as deaths
from any cause.

2.5 Covariates

Based on the published studies, we selected several significant
potential covariates that might influence the results, including age,
sex, race, marriage, educational attainment, smoking status, body
mass index (BMI, kg/m2), diabetes, hypertension, and
cardiovascular disease (CVD). Age, sex, race, marriage, and
educational attainment were obtained from self-reports by the
participants. Smoking status was categorized into three groups:
former, current, and never smokers. Former smokers were
defined as individuals who had smoked at least 100 cigarettes in
their lifetime but were not currently smoking. Current smokers were
those who had smoked at least 100 cigarettes in their lifetime and
were currently smoking either daily or occasionally. Never smokers
were defined as individuals who had smoked no more than
100 cigarettes in their lifetime. BMI was grouped as follows:
underweight (<18.5 kg/m2), normal (18.5–24.9 kg/m2),
overweight (25–29.9 kg/m2), and obese (≥30 kg/m2). Diabetes
was diagnosed based on a self-reported physician diagnosis or
the application of diabetes medications. Hypertension was
defined by a systolic blood pressure ≥130 mmHg, a diastolic

blood pressure ≥80 mmHg, self-reported hypertension, or the use
of antihypertensive medications. CVD was identified based on an
affirmative response to the question, “Has a doctor or other health
professional ever told you that you had congestive heart failure
(CHF), coronary heart disease (CHD), angina pectoris, heart attack,
or stroke?”.

2.6 Statistical analyses

All statistical analyses used appropriate sampling weights in
accordance with the NHANES Analytic Guidelines to ensure that
the sample data accurately represent the entire U.S. population,
given the complex multistage probability sampling design.
Continuous variables were presented as means (standard error),
while categorical variables were expressed as counts (percentages).
Due to the skewed distribution of PIV, it was logarithmically
transformed for use in regression and subgroup analyses. We
applied the weighted Student’s t test for continuous variables and
the chi-squared test for categorical variables.

Multiple logistic regression analyses were used to examine the
associations between PIV and COPD prevalence. Three
multivariate-adjusted models were constructed: the crude model
without adjusting for any covariates, model 1 adjusting for age, sex,
race, marriage, educational attainment, smoking status, and BMI,
and model 2 adjusting for all covariates. The results were reported as
odds ratios (ORs) and 95% confidence intervals (CIs).

Multiple COX regression analyses and Kaplan-Meier survival
curves were utilized to assess the relationships between the PIV and
all-cause mortality in COPD participants. Three models were
similarly developed following the previous section. The results
were indicated as hazard ratios (HRs) and 95% CIs.

We used restricted cubic spline (RCS) analyses to explore the
potential nonlinear relationships between PIV and both COPD
prevalence and all-cause mortality. Additionally, two-piecewise
linear regression analysis was applied to investigate the
association between PIV and COPD in more detail. In addition,
subgroup analyses were conducted to evaluate the consistency of
these relationships across subgroups, and interaction tests were
performed to identify the interaction effects among covariates.
Furthermore, data from COPD participants with less than
24 months of follow-up were excluded for sensitivity analyses to
assess the robustness of the results regarding the relationship
between PIV and all-cause mortality in COPD.

All data were analyzed using R software (version 4.3.2). A two-
sided p-value <0.05 was considered statistically significant.

3 Results

3.1 Basic characteristics of participants

This study encompassed a total of 28,485 participants with a
mean age of 55.80 years, comprising 14,007 males (47.80%) and
14,478 females (52.20%), including 3,245 COPD participants and
25,240 non-COPD participants. COPD participants may be older
than non-COPD participants. Additionally, the two groups differed
significantly in sex, race, marriage, educational attainment, smoking

Frontiers in Physiology frontiersin.org03

Qiu et al. 10.3389/fphys.2024.1440264

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1440264


TABLE 1 Baseline characteristics of all participants by incident COPD.

