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The most common manifestation of neurological disorders in children is
the occurrence of epileptic seizures. In this study, we propose a multi-
branch graph convolutional network (MGCNA) framework with a multi-head
attention mechanism for detecting seizures in children. The MGCNA framework
extracts effective and reliable features from high-dimensional data, particularly
by exploring the relationships between EEG features and electrodes and
considering the spatial and temporal dependencies in epileptic brains. This
method incorporates three graph learning approaches to systematically assess
the connectivity and synchronization of multi-channel EEG signals. The multi-
branch graph convolutional network is employed to dynamically learn temporal
correlations and spatial topological structures. Utilizing themulti-head attention
mechanism to process multi-branch graph features further enhances the
capability to handle local features. Experimental results demonstrate that
the MGCNA exhibits superior performance on patient-specific and patient-
independent experiments. Our end-to-end model for automatic detection of
epileptic seizures could be employed to assist in clinical decision-making.

KEYWORDS

childhood seizure detection, graph convolutional network, adjacency matrix, EEG,
multi-head attention

1 Introduction

Epilepsy is a neurological disorder characterized by abnormal synchronous
discharges of neurons. Childhood seizures carry a risk for the presence of cognitive
impairment and behavioral disorders (Rennie et al., 2004). Therefore, accurate
detection of seizures in children is of paramount importance for determining the
best treatment plans and preventing adverse conditions. The diagnosis of epilepsy
typically relies on the analysis of electroencephalogram (EEG), which is abnormal
in the majority of patients. However, this task requires highly experienced experts
who must invest a significant amount of time and effort in inspecting lengthy
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EEG recordings (Kannathal et al., 2005). This process is also
susceptible to the subjective influence of epilepsy experts.The
occurrence of epileptic seizures significantly impacts the physical
development of children, emphasizing the necessity for early
detection and intervention in pediatric epilepsy to mitigate
its effects. Therefore, designing a reliable childhood seizure
detection model can facilitate the automation of epilepsy diagnosis,
holding significant importance in enhancing the quality of life
for children.

There is a significant need to expand the utilization of machine
learning, particularly within the emerging realm of deep learning,
for automating the detection of epilepsy through EEG signal
classification. Among the extensively explored techniques for EEG
seizure detection, feature extraction rooted in machine learning
stands as one of the most prominent approachs. For instance,
multiscale entropy were extracted using extreme learning machines
(Cui et al., 2017), nonlinear features were extracted using Gradient
Boosting Decision Trees (GBDT) (Xu et al., 2022), various features
were extracted using Empirical Mode Decomposition (EMD)
(Singh et al., 2019), multi-scale features were extracted using
wavelet transformation (Zhang et al., 2010), and the Comprehensive
Representation of K Nearest Neighbors (CRMKNN) (Na et al.,
2021) approach is proposed for epilepsy diagnosis. The traditional
machine learning algorithms often struggle to achieve automatic
detection of epilepsy, and experimental results are influenced
by empirical parameters, making it difficult to stabilize the
algorithm’s performance. In essence, time series data is nonlinear
and dynamic, making it challenging for traditional machine
learning algorithms to effectively capture these complex signal
characteristics. Moreover, there are large variations between
different patients. Therefore, traditional machine learning faces
challenges in learning the hidden features of EEG signals and lacks
generalization.

Compared to traditional machine learning, neural networks,
as a more promising algorithm with greater capacity for learning
from complex data, have been applied to various research fields
(Zhao P. et al., 2022; Sun and Yang, 2023; Chen J. et al., 2024; Abu
and Diamant, 2023). There have been numerous advancements
in the detection of epilepsy EEG signals as well (Wang et al.,
2023a; Zhao et al., 2023b; He et al., 2022; Xiao et al., 2024). A
novel deep network called Two-Stream 3-D Attention Module
(TSA3-D) (Cao et al., 2022) was introduced to leverage the
multichannel time-frequency and frequency-space features of
interictal EEGs for epilepsy classification. In (Feng et al., 2022) a
3D deep network combined with residual attention modules was
proposed to explore the spatial and time-frequency features of
multi-channel EEG. In (Cui et al., 2022b), a fusion model based on
transfer learning and time-frequency features was proposed for the
effective detection of childhood epilepsy syndrome. In (Cui et al.,
2022a), an analysis of the correlation between time-frequency
features and EEG signals was conducted, and a childhood
epilepsy syndrome classification model based on transfer networks
was proposed.

Attention mechanisms have gained widespread applications in
the field of signal recognition (Zhao et al., 2023b; Lian and Xu,
2023; Peh et al., 2023; Qiu et al., 2023;Wang Z. et al., 2023; Liu et al.,
2023), emerging as a pivotal technology attracting significant
attention and in-depth exploration within the realm of deep

learning. Many researchers have integrated attention mechanisms
with neural network models, resulting in the creation of a series of
innovative models. The emergence of these models has introduced
new possibilities for enhancing the accuracy and efficiency of EEG
signal recognition, thus steering the direction of development in
this field. Ding et al. (2023) proposed a novel seizure prediction
model that utilizes a CNN to automatically capture features
from EEG signals. This model combines multiple head attention
mechanisms to identify relevant information within these features
for the recognition of EEG signal segments. Deng et al. (2023)
introduced a novel hybrid vision transformer (HViT) model that
could enhance the multi-head attention mechanism by augmenting
the capability of convolution to process local features, thereby
achieving data uncertainty learning. Zhao et al. (Zhao X. et al.,
2022) proposed a recommendation detector based on multi-head
attention mechanism, utilized for detecting pathological high-
frequency oscillations (HFOs) associated with epilepsy to locate
the epileptogenic zones. The attention mechanism aids the network
in capturing dependencies among features and enhancing the
model’s sensitivity to local information. In the field of seizure
detection, the potential of attention mechanism remains to be
further explored.

In the epilepsy detection process using deep learning, EEG
signals are represented as two-dimensional signals, considering
only channel-based features and disregarding information about
the physical distribution of channels. The electrode distribution in
EEG exhibits a non-Euclidean topological structure, which can lead
to the loss of connectivity information between brain functional
regions, neglecting the long-term interdependencies among
EEG signals from different channels. The graph convolutional
network (GCN) algorithms can effectively leverage the implicit
graph representation information within EEG signals. GCN
algorithms utilize graph structures andupdate graph representations
through node aggregation. GCN has been widely applied in
numerous EEG signals, which have demonstrated excellent
performance, such as emotion recognition (Song et al., 2021;
Liu et al., 2022; Chen Y. et al., 2024; Li Y. et al., 2022), Alzheimer’s
disease (Lopez et al., 2023), automatic seizure detection (Wagh
and Varatharajah, 2020; Meng et al., 2022; Ho and Armanfard,
2023), driver state monitoring (Kalaganis et al., 2020), motor
imagery (Cai et al., 2022), and sleep stage classification (Li M. et al.,
2022; Jia et al., 2020; Lee et al., 2024; Ji et al., 2022; Jia et al., 2021).
Wang et al. (2022) proposed a spatiotemporal graph attention
network (STGAT) based on phase locking value (PLV) to extract
spatial and functional connectivity information. Raeisi et al. (2022)
constructed graph representations using three different types of
spatial information and assessed the performance of neonatal
seizure detection. He et al. (2022) utilized the graph attention
network (GAT) to extract spatial features and employed a bi-
directional long short-term memory network (BiLSTM) to capture
temporal relationships before and after the current time frame for
epilepsy detection.

The integration of attention mechanisms with GCN has proven
effective in enhancing model performance on graph-structured
data (Wu et al., 2024; Li et al., 2023; Cheng et al., 2023; Dong et al.,
2022; Wang Y. et al., 2023; 2020; Grattarola et al., 2022). Attention
helps highlight important nodes or features, improving the ability
of GCN to capture both global and local relationships, which
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is crucial for EEG classification. The dynamic temporal graph
convolutional network (DTGCN) (Wu et al., 2024) is proposed
for seizure detection and classification, incorporating a seizure
attention layer to capture the distribution patterns of epilepsy
and a graph structure learning layer to represent the dynamically
evolving graph structure in the data. A spatiotemporal hypergraph
convolutional network (STHGCN) (Li et al., 2023) is designed to
capture higher-order relationships in EEG recordings, construct
feature hypergraphs across the spectral, spatial, and temporal
domains to focus on EEG channel correlations and dynamic
temporal relationships, and integrate self-attention mechanisms
to initialize and update relationships within EEG sequences. A
hybrid network (Cheng et al., 2023) is proposed, consisting of
a Dynamic Graph Convolution (DGC) module and a Temporal
Self-Attention Representation (TSAR) module. This network
simultaneously integrates representative knowledge of spatial
topology and temporal context into the EEG emotion recognition
task. In summary, the integration of attention mechanisms with
GCNallows formore effective feature representation by dynamically
weighting the importance of spatial and temporal relationships,
thereby enhancing the ability of model to capture complex
dependencies in EEG data for emotion recognition tasks.

During the training process, traditional GCN describes
the dynamic process of epileptic seizures using a single graph
representation. During seizures, various complex interactions of
neural activities occur, including different types of brainwave
changes and alterations in connectivity patterns between brain
regions. Therefore, the dynamic process of epileptic seizures cannot
be exhaustively represented by a single static graph. To comprehend
and describe seizures, it is necessary to consider the changes in the
temporal dimension, and the interactions between different brain
regions in the spatial dimension. Therefore, this study introduces
a multi-branch graph convolutional model with multi-head
attention (MGCNA) for childhood seizure detection. Specifically,
the MGCNA employs three graph representation approaches to
characterize the feature representation of EEG data from multiple
dimensions. By incorporating a multi-head attention mechanism,
it combines spatial topological information from multi-channel
electrodes with dynamic temporal information, enhancing the
global contextual awareness and recognition capabilities of model.
The major contributions of MGCNA can be summarized as follows:

• A multi-branch GCN model is proposed. It utilizes Euclidean
distance to capture spatial information between channels,
employs Pearson correlation coefficient to gather functional
connectivity information among channels, and supplements
latent spatiotemporal correlations through a trainable
adjacency matrix. The multi-channel EEG signals are modeled
as graph signals, enabling the extraction of synchrony
relationships within EEG signals.

• By integrating graph signals with a multi-head attention
mechanism, attention weights for graph features are obtained,
and the hidden vector representation of graph signals is derived
through the summation of weighted values.

• We conduct patient-specific and patient-independent
experiments to assist doctors in rapidly identifying the onset
period in complex scenarios. The outcomes from these two
experiments showcase the effectiveness of ourmethod.Through

comparison with other methods, the sensitivity, which is of
utmost clinical concern, is the highest in two experiments.

The organization of the rest of this article is as follows. In
Section 2, the proposed seizure detection model is introduced in
terms of the overall MGCNA structure, extraction of intrachannels
features, multi-branch GCN, multi-head attention mechanism, and
classifier module. Section 3 presents the implementation details,
performance evaluation metrics and experimental results of the
CHB-MIT dataset. Section 4 interprets the results and emphasizes
the limitations of the current study, and the conclusion is
provided in Section 5.

2 Methods

In this section, we introduce our proposed MGCNA model for
epilepsy classification using multi-channel EEG signal.

2.1 General structure

Figure 1 provides an overview of the overall process for
classifying epileptic EEG signals using the MGCNA proposed in
this article. First, intrachannels features are extracted from the raw
EEG signals to create graph signals. Second, three different time-
series-to-graph representation are employed and graph features are
extracted through GCN. Third, a multi-head attention is utilized to
learn dependencies of different graph features. Finally, the combined
graph features are processed to output classification results.