Characteristics Overall
(n = 28,485)

Non-COPD
(n = 25,240)

COPD
(n = 3,245)

P-value

Age (years), n (%) <0.0001

40–49 8,136 (33.68) 7,516 (35.07) 620 (23.22)

50–59 7,310 (30.88) 6,496 (31.01) 814 (29.94)

60–69 7,922 (21.99) 6,913 (21.17) 1,009 (28.10)

70–79 5,117 (13.45) 4,315 (12.74) 802 (18.74)

Sex, n (%) < 0.0001

Male 14,007 (47.80) 12,538 (48.65) 1,469 (41.39)

Female 14,478 (52.20) 12,702 (51.35) 1776 (58.61)

Race, n (%) < 0.0001

Non-Hispanic White 12,435 (72.59) 10,505 (71.56) 1930 (80.36)

Non-Hispanic Black 6,109 (10.10) 5,479 (10.34) 630 (8.30)

Mexican American 4,909 (6.15) 4,645 (6.65) 264 (2.40)

Others 5,032 (11.16) 4,611 (11.45) 421 (8.94)

Marriage, n (%) < 0.0001

Married/Living with partner 18,508 (70.04) 16,706 (71.08) 1802 (62.19)

Widowed/Divorced/Separated 7,666 (22.97) 6,484 (21.87) 1,182 (31.23)

Never married 2,311 (7.00) 2050 (7.05) 261 (6.58)

Educational attainment, n (%) < 0.0001

>High school 13,781 (58.68) 12,305 (59.59) 1,476 (51.79)

High school 6,492 (24.15) 5,694 (23.79) 798 (26.80)

< High school 8,212 (17.17) 7,241 (16.61) 971 (21.41)

Smoking status, n (%) < 0.0001

Former 8,426 (30.05) 7,146 (28.92) 1,280 (38.68)

Current 5,724 (19.46) 4,583 (17.36) 1,141 (35.25)

Never 14,318 (50.46) 13,494 (53.73) 824 (26.07)

BMI (kg/m2), n (%) < 0.0001

Underweight (<18.5) 319 (1.15) 244 (0.99) 75 (2.38)

Normal (≥18.5,<24.9) 6,652 (24.64) 5,943 (25.00) 709 (21.91)

Overweight (≥25, <29.9) 10,068 (35.21) 9,110 (35.89) 958 (30.13)

Obese (≥30) 11,446 (39.00) 9,943 (38.12) 1,503 (45.59)

Diabetes, n (%) < 0.0001

Yes 5,180 (13.50) 4,374 (12.62) 806 (20.06)

No 23,305 (86.50) 20,866 (87.38) 2,439 (79.94)

Hypertension, n (%) < 0.0001

Yes 15,261 (48.07) 13,179 (46.64) 2082 (58.77)

No 13,224 (51.93) 12,061 (53.36) 1,163 (41.23)

CVD, n (%) < 0.0001

Yes 3,952 (11.53) 3,013 (9.69) 939 (25.33)

(Continued on following page)
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status, BMI, diabetes, hypertension, and CVD. Furthermore, the PIV
of the COPD group was significantly higher than that of the non-
COPD group (all p < 0.0001) (Table 1).

3.2 Associations between PIV and COPD
prevalence

Among the 23,844 participants included, logistic regression
analyses were applied to explore the relationship between PIV
and the COPD prevalence, as detailed in Table 2. The results
indicated a positive correlation between Log10-PIV and COPD,
which remained statistically significant in the crude model (OR =
2.52, 95% CI: 2.13–2.99, p < 0.0001), model 1 (OR = 1.77, 95% CI:
1.48–2.12, p < 0.0001), and model 2 (OR = 1.67, 95% CI: 1.39–2.01,
p < 0.0001). When Log10-PIV was transformed into a categorical
variable by tertiles, the first tertile group (Q1, 0.07≤Log10-PIV≤2.27,
n = 9,505), the second tertile group (Q2, 2.27<Log10-PIV≤2.51, n =
9,506), and the third tertile group (Q3, 2.51≤Log10-PIV≤4.36, n =
9,476) were analyzed. The Q2 group (OR = 1.24, 95% CI: 1.10–1.41,
p < 0.0001) and Q3 group (OR = 1.79, 95% CI: 1.59–2.03, p <
0.0001) exhibited higher risks of COPD in the crude model. In the
model adjusting for selected covariates (model 1), the Q3 group
(OR = 1.41, 95% CI: 1.25–1.61, p < 0.0001) had an increased risk of
COPD. Similarly, in the model adjusting for all covariates (model 2),
only the Q3 group (OR = 1.36, 95% CI: 1.19–1.56, p < 0.0001)
demonstrated a higher risk of COPD. Across all models, compared
to the reference group (Q1), individuals in the highest tertile (Q3)
consistently maintained a positive association with COPD.