2.2 Extraction of intrachannels features

Convolution has been proven to be highly effective
in capturing features of EEG signals. Inspired by the
EEGWaveNet (Thuwajit et al., 2021) model, this module utilizes
depthwise convolution to compress the input signals’ resolution in a
channel-wise manner and capture features. Depthwise convolution
does not cross information between channels and extracts features
independently. This module comprises k consecutive layers, where
each layer captures valuable features within channels at half the scale
of the resolution of the previous layer.

In this module, the input data X are shaped as (n,1,C), where n
andC represent the number of channels and the number of sampling
points, respectively. n is set to 22, and C is defined as f × t, where
f denotes the EEG’s sampling frequency, and t is the duration of
each epoch’s segmentation. In each layer, depthwise convolution is
applied to each channel with a kernel size of (1, 2), a stride of 2, and
no padding. The output size of each kth layer is (n, 1, C/2k).

The module of extraction of intrachannels features can be
represented as:

Fk = DWConv(Fk−1) (1)

whereF 0 is the input signalX ∈ ℝn×1×C,DWConv(⋅) is the depthwise
convolution. After reshape, the features extracted by this module
N ∈ ℝn×(C/2K) will be fed into the next module to obtain multi-
scale graph features. Figure 2 depicts the process of extracting
intrachannels features.
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FIGURE 1
The overall architecture of MGCNA. There are mainly four steps including extraction of intrachannels features module; Multi-branch GCN; Multi-head
attention module and Classifier module.

FIGURE 2
The data flow for extracting intrachannels features.

2.3 Multi-branch graph convolutional
network

To design an appropriate graph representation for EEG
signals, it is necessary to construct a graph based on the physical
distribution of channels and the spectral-temporal domain
characteristics of the signals. Each channel was considered as
a node and the connection of each node is characterized in
terms of spatial position information, EEG signal similarity
features, and a learnable graph representation to dynamically
capture the topological relationship between EEG signal channels.
These three types of graph signals are input into GCN,
allowing us to leverage the structural characteristics of EEG
signals to capture spatial dependencies between nodes. Figure 3
illustrates the overall process of multi-branch GCN. The graph
convolution processes at the top, middle, and bottom are based
on spatial distance graph representation, functional connectivity
graph representation, and adaptive graph representation,
respectively.

2.3.1 Graph generator
Graph representation consists of graph signal and graph. Graph

signals are extracted from extraction of intrachannels features
module. A graph is denoted as G = {V , ϵ,A}, where V is the set
of nodes, ϵ is the set of edges, and A is the adjacency matrix.
Graph nodes represent EEG channels. The connections between
nodes are controlled by the adjacency matrix A. To construct

the adjacency matrix A, this paper employs three graph learning
methods: information based on spatial distance between nodes,
measure based on functional connectivity, and adaptive graph
learning methods.

2.3.1.1 Spatial distance graph learning
Seizures are produced by abnormal nerve discharges in

different areas of the cerebral cortex and cause significant
changes in the EEG. And this abnormal discharge spreads and
affects neighboring brain regions, making strong correlation
between adjacent areas. So the spatial distance between nodes
of EEG signals is used for graph representation in EEG signal
analysis.

In this approach, we consider the electrode positions of the EEG
as a three-dimensional grid model. To represent the spatial distance
of EEG electrodes, we compute adjacency matrix A1ij by applying
Euclidean distance between pairs of channels in the bipolarmontage.
The distance between pairs of channels vi(xi,yi) and vj(xj,yj), which
can be denoted as:

Distij = sqrt((xi − xj)
2 + (yi − yj)

2) (2)

where vi(xi,yi) and vj(xj,yj) are the centers of the bipolar derivations.
The spatial distances obtained from Euclidean distance are
transformed into the adjacencymatrix while taking into account the
strength of connections between nodes. To calculate the adjacency
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FIGURE 3
The pipeline of multi-branch graph convolutional network.

matrix, we apply the following rules:

A1ij =
{{{
{{{
{

exp(−
Dist2ij
δ2
), i f Distij ≤ R1

0, otherwise

(3)

where R1 is the threshold for sparsity and δ is the standard deviation
of the distances. This results in a universally undirected, weighted
graph for all EEG graph representation.

2.3.1.2 Functional connectivity graph learning
The strength of association between channels varies during

seizures. and the synchronization between brain regions can
be assessed by calculating the connectivity between channels.
Therefore, we investigate the relationship of information interaction
between channels during seizures.

The functional connectivity between nodes of EEG signals
is used for graph representation in EEG signal analysis. To
represent the functional connectivity of EEG electrodes, we compute
adjacency matrix A2ij by applying Pearson correlation coefficient
between the preprocessed signals in vi and vj. The Pearson
correlation coefficient between pairs of channels vi and vj, which can
be denoted as:

ρij =
∑(Xi −Xi)(Xj −Xj)

√∑(Xi −Xi)
2∑(Xj −Xj)

2
(4)

where Xi and Xj are graph signals extracted from extraction of
intrachannels featuresmodule in vi and vj.The computed correlation
coefficients are normalized to the range [0, 1]. The functional
connectivity obtained from Pearson correlation coefficient are
transformed into the adjacencymatrix while taking into account the

strength of connections between nodes. To calculate the adjacency
matrix, we apply the following rules:

A2ij =
{
{
{

ρij, i f ρij ≥ R2

0, otherwise
(5)

where R2 is the threshold. This results in an undirected, weighted
graph for all EEG graph representation.

2.3.1.3 Adaptive graph learning
The human brain possesses extremely complex structure and

functionality, and analyzing it merely through spatial distance and
functional connectivity graph structures does not fully capture
its functions and behavioral manifestations. The neural network
model aims to simulate the interconnection and information
transfer between neurons in the human brain, enabling learning
and reasoning of complex tasks. Therefore, we incorporate graph
structures as part of the parameters in neural networks, training
them to capture the coupling relationships with EEG signals.

The adaptive graph learning method can learn the intrinsic
connections between EEG signals. In the adaptive graph learning
method we employed, the adjacency matrix A3 ∈ ℝn×n, which
characterizes the relationships between individual vertex nodes,
is dynamically learned rather than predetermined. During the
model training process, the adjacency matrix A3 of the adaptive
graph representation is updated during training through back
propagation.During the training process, A3 will be constrained by
the following formula:

A3l = ReLU(BN(a3l)) (6)

where a3l is the adjacency matrix obtained in the l-th layer, using
BN and ReLU to prevent overfitting and improve stability. Due to
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the fact that the closer spatial connection between channels does
not accurately reflect a closer functional relationship between them,
and functional connectivity does not fully characterize the intrinsic
relationship between channels (Song et al., 2018), we utilize the
adaptive graph learningmethod to capture the inherent connections
among EEG channels and enhance EEG recognition.

2.3.2 Graph convolution
A general GCNmodel (Kipf andWelling, 2016; Defferrard et al.,

2016) takes graph signals N ∈ ℝn×(C/2K) and adjacency matrices
A ∈ ℝn×n as inputs and a graph feature matrix Z ∈ ℝM×P is
generated through node aggregation. P represents the dimension
of the output feature vector for each node. GCN updates node
features by aggregating features from neighboring nodes. The graph
convolutional layer can be represented as follows:

Hl = ReLU(D̃−
1
2 ÃD̃−

1
2Hl−1θl) (7)

where Ã represents adjacency matrix containing diagonal matrix. D̃
denotes the degreematrix for each node in the graph.Hl−1 represents
the graph featurematrix of the previous output, andH0 ∈ ℝn×(C/2K) is
the graph signal N. θl represents the matrix of learnable parameters.

Notably, the structures of the three GCN branches are identical,
but their parameters are not shared. After each GCN, Batch
Normalization (BN) is applied to normalize the graph features at
each layer, which helps improve the generalization capability of
network. And it is presented as the following form:

Z l
i = BN(H

l
i) (8)

where zli is the input of the next graph convolution layer. i indicated
as the ith branch of the GCN.The final output of multi-branch GCN
is expressed as the following formula:

Z = [zm1 ,z
m
2 ,z

m
3 ] (9)

where m represents the number of layers of the GCN, and [⋅]
represents concatenation.

2.4 Multi-head attention mechanism

The attention mechanism, which is a deep learning model,
emulates the pivotal information and critical elements that
individuals concentrate on during observations. The multi-head
attention mechanism makes the output of attention to incorporate
encoding from different spatial locations, thereby enhancing the
expressive power of the model. In standard multi-head attention
with input matrix Z ∈ ℝm×n×D, the self-attention for each head are
computed according to the following formula:

Head (Q,K ,V) = So ftmax(
QKT

√d
)V (10)

where Q, K , V represent the query vector, key vector and value
vector, respectively. h is the number of heads, d =m/h. The original
multi-head attention mechanism has a high computational cost,
with a quadratic complexity ofO(L2d), where L is n×D.

Inspired by MobileViT v2 (Mehta and Rastegari, 2022)
and HViT-DUL (Deng et al., 2023), the multi-head design

is incorporated into the separable self-attention mechanism,
which is applied to the proposed model for the reduction of
computational overhead. The separable multi-head attention
mechanism employed in this paper has a linear complexity of
O(L), which is lower compared to the standard multi-head
attention mechanism. When multiple self-attention mechanisms
are sequentially linked and subsequently subjected to a final
projection, it results in the generation of the ultimate values
for the multi-head attention mechanism. The spatial topological
information and dynamic variation information of multi-channel
electrodes are obtained through a multi-head attention mechanism
to combine representations of multiple graph signals, thereby
enhancing the discrimination ability. Figure 4 illustrates the process
of separable multi-head attention. Q, K , V is calculated using the
following formula:

{{{{
{{{{
{

Q = Conv1 (Z)

K = Conv2 (Z)

V = Conv3 (Z)

(11)

where Z is the output of multi-branch GCN features. Conv is
two-dimensional convolution. We employ three 1× 1 convolutional
layers, with parameters not shared, to compute the Q K V of the
input graph features. After the reshaping process, the outputs Q, K ,
V are in the following dimensions:Q ∈ ℝh×1×n×D, K ∈ ℝh×d×n×D and
V ∈ ℝh×d×n×D.

To calculate self attention scores, we apply the So ftmax
operation to the Q and taking the element-wise multiplication with
K , After that, we perform element-wise multiplication with V after
passing it through ReLU. Self attention scores Atteni are computed
based on the following formula:

atteni = ReLU (V)∗ (K∗So ftmaxQ) (12)

where atten is the self-attention scores. ReLU is activation
function. After concatenating the scores of multiple self-attention
mechanisms, we perform a 3× 3 convolution on the resulting
features, normalize it using BN, and then apply ReLU to enhance
generalization ability. The computed multi-head attention scores,
matching the dimensions of the input Z , are added to the output
of multi-branch GCN, expressed as:

Atten = [atten1,atten2,…,attenh] (13)

MA = ReLU (BN (Conv (Atten))) (14)

Z′ = BN (Z +MA) (15)

where [⋅] represents the concatenation.

2.5 Classifier module

A classifier module is placed after the multi-head attention
mechanism for the final class inference. Initially, it involves two
layers of 2D convolution, with a ReLU activation function applied
after each convolution to enhance the robustness of model. This
process can be described as:

F ′ = ReLU(Conv(ReLU(Conv(Z′)))) (16)
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FIGURE 4
The process of self-attention.