3.3 Associations between PIV and COPD all-
cause mortality

Among the 3,238 available death data of COPD participants,
during a median follow-up period of 94 months, 852 cases (26%) of
all-cause mortality occurred. The final cohort of COPD participants
was categorized into three groups based on Log10-PIV tertiles: the
first tertile group (Q1, 1.09≤Log10-PIV≤2.35, n = 1,080), the second
tertile group (Q2, 2.35<Log10-PIV≤2.60, n = 1,075), and the third
tertile group (Q3, 2.60≤Log10-PIV≤3.80, n = 1,083). Baseline
characteristics of COPD participants according to Log10-PIV
tertiles are detailed in Table 3. The results indicated that
individuals with higher Log10-PIV were more likely to be non-
Hispanic white, have a higher likelihood of smoking, have a higher
tendency towards obesity, and have a greater likelihood with CVD
(all p < 0.05).

We generated Kaplan-Meier survival curves with accompanying
risk tables, using weighted survival rates at a follow-up duration of
249 months as the endpoint. In the Kaplan-Meier survival curves,
the Q3 group exhibited the highest all-cause mortality (p < 0.0001,
Figure 2). COX regression analyses showed a significant positive
correlation between Log10-PIV and the COPD all-cause mortality in
the crude model (HR = 2.86, 95% CI: 1.94–4.21, p < 0.0001), model 1
(HR = 2.12, 95% CI: 1.49–3.03, p < 0.0001), and model 2 (HR = 2.04,
95% CI: 1.41–2.95, p < 0.001). In all models, compared to the
Q1 group, the Q3 group had a higher risk of all-cause mortality
(crude model: HR = 1.78, 95% CI: 1.40–2.27, p < 0.0001; model 1:
HR = 1.54, 95% CI: 1.22–1.94, p < 0.001; model 2: HR = 1.49, 95%
CI: 1.17–1.89, p = 0.001) (Table 4).

TABLE 1 (Continued) Baseline characteristics of all participants by incident COPD.

Characteristics Overall
(n = 28,485)

Non-COPD
(n = 25,240)

COPD
(n = 3,245)

P-value

No 24,533 (88.47) 22,227 (90.31) 2,306 (74.67)

PIV 324.70 (2.55) 316.89 (2.58) 383.33 (6.49) < 0.0001

Continuous variables were presented as means (standard error). Categorical variables were expressed as counts (percentages).

COPD, chronic obstructive pulmonary disease; PIV, pan-immune-inflammation value; BMI, body mass index; CVD, cardiovascular disease.

The bold values in the table mean statistically significant differences.

TABLE 2 Association of PIV with COPD prevalence using logistic regression analyses.

Crude model Model 1 Model 2

OR (95% CI) P OR (95% CI) P OR (95% CI) P

Log10-PIV 2.52 (2.13,2.99) <0.0001 1.77 (1.48,2.12) <0.0001 1.67 (1.39,2.01) <0.0001

Q1 [0.07, 2.27] References References References

Q2 (2.27, 2.51] 1.24 (1.10,1.41) <0.001 1.12 (0.99,1.26) 0.07 1.10 (0.97,1.24) 0.13

Q3 (2.51, 4.36] 1.79 (1.59,2.03) <0.0001 1.41 (1.25,1.61) <0.0001 1.36 (1.19,1.56) <0.0001

p for trend <0.0001 <0.0001 <0.0001

Crude Model: no covariates were adjusted.

Model 1: age, sex, race, marriage, educational attainment, smoking status, BMI, were adjusted.

Model 2: all covariates were adjusted.

COPD, chronic obstructive pulmonary disease; PIV, pan-immune-inflammation value; OR, odds ratio; 95% CI: 95% confidence interval; Q1-3 respectively represent the groups divided

according to the tertiles.

The bold values in the table mean statistically significant differences.
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TABLE 3 Baseline characteristics of COPD participants by Log10-PIV tertiles.