FIGURE 5
The structure of classifier module.

where Z′ is the output of multi-head attention mechanism. Global
average pooling pools each channel of the convolution result,
followed by a linear layer that reduces the feature dimensionality
to match the number of classes. After passing through a sigmoid
operation, the index with the highest probability is selected as the
classification result. This process can be described as:

Pres = σ(Linear(AvgPool(F ′))) (17)

where AvgPool(⋅) denotes global average pooling, σ is sigmoid
operation, Linear(⋅) is the Linear operation, and Pres is the
final classification result. Figure 5 illustrates the structure of the
classifier module.

2.6 Training procedure

In order to achieve optimal network parameters during the
training process, we employ the backpropagation (BP) algorithm,
which iteratively updates the network parameters until an optimal
or suboptimal solution is reached. In this context, we introduce a
loss function based on binary cross entropy, defined as follows:

loss = cross_entropy (Pre,Pres) + τ‖Ω‖ (18)

cross_entropy (Pre,Pres) = −[Pre log PreS + (1− Pre) log(1− PreS)]
(19)

where Pre and Pres represent the actual label and the predicted
label, respectively. The binary cross entropy, denoted as
cross_entropy(Pre,Pres), quantifies the disparity between the true
labels and the predicted labels. τ represents the trade-off parameter,
while ‖ ⋅ ‖ denotes the l2-norm to prevent overfitting. Ω represents
all the parameters within this model.

For adaptive graph learning, the adjacency matrix A3 is a
trainable parameter within the network that optimizes with model
optimization. The partial derivatives of the loss function with
respect to the optimal adjacency matrix A3 and the loss are
expressed as follows:

∂loss
∂A
=
cross_entropy (Pre,Pres)

∂A
+ τ
‖Ω‖
∂A

(20)

2.7 Dataset

The CHB-MIT dataset (Shoeb, 2009) was collected by Boston
Children’s Hospital and is currently the most widely used public
dataset. The multichannel scalp EEG signals consists of EEG signal
recordings from 23 children with epilepsy at a sampling rate of

Frontiers in Physiology 07 frontiersin.org

https://doi.org/10.3389/fphys.2024.1439607
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Li et al. 10.3389/fphys.2024.1439607

256 Hz. The EEG signals are collected using EEG electrodes placed
according to the International 10–20 system. The dataset comprises
approximately 983 h of EEG recordings, including 198 seizure onset
events, with a total duration of 3 h 15 min.

2.8 Implementation details

In the CHB-MIT dataset, most records have 23 channels, while
some records have missing or duplicated channels. In this study,
22 channels are selected in this study to maintain consistency of
channels among all patients. The selected 22 channels are FP1-F7,
F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-P3, P3-O1, FP2-F4, F4-
C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, FZ-CZ, CZ-PZ,
P7-T7, T7-FT9, FT9-FT10, FT10-T8.This dataset is classed into two
categories, including interictal and ictal. To reduce the effect of noise,
a fifth-order Butterworth band-pass filter ranging from 0.5 Hz to
70 Hz was used. The filtered EEG signals are segmented into 3-s
windows.Due to the scarcity of ictal EEGdata compared to interictal
EEG data, the windows overlap by 50% to obtain more ictal data.

For a comprehensive evaluation of the MGCNA, we train
both a patient-independent model and a patient-specific model.
In a patient-specific approach, the model is trained, validated, and
tested using data from an individual subject. Interictal signals are
randomly discarded for each subject, and the ratio of interictal
signals to ictal signals is maintained at 5:1. As the number of
ictal signals is significantly lower than that of interictal signals,
which is detrimental to model training, we employ re-sampling
to create a balanced training dataset. In each epoch of training, a
random selection of an equal number of interictal signals is made
to match the ictal signals in the training set, followed by random
shuffling. Consequently, we obtain a balanced training subset for
each epoch. We employ a 5-fold cross-validation approach and
report the average performance. In a patient-independent approach,
the model was trained and validated using data from multiple
subjects, and then tested on data from individual subject.We utilized
the leave-one-subject-out cross-validation as evaluation method.
The data in both categories are kept balanced. The patient-specific
approach emphasizes individual differences and personalization,
and the patient-independent approach focuses more on overall
trends and general patterns.

We employ the Adam optimizer with a learning rate of 3e-4, a
weight decay of 1e-3.The dropout rate is experimentally set to 0.5.
R1 is set to 0.4 and R2 is set to 0.25. k is set to 2. All the above
experiments were performed and implemented by Pytorch 1.7.1 in
the NVIDIA GTX3090 and CUDA11.0 environment.

2.9 Performance evaluation metrics

We use eight different performance metrics to evaluate the
performance of MGCNA including Accuracy (Acc), Sensitivity
(Sen), Specificity (Spe), F1 Score (F1), and Area Under Curve
(AUC). These metrics are obtained using true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN) values.

Accuracy represents the proportion of samples correctly
classified by the model out of the total sample count. Sensitivity
and Specificity measure the model’s ability to classify positive and

negative samples. F1 Score combines precision and recall to provide
a comprehensive performance measure. AUC is based on the area
under the ROC curve and provides a comprehensive performance
metric for unbalanced category distributions.

3 Experimental results

3.1 Patient-specific experiments

Patient-specific experimental results onCHB-MIT dataset using
theMGCNA are shown in Table 1. According to the table, themodel
demonstrates an average accuracy of 99.32%, specificity of 98.4%,
sensitivity of 98.74%, an F1 score of 97.76%, and an AUC of 98.51%.
For the majority of patients, the recognition accuracy exceeds 97%,
with one patient achieving 100% accuracy. The model achieves a
specificity of 99% for 12 patients, which represents 50% of all test
subjects, and a sensitivity of 99% for 17 patients, covering 70% of
all test subjects. F1 scores for all patients are greater than 92%,
and the AUC is above 95%. These results indicate the stability and
high performance of MGCNA proposed in this study, which can aid
medical professionals in diagnosis.