Characteristics Overall
(n = 3,238)

Q1
(n = 1,080)

Q2
(n = 1,079)

Q3
(n = 1,079)

P-value

Age(years), n (%) 0.11

40–49 618 (23.23) 204 (22.44) 220 (24.97) 194 (22.10)

50–59 812 (29.92) 284 (31.47) 275 (29.64) 253 (28.79)

60–69 1,006 (28.09) 372 (30.00) 326 (27.69) 308 (26.76)

70–79 802 (18.77) 220 (16.09) 258 (17.69) 324 (22.36)

Sex, n (%) 0.2

Male 1,465 (41.37) 451 (40.91) 467 (39.27) 547 (44.04)

Female 1773 (58.63) 629 (59.09) 612 (60.73) 532 (55.96)

Race, n (%) < 0.0001

Non-Hispanic White 1928 (80.42) 503 (72.08) 692 (83.88) 733 (84.34)

Non-Hispanic Black 629 (8.31) 353 (15.18) 148 (5.66) 128 (4.84)

Mexican American 263 (2.40) 68 (2.22) 104 (2.54) 91 (2.41)

Others 418 (8.88) 156 (10.52) 135 (7.92) 127 (8.41)

Marriage, n (%) 0.05

Married/Living with partner 1796 (62.14) 599 (63.85) 616 (64.50) 581 (58.07)

Widowed/Divorced/Separated 1,181 (31.27) 376 (28.97) 397 (30.16) 408 (34.55)

Never married 261 (6.59) 105 (7.17) 66 (5.33) 90 (7.38)

Educational attainment, n (%) 0.22

>High school 1,472 (51.81) 519 (54.65) 489 (52.44) 464 (48.55)

High school 796 (26.76) 264 (26.11) 260 (26.15) 272 (28.00)

< High school 970 (21.43) 297 (19.24) 330 (21.41) 343 (23.45)

Smoking status, n (%) < 0.0001

Former 1,276 (38.62) 386 (35.58) 449 (42.11) 441 (37.69)

Current 1,140 (35.29) 348 (32.47) 353 (31.40) 439 (42.01)

Never 822 (26.08) 346 (31.95) 277 (26.48) 199 (20.30)

BMI (kg/m2), n (%) 0.01

Underweight (<18.5) 75 (2.38) 20 (1.21) 25 (2.51) 30 (3.32)

Normal (≥18.5,<24.9) 707 (21.91) 243 (23.62) 217 (19.05) 247 (23.41)

Overweight (≥25, <29.9) 956 (30.12) 342 (33.98) 312 (29.12) 302 (27.66)

Obese (≥30) 1,500 (45.58) 475 (41.19) 525 (49.32) 500 (45.61)

Diabetes, n (%) 0.88

Yes 806 (20.09) 265 (19.55) 257 (20.61) 284 (20.02)

No 2,432 (79.91) 815 (80.45) 822 (79.39) 795 (79.98)

Hypertension, n (%) 0.27

Yes 2078 (58.76) 682 (55.88) 682 (59.72) 714 (60.38)

No 1,160 (41.24) 398 (44.12) 397 (40.28) 365 (39.62)

CVD, n (%) 0.01

Yes 939 (25.37) 281 (23.29) 293 (23.38) 365 (29.38)

(Continued on following page)
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3.4 Identification of nonlinear relationship

To identify the potential nonlinear relationships between PIV
and COPD, RCS analyses were applied after adjusting for all
covariates. The results are presented in Figure 3. Log10-PIV
showed a nonlinear correlation with COPD, exhibiting a
J-shaped curve for COPD prevalence (p for nonlinear <0.05) and
a U-shaped curve for COPD all-cause mortality (p for
nonlinear <0.0001). The RCS curves exhibited distinct inflection

points, prompting the execution of segmented linear regression
analyses, as detailed in Table 5. The results revealed a significant
inflection point (K = 2.24) between Log10-PIV and COPD
prevalence. When Log10-PIV was below 2.24, the association
between Log10-PIV and COPD prevalence was not statistically
significant (OR = 0.86, 95% CI: 0.45–1.64, p = 0.65), whereas it
was significantly positive when Log10-PIV exceeded 2.24 (OR =
2.00, 95% CI: 1.57–2.55, p < 0.0001). A distinct inflection point was
also identified for Log10-PIV and COPD all-cause mortality (K =
2.38). On the left side of the inflection point, Log10-PIV had a strong
negative correlation with all-cause mortality (HR = 0.23, 95% CI:
0.12–0.44, p < 0.0001). On the right side of the inflection point, there
was a significant positive correlation between Log10-PIV and all-
cause mortality (HR = 4.12, 95% CI: 2.62–6.48, p < 0.0001). These
findings indicate that PIV levels have varying effects on COPD.