3.2 Patient-independent experiments

In contrast to the patient-specific experiments, patient-
independent experiments involve training a general model for
all patients. The experiment employed the leave-one-out method.
Patient-independent experiments separate one patient’s signal as a
test set, using the EEG data of other patients as the training set and
Validation set.This allows themodel to detect epileptic activity in the
test set by learning common seizure characteristics from the training
set. This experiment is more clinically meaningful but requires to
address differences in EEG signals among different patients, which
may result from physiological variations, equipment noise, etc.
Compared to patient-specific experiments, patient-independent
experiments make it more challenging for the algorithm to identify
epileptic seizures and lead to poorer detection results.

Patient-independent experimental results on CHB-MIT dataset
using the MGCNA are shown in Table 2. As seen in the table,
the average values for Accuracy, Sensitivity, Specificity, and F1 are
all above 80%. There is a significant individual variation among
different patients. Patients ♯4, ♯5, ♯7, ♯9, ♯10, ♯15, ♯17, ♯18, ♯19,
♯22, ♯23 achieved accuracy rates exceeding 90%,whereas patients ♯8,
♯12, ♯13, and ♯24 had comparatively lower accuracy rates. Compared
to patient-specific experiments, patient-independent experiments
exhibited a 13.95% lower accuracy rate.This is due to the differences
in seizures between patients and the presence of different types of
symptoms during seizures, which vary in frequency and duration.

3.3 Ablation study

To assess the contributions of different components in ourmodel
to classification performance, we conduct comparative experiments
using model based only on similarity graph representation, model
based only on distance graph representation, model based only
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TABLE 1 Patient-specific experimental results on CHB-MIT dataset using
the proposed architecture.

Case Acc(%) Sens(%) Spec(%) F1(%) AUC(%)

CHB01 99.79 99.12 100.00 99.33 99.52

CHB02 99.56 96.96 100.00 98.01 98.44

CHB03 99.75 99.74 99.74 99.20 99.74

CHB04 99.32 96.58 99.50 94.81 98.05

CHB05 99.48 97.40 99.90 98.34 98.65

CHB06 99.94 100.00 99.94 98.84 98.63

CHB07 99.79 100.00 98.82 99.39 99.42

CHB08 99.62 99.82 98.57 98.83 99.20

CHB09 100.00 100.00 100.00 100.00 100.00

CHB10 99.96 100.00 99.74 99.87 99.87

CHB11 99.83 99.92 99.39 99.51 99.66

CHB12 98.63 99.71 93.77 95.67 96.74

CHB13 97.88 99.26 93.51 95.07 96.38

CHB14 98.11 99.07 93.45 94.18 96.26

CHB15 98.31 98.66 97.91 98.21 98.29

CHB16 99.61 100.00 97.50 98.67 98.75

CHB17 99.29 99.79 96.90 97.82 98.34

CHB18 99.55 99.80 98.28 98.60 99.04

CHB19 99.78 100.00 98.57 99.26 99.29

CHB20 98.91 93.61 99.50 94.32 96.56

CHB21 97.98 92.68 98.82 92.81 95.75

CHB22 99.43 99.53 99.41 98.15 99.47

CHB23 99.58 99.80 98.55 98.78 99.18

CHB24 99.48 98.20 99.77 98.57 98.99

Mean 99.32 98.74 98.40 97.76 98.51

on trainable graph representation, and model without multi-head
attention. To ensure the fairness of the experiments, the model
settings are kept consistent. The results are shown in Figures 6, 7.

Graph convolutional network uses only spatial distance graph
learning, denoted as ∗h1. Graph convolutional network uses only
functional connectivity graph learning, denoted as ∗h2. Graph
convolutional network uses adaptive graph learning, denoted as ∗h3.
Non-attention graph representation models refers to the model that
does not employ self-attention mechanisms to obtain self-attention
scores for the three graph representations. We directly concatenate

TABLE 2 Patient-independent experimental results on CHB-MIT dataset
using the proposed architecture.

Case Acc(%) Sens(%) Spec(%) F1(%) AUC(%)

CHB01 91.51 83.73 99.28 90.79 91.51

CHB02 82.10 64.20 100.00 78.20 82.10

CHB03 81.33 62.67 100.00 77.05 81.33

CHB04 99.45 99.18 99.73 99.45 99.45

CHB05 96.49 97.60 95.38 96.53 96.49

CHB06 85.04 92.31 77.78 86.06 85.04

CHB07 98.89 98.41 99.36 98.88 98.89

CHB08 92.34 91.90 92.79 92.31 92.34

CHB09 100.00 100.00 100.00 100.00 100.00

CHB10 99.76 99.76 99.76 99.76 99.76

CHB11 93.89 93.32 94.46 93.86 93.89

CHB12 61.46 46.21 76.70 54.52 61.46

CHB13 70.52 81.09 59.95 73.34 70.52

CHB14 70.44 58.39 82.48 66.39 70.44

CHB15 91.93 82.93 93.33 73.52 91.93

CHB16 86.90 73.81 100.00 84.93 86.90

CHB17 98.05 97.87 98.23 98.05 98.05

CHB18 93.20 86.39 100.00 92.70 93.20

CHB19 94.69 90.27 99.12 94.44 94.69

CHB20 79.25 58.49 100.00 73.81 79.25

CHB21 95.41 91.89 98.92 95.24 95.41

CHB22 98.70 97.93 99.48 98.69 98.70

CHB23 97.61 95.98 99.25 97.57 97.61

CHB24 87.80 88.91 86.70 87.94 87.80

Mean 89.45 84.72 93.86 87.67 89.45

the representations of three graphs into a graph feature, denoted as
∗self-attention.