3.5 Subgroup analyses and
sensitivity analyses

Subgroup analyses and interaction tests were conducted after
adjusting for all covariates to further validate the consistency of the
association between PIV and COPD and to identify potential
differences in specific subgroups. The results showed that the
association between PIV and COPD prevalence remained
unchanged after stratifying the participants by age, sex, marriage,
educational attainment, diabetes, hypertension, and CVD (p for
interaction >0.05). However, there were significant interactions
between PIV and race, smoking status, and BMI. PIV and the
risk of COPD prevalence were not strongly associated among

TABLE 3 (Continued) Baseline characteristics of COPD participants by Log10-PIV tertiles.

Characteristics Overall
(n = 3,238)

Q1
(n = 1,080)

Q2
(n = 1,079)

Q3
(n = 1,079)

P-value

No 2,299 (74.63) 799 (76.71) 786 (76.62) 714 (70.62)

Continuous variables were presented as means (standard error). Categorical variables were expressed as counts (percentages).

COPD, chronic obstructive pulmonary disease; PIV, pan-immune-inflammation value; BMI, body mass index; CVD, cardiovascular disease.

The bold values in the table mean statistically significant differences.

FIGURE 2
Kaplan–Meier survival curves of COPD all-cause mortality during
249 months follow–up duration. COPD, Chronic Obstructive
Pulmonary Disease; PIV, pan-immune-inflammation value; Q1-3
respectively represent the groups divided according to the
tertiles; Q1 [1.09, 2.35]; Q2 (2.35, 2.60]; Q3 (2.60, 3.80].

TABLE 4 Association of PIV with COPD all-cause mortality using COX regression analyses.

Crude model Model 1 Model 2

HR (95% CI) P HR (95% CI) P HR (95% CI) P

Log10-PIV 2.86 (1.94,4.21) <0.0001 2.12 (1.49,3.03) <0.0001 2.04 (1.41,2.95) <0.001

Q1 [1.09, 2.35] References References References

Q2 (2.35, 2.60] 1.00 (0.81,1.23) 0.98 0.95 (0.77,1.18) 0.65 0.95 (0.76,1.18) 0.62

Q3 (2.60, 3.80] 1.78 (1.40,2.27) <0.0001 1.54 (1.22,1.94) <0.001 1.49 (1.17,1.89) 0.001

p for trend <0.0001 <0.0001 <0.001

Crude Model: no covariates were adjusted.

Model 1: age, sex, race, marriage, educational attainment, smoking status, BMI, were adjusted.

Model 2: all covariates were adjusted.

COPD, chronic obstructive pulmonary disease; PIV, pan-immune-inflammation value; HR, hazard ratio; 95% CI: 95% confidence interval; Q1-3 respectively represent the groups divided

according to the tertiles.

The bold values in the table mean statistically significant differences.
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non-Hispanic Black (OR = 1.41, 95% CI: 0.99–2.02), but showed
stronger associations among Mexican Americans (OR = 4.12, 95%
CI: 2.32–7.32), former smokers (OR = 2.80, 95% CI: 2.01–3.89), and
those with a BMI classified as underweight (OR = 6.01, 95% CI:
2.14–16.91) (Figure 4). In addition, the results demonstrated no
interaction in the association between PIV and COPD all-cause
mortality across all subgroups (all p for interaction >0.05),
indicating consistent results across subgroups (Figure 5).

Sensitivity analyses were performed by excluding individuals
with follow-up times of less than 24 months (Supplementary Table
S1), and the results of COX regression analyses remained consistent,
thereby validating the robustness of our findings.

4 Discussion

To the best of our knowledge, this study is the first to elucidate
the associations between PIV and COPD prevalence and all-cause
mortality in a representative national sample. We included eligible

participants from 1999 to 2018 in the NHANES database, and the
study yielded the following main findings: 1) PIV was positively
correlated with both COPD prevalence and all-cause mortality, with
this relationship remaining significant in fully adjusted models. 2)
PIV exhibited a J-shaped correlation with COPD prevalence and a
U-shaped correlation with all-cause mortality. This suggests that an
increase in PIV is significantly associated with higher COPD
prevalence within certain ranges, whereas COPD all-cause
mortality initially decreased and subsequently increased with
rising PIV levels. 3) Subgroup analyses demonstrated that the
association between PIV and COPD prevalence was influenced
by race, smoking status, and BMI. This association was not
significant among non-Hispanic Black individuals but was
stronger in Mexican Americans, former smokers, and those with
underweight BMI. However, the association between PIV and
COPD all-cause mortality remained consistent across all
subgroups and was unaffected by common demographic factors,
lifestyle, and underlying conditions. These results could facilitate the
clinical development of PIV as a more comprehensive composite

FIGURE 3
The RCS curves of the associations of PIV with COPD prevalence and COPD all-cause mortality after adjusting all covariates. (A) COPD prevalence;
(B) COPD all-cause mortality. COPD, Chronic Obstructive Pulmonary Disease; PIV, pan-immune-inflammation value.