From the Figures 6, 7, it is evident that MGCNA outperforms
the other four ablation experiments. Compared to our model in
this paper, the accuracy of the four ablation experiment models
is lower by 5.22%, 5.30%, 3.37%, and 3.99%, respectively. As
illustrated in Figure 6, the trainable graph representation model
demonstrates superior performance compared to the other two
graph representation learning methods, particularly for patients
♯4, ♯12, ♯13, ♯14, ♯17, and ♯21. Between spatial distance graph
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FIGURE 6
Ablation study for epilepsy recognition CHB-MIT dataset of different graph learning.∗h1 represents the use of spatial distance graph learning only. ∗h2
indicates the use of functional connectivity graph learning only. ∗h3 denotes the use of adaptive graph learning only.

FIGURE 7
Ablation study for epilepsy recognition CHB-MIT dataset of multi-head attention.

learning and functional connectivity graph learning, the latter more
effectively captures the interrelationships among EEG signals.

The effect of the self-attention mechanism on epilepsy detection
approximates that of the model using only distance graph
representation. Figure 7 illustrates that allocating different attention
weights to graph features through self-attention mechanism helps
to capture dependencies between graph features and enhances
the model’s ability to model relationships between graph features,
which can achieve good performance in epilepsy detection. The
model can effectively utilize the spatiotemporal relationships among
EEG signals, supplement information through learnable graph
representations, and obtain attention scores through self-attention
mechanisms, and therefore the model’s learning capability has been
significantly enhanced.

To further validate the superiority of MGCNA, t-SNE
is applied to visualize and analyze the features extracted
from the ablation study. As depicted in Figure 8, the t-SNE
visualization in two-dimensional embedding space illustrates the
interictal and ictal features for both patient-specific and patient-
independent experiments. We can see that in both patient-specific
and patient-independent experiments, our approach exhibits
superior recognition capabilities compared to the ablated models.
Particularly, models utilizing only one graph construction method
tend to confuse some interictal and ictal features. In contrast,
better discriminative features were obtained usingMGCNA, mainly

in terms of significant inter-ictal distances and dense intra-ictal
distributions. These observations indicate that combining multi-
branch GCN with self-attention mechanisms can yield the optimal
performance for epileptic seizure classification.

4 Discussion

4.1 The influence of thresholds on graph
representations

In both functional connectivity graph learning and spatial
distance graph learningmethods, it is necessary to set a threshold for
constructing an adjacencymatrix.The constructed adjacencymatrix
must not only ensure the sparsity of the graph but also be capable of
distinguishing temporal and spatial characteristics of different types
of EEG data to enhance the accuracy of the model in identifying
epileptic seizures.

Figure 9A depicts the average epileptic seizure detection results
of theCHB-MITdataset in patient-specific and patient-independent
experiments, under varying thresholds R1 for spatial distance graph
learning.The threshold range selected spans from0.2 to 0.7. Notably,
at a threshold of 0.2, the patient-specific epileptic seizure detection
accuracy is the lowest, as lower thresholds tend to introduce
excessive irrelevant physical connections between unrelated nodes
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FIGURE 8
The t-SNE visualization in 2D embedding space of interictal and ictal features by comparing the models from ablation study.

FIGURE 9
Performance comparison of patient-specific and patient-independent experiments with different thresholds. (A) spatial distance graph; (B) functional
connectivity graph.

in the spatial distance graph. Therefore, to maintain the sparsity of
the adjacency matrix and achieve optimal seizure detection results,
configuring the threshold R1 for spatial distance graph learning to
0.4 is advocated.

Figure 9B illustrates the average epileptic seizure detection results
in both patient-specific and patient-independent experiments under
various thresholdvaluesR2 for functional connectivity graph learning.
The threshold range selected spans from 0.1 to 0.5, with a stride of
0.05. From Figure 9, it is evident that R2 has a more pronounced
impact on patient-independent epileptic seizure detection results.
In the patient-specific experiment, where the training and testing
datasets originate from the same patient, they exhibit similar
data distributions. However, in the patient-independent experiment,
differences exist between various patients, leading to inconsistent
effects of different thresholds on the patients. Appropriate thresholds
are applied to eliminate unrelated channel signals, utilizing functional

connectivity to capture neuronal synchronized discharge during
epileptic seizures (Abbas et al., 2021). To maximize the spatial
discriminative power of the functional connectivity graph and achieve
optimal results for seizure detection, the threshold R2 for functional
connectivity graph learning is set at 0.25.

The spatial distance graph learning based on Equation 3 with
the threshold R1 set to 0.4 is illustrated in Figure 10. The distance
between two bipolar derivations was determined by measuring
the separation between the centers of the bipolar derivations. For
instance, the coordinates of FP1-F3 are the centers of the FP1
coordinates and the F3 coordinates. After calculating the Euclidean
distances, these distances are normalized to create the distance
graph representation, and self-connections are added, i.e., the graph
representation of the Euclidean distances plus the diagonal matrix.

Figure 11 depicts the functional connectivity graph learning
of interictal and ictal signals under thresholds set at 0.25. In the

Frontiers in Physiology 11 frontiersin.org

https://doi.org/10.3389/fphys.2024.1439607
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Li et al. 10.3389/fphys.2024.1439607

FIGURE 10
The spatial distance graph learning of EEG signals under thresholds R1 set as 0.4.

figure, we have selected and described the functional connectivity
graph learning that represents interictal and ictal signals with
the highest degree of similarity. The values in the graph are
calculated as the Pearson correlation coefficients, which are
then normalized into a similarity adjacency matrix ranging
from 0 to 1. From Figure 11, it can be observed that functional
connectivity graph learning for interictal signals exhibits a strong
degree of similarity, while the ictal signal displays weaker inter-
correlations across many bipolar derivations. Graph representations
based on functional connectivity can depict the functional
connections between brain regions as interdependencies among
EEG signals.

4.2 Comparisons with state-of-the-art
methods

Table 3 presents a performance comparison between the
proposed MGCNA and state-of-the-art epilepsy detection

algorithms in the patient-specific experimental setting. Most
of these methods involve feature extraction and deep learning
algorithms for epilepsy detection. It is evident that the advancement
of deep learning methods holds significant importance for signal
recognition and detection.