TABLE 5 Two-piecewise linear regression analyses of PIV and COPD prevalence and COPD all-cause mortality after adjusting all covariates.

Log10-PIV Adjusted OR (95% CI) P Adjusted HR (95%CI) P

Fitting by the standard linear model 1.64 (1.36, 1.97) <0.0001 2.04 (1.41, 2.95) <0.001

Fitting by the two-piecewise linear model

Inflection point(K) 2.24 2.38

<K 0.86 (0.45, 1.64) 0.65 0.23 (0.12, 0.44) <0.0001

≥K 2.00 (1.57, 2.55) <0.0001 4.12 (2.62, 6.48) <0.0001

Log likehood ratio test P < 0.001 P < 0.001

The results of PIV, and COPD prevalence were expressed as Adjusted OR (95% CI).

The results of PIV, and COPD all-cause mortality were expressed as Adjusted HR (95% CI).

COPD, chronic obstructive pulmonary disease; PIV, pan-immune-inflammation value; OR, odds ratio; HR, hazard ratio; 95% CI: 95% confidence interval.
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indicator for assessing COPD diagnosis, prognosis, and the
identification of high-risk COPD populations.

PIV combines four major peripheral blood immune cell types:
neutrophils, platelets, monocytes, and lymphocytes, and is
considered a novel and more comprehensive indicator of
systemic inflammation. Previous research has primarily focused
on cancer patients. For instance, a systematic review and meta-
analysis of 15 studies involving 4,942 patients demonstrated that
PIV serves as a prognostic biomarker for both overall survival and
progression-free survival in cancer patients (Guven et al., 2022).
Similar results were reported in another systematic review andmeta-
analysis focusing on colon cancer (Yang et al., 2022). In pulmonary
tumors, PIV has served as a predictive biomarker for non-small cell
lung cancer (Putzu et al., 2018) and as an indicator of pathological
complete response and clinical prognosis in patients undergoing
neoadjuvant immunotherapy for non-small cell lung cancer (Zhai

et al., 2023). Recently, the prognostic value of PIV in non-cancerous
diseases has been recognized. For example, PIV has been regarded as
a prognostic indicator for outcomes in patients with ST-segment
elevation myocardial infarction and non-traumatic subarachnoid
hemorrhage (Murat et al., 2023; Huang et al., 2023b). In pulmonary
diseases, PIV has been viewed both as an indicator for assessing the
severity of COVID-19 and the necessity of ICU admission (Hamad
et al., 2022), and as a prognostic indicator for adverse outcomes in
patients with idiopathic pulmonary fibrosis (Zinellu et al., 2020).
Recently, a study indicated that AISI upon admission serves as a
reliable predictor of mortality in COVID-19 patients with COPD,
with higher AISI values correlating with lower survival rates
(Hosseninia et al., 2023). In our study, COPD participants
exhibited higher PIV levels compared to non-COPD participants.
The highest tertile of PIV was associated with the highest prevalence
and all-cause mortality. Logistic regression and COX regression

FIGURE 4
Subgroup analyses of the associations between PIV and COPD prevalence. COPD, Chronic Obstructive Pulmonary Disease; PIV, pan-immune-
inflammation value; BMI, body mass index; CVD, cardiovascular disease; OR, odds ratio; 95% CI: 95% confidence interval.
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revealed that high PIV levels are independent risk factors for both
COPD prevalence and all-cause mortality. These findings are
consistent with previous studies, further confirming the clinical
utility of PIV in COPD.

Our research confirmed a positive correlation between PIV
and the risk of COPD prevalence and all-cause mortality.
However, the underlying pathological and physiological
mechanisms remain unclear. Current consensus suggests that
the pathogenesis of COPD primarily involves inflammatory
mechanisms, protease-antiprotease imbalance, and oxidative
stress from various sources, collectively contributing to the
development of small airway and emphysematous lesions,
which result in the characteristic persistent airflow limitation
of COPD (Mirza et al., 2018). From the perspective of PIV,
neutrophils are the most abundant cells in circulation and are the
first to be recruited to the site of inflammation (Sadiku et al.,

2021). The activation and degranulation of neutrophils release
various destructive enzymes, including neutrophil elastase (NE),
matrix metalloproteinase (MMP), proteinase 3 (PR3), and
cathepsin G (Cat G), leading to lung tissue damage (Chalmers
et al., 2023; Jasper et al., 2019). NE stimulates toll-like receptors
(TLRs) on epithelial cells, resulting in the upregulation and
release of cytokines, increased production and secretion of
airway mucoproteins, excessive mucus secretion, and
subsequent airway obstruction (Voynow et al., 2020; Hao
et al., 2020). Additionally, NE upregulates neutrophil
chemotactic factors, such as interleukin (IL)-8, thereby
amplifying inflammation (Clancy et al., 2018). Compared to
NE, PR3 may experience fewer pulmonary inhibitory effects
and have a broader radius of activity (Crisford et al., 2018).
Platelets are not only important in hemostasis and thrombosis
but also play a crucial role in immune and inflammatory

FIGURE 5
Subgroup analyses of the associations between PIV and COPD all-cause mortality. COPD, Chronic Obstructive Pulmonary Disease; PIV, pan-
immune-inflammation value; BMI, body mass index; CVD, cardiovascular disease; HR, hazard ratio; 95% CI: 95% confidence interval.
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regulation (Mallah et al., 2020). Activated platelets produce and
release inflammatory mediators, such as IL-1β, recruiting
inflammatory cells and driving oxidative stress and chronic
inflammation in COPD (Koenen, 2016). Studies have shown
that impaired repair and remodeling following lung injury are
closely associated with COPD, where hemostatic disorders and
chronic inflammation play major roles (Agustí and Hogg, 2019).
In COPD patients, however, platelet activation disorders leading
to impaired hemostasis hinder lung tissue repair (Liu et al., 2020),
thereby promoting the development of COPD. Platelets can also
mediate the formation of pulmonary microthrombi. Red blood
cells in COPD patients have been observed to undergo
deformation, facilitating the translocation of platelets to the
vascular wall, which results in adhesion, aggregation, and
activation on the vascular wall (Zouaoui Boudjeltia et al.,
2021). Furthermore, hypoxia stress and elevated expression of
hypoxia-inducible factor (HIF) due to hypoxemia in COPD can
stimulate platelets to synthesize plasminogen activator inhibitor
(PAI)-1, inducing a prothrombotic state associated with hypoxia
(Chaurasia et al., 2019), which further promotes the development
of COPD. Monocytes are recruited to the lungs and contribute to
the macrophage pool during inflammation, increasing the
macrophage population in the airways of COPD patients
(Barnes, 2017). Macrophages secrete numerous inflammatory
mediators, including IL-1β, tumor necrosis factor-α (TNF-α),
IL-8, MMPs, and reactive oxygen species (ROS), which directly or
indirectly affect airway structural cells and participate in airway
remodeling (Wang et al., 2018a). Studies have found that
monocyte-derived macrophages (MDMs) in COPD exhibit
defects in phagocytosis and engulfment, leading to excessive
cellular inflammation, an ineffective immune response, and
ultimately lung injury, potentially associating with the
frequency of acute exacerbations of COPD (Bewley et al.,
2017; Ryan et al., 2023). Lymphocytes contribute to lung
tissue damage in COPD patients (Wang et al., 2018a).
Subtypes of CD4+ T cells, specifically Th17 cells, secrete IL-17,
which stimulates airway epithelial cells to produce chemokines
and other mediators, recruiting and activating neutrophils and
macrophages (Pridgeon et al., 2011). Activated CD8+ T cells
release cytotoxic mediators, such as perforin, which damage lung
tissue structure and accelerate the progression of emphysema
(Kobayashi et al., 2013). In addition, CD8+ T cells produce
various inflammatory mediators, including interferon-γ (IFN-
γ), TNF-α, and IL-4, which may be linked to exacerbations of
COPD (Barczyk et al., 2006). These studies demonstrate the
intricate biological relationship between neutrophils, platelets,
monocytes, and lymphocytes and the pathogenesis of COPD.
From an epidemiological perspective, our findings reveal a clear
connection between PIV and COPD.

Using RCS analyses, we elucidated the nonlinear relationships
between PIV and COPD prevalence and all-cause mortality. The
prevalence curve exhibited a J-shaped correlation, and the all-cause
mortality curve showed a U-shaped correlation, suggesting that
elevated PIV increased the risk of COPD prevalence, while both
elevated and reduced PIV increased the risk of all-cause mortality in
COPD patients. Currently, there is no precise research elucidating
the reasons for these outcomes.We speculated that this might be due
to the fact that a low PIV level reflects an individual’s immune

deficiency state, whereas a high PIV level indicates an excessive state.
Both conditions might lead to immune imbalance in COPD patients
and subsequent increase the risk of mortality. This suggests a
potential beneficial effect of PIV within a specific range in
reducing the risk of COPD prevalence and all-cause mortality.

After conducting subgroup analyses that adjusted for
potential confounding factors, the associations between PIV
and all-cause mortality in COPD patients remained consistent
across different subgroups. However, our results revealed specific
differences in the associations between PIV and COPD
prevalence among various populations. PIV did not affect the
prevalence risk in non-Hispanic Black individuals but showed a
stronger correlation in Mexican Americans who were former
smokers and had a BMI classified as underweight. These suggest
that these individuals might constitute a high-risk population for
COPD and require more intensive prevention strategies.
Previous studies consistently demonstrate an increased risk of
COPD associated with smoking and underweight (Wang et al.,
2018b; Li et al., 2020), which aligns with our findings. Research
indicates that smoking is a significant etiological factor for
COPD, leading to increased production of reactive oxygen
species and persistent inflammation even after smoking
cessation (Rao et al., 2020). The increased risk of COPD
associated with underweight may be related to malnutrition
and muscle weakness (Benz et al., 2019; Shaheen and Barker,
1994). Although the interaction mechanisms between race and
PIV remain unclear, a recent cohort study showed a lower
likelihood of COPD in Black individuals compared to other
races (Ejike et al., 2021), which is consistent with our results.
However, this study also reported that Black individuals were
associated with higher disease severity and acute exacerbation
risks (Ejike et al., 2021), suggesting the need for further research
to explore potential influencing factors such as race-specific
genetics, physical function, and individual socioeconomic status.

Our study has several key strengths. Firstly, this study represents
the inaugural investigation into the association between PIV and
both COPD prevalence and all-cause mortality, utilizing a nationally
representative sample from the United States. This approach
enhances the generalizability and applicability of our findings.
Secondly, we controlled for numerous potential confounding
factors, including demographic information, lifestyle, and
comorbidities, thereby enhancing the reliability and
representativeness of our results. Thirdly, RCS analyses were
applied to identify potential nonlinear relationships and cut-off
values, while segmented linear regression analyses were used to
more precisely describe the relationship between PIV and COPD.
Finally, subgroup analyses with interaction verification and
sensitivity analyses validated the robustness of our results and
highlighted potential heterogeneity.

However, this study also has limitations. Firstly, our study
population comprised individuals aged 40–79 from the
United States. This was due to the fact that COPD patients
are predominantly over the age of 40 (5). In addition, it was
to exclude deaths caused by various factors, such as aging, among
individuals older than 80. This may limit the generalizability of
the findings to other populations. Secondly, some participants
defined as having COPD were prescribed medication, which may
have influenced PIV levels. Future research employing more in-
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depth and refined methodologies is necessary. Thirdly, although
we adjusted for various confounding factors, other potential
confounders could not be entirely accounted for because of
many constraints, including space limitations. Fourthly, we are
unable to infer causality between PIV and COPD because of the
cross-sectional design of NHANES; therefore, further
prospective studies and randomized trials are required to
confirm these associations. Finally, the correlation between
PIV and COPD prevalence is influenced by race, smoking
status, and BMI, requiring further research into these factors
to explore potential mechanisms and enhance
precision medicine.

In summary, this study found that elevated PIV levels were
associated with increased COPD prevalence, particularly among
Mexican Americans, former smokers, and individuals with a BMI
classified as underweight. This finding may facilitate the
identification of at-risk populations and guide more effective
management strategies. Additionally, the study revealed that
COPD patients with either elevated or reduced PIV levels faced a
higher risk of all-cause mortality. These findings provide valuable
clues for targeted interventions aimed at reducing COPD prevalence
and all-cause mortality and emphasize the potential of PIV as
a biomarker.

5 Conclusion

Elevated PIV levels are associated with increased COPD
prevalence. COPD patients with either elevated or reduced PIV
levels experience higher all-cause mortality. Further large-scale,
longitudinal studies are required to corroborate these findings.
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