Machine learning methods are classical approaches for epilepsy
detection. Ein Shoka et al. (2021) conducted feature extraction after
channel selection and evaluated the performance of different
classifiers for epilepsy detection, with KNN exhibiting the best
classification performance. Sukriti et al. (Sukriti et al., 2021)
extracted multiscale spectral features (MSSFs) and employed
a random forest classifier for epilepsy classification exhibits a
higher specificity compared to MGCNA (99.17% versus 98.4%).
However, the MGCNA achieves higher accuracy and sensitivity
than that method. Cimr et al. (2023) achieved EEG classification by
normalizing input signals and an 8-layer depth CNN model. The
MGCNA is superior to that method in terms of accuracy, specificity
and sensitivity. Zhao et al. (2023a) proposed using CNNs to extract
local features and transformers to capture global information.
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FIGURE 11
The functional connectivity graph learning of interictal and ictal signals under thresholds R2 set as 0.25. (A) ictal signal; (B) interictal signal.

Although MGCNA outperforms this approach, the differences in
preprocessing methods also affect the results of epilepsy detection.

GCN can analyze signals by considering the three-dimensional
spatial positions of EEG electrodes, thereby compensating for

potential spatial information loss in deep learning methods
such as CNN. The introduction of GCN can be utilized
to analyze the spatiotemporal correlations among channels.
Methods based on GCN have already demonstrated excellent
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TABLE 3 Comparisons of performance between proposed method and recent works (patient-specific experimental setting).

Method Acc(%) Sens(%) Spec(%)

Channel selection + KNN (Ein Shoka et al., 2021) 85 86.04 83.78

Multiscale spectral features + RF (Sukriti et al., 2021) 98.9 98.12 99.17

normalization + CNN (Cimr et al., 2023) 96.99 97.06 96.89

WNG-TS-1DCNN (Wang et al., 2023b) 93.1 91.8 96.3

HAN (Zhao et al., 2023b) 98.3 97.34 96.07

GAT + BiLSTM (He et al., 2022) 98.52 97.75 94.34

CNN + Transformer (Zhao et al., 2023a) 98.76 97.70 97.60

proposed MGCNA 99.32 98.74 98.40

The bold values represent the highest values in each column.

performance for the detection of epileptic signals. Wang et al.
(2023b) introduced a two-stream graph-based framework for
learning the Weighted Neighbour Graph (WNG) representation
in both the frequency and time domains. However, this approach
achieved inferior accuracy, sensitivity, and specificity, with values
of 93.1%, 91.8%, and 96.3%, respectively, in comparison to
the method proposed in the current study. Zhao et al. (2023b)
introduced a hybrid Attention Network that utilizes the GAT to
extract spatial features and the Transformer to extract temporal
features addresses the issue of imbalanced data. However, in the
patient-specific experiment, it achieved slightly lower accuracy,
specificity, and sensitivity compared to MGCNA. He et al. (2022)
utilized the GAT to extract spatial features and employed a
BiLSTM network to capture temporal features, achieving an
accuracy of 98.52% on the CHB-MIT dataset, slightly lower
than MGCNA.

Table 4 presents comparisons of performance between the
proposedmethod and state-of-the-art epilepsy detection algorithms
in the patient-independent experimental setting. Due to the
substantial variations in signals among different patients, the
overall performance of the patient-independent experiment is
lower than that of the patient-specific experiment. The accuracy
of the patient-independent experiment based on SVM (Shoeb,
2009) only reaches 58.32%, indicating a significant performance
gap compared to MGCNA. Wei et al. (2019) proposed an epilepsy
detection algorithmby combiningCNNandWassersteinGenerative
Adversarial Nets (WGANs), achieving lower sensitivity than
MGCNA, i.e. 72.11% vs. 83.54%, respectively. Zhao et al. (2023b)
introduced the HAN model, which performs epilepsy detection
not only in patient-specific experiments but also in patient-
independent experiments. In both types of experiments, the three
performance metrics were lower than MGCNA. Additionally, the
ablation studies conducted in the patient-independent experimental
setting are showcased herein, demonstrating that the MGCNA
method exhibits superior performance compared to each ablation
study. Since the three graph learning models can better extract the
structural information of EEG and perform graph feature fusion,

TABLE 4 Comparisons of performance between proposed method and
recent works (patient-independent experimental setting).

Method Acc(%) Sens(%) Spec(%)

SVM (Shoeb, 2009) 58.32 74.6 42.19

WGANs (Wei et al., 2019) 84.00 72.11 95.89

HAN (Zhao et al., 2023b) 73.15 72.75 75.7

∗h1 82.49 80.33 85.74

∗h2 85.21 79.83 91.27

∗h3 84.72 80.83 89.16

∗self-attention 84.19 79.49 89.56

proposed MGCNA 85.45 84.72 93.86

The bold values represent the highest values in each column.

the overall performance is better than other epilepsy detection
algorithms.

Through the above analysis, the MGCNA framework offers
several key advantages. First, it employs a multi-branch graph
convolutional network structure that dynamically learns temporal
correlations and spatial topological information, enhancing
the ability to process complex EEG signals, particularly in
capturing spatial and temporal dependencies in epileptic brains.
Second, the use of three graph learning approaches allows for
a comprehensive evaluation of connectivity and synchronization
across multiple channels, improving adaptability in different patient
scenarios. Additionally, themulti-head attentionmechanism further
strengthens the framework’s ability to handle local features and
complex EEG patterns. Experimental results demonstrate that
MGCNA outperforms other methods in both patient-specific and
patient-independent tasks, highlighting its strong generalization
capabilities. Lastly, as an end-to-end automatic seizure detection
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model, MGCNA can be applied in clinical decision-making, helping
clinicians diagnose childhood epileptic seizures more quickly and
accurately, providing significant practical value.

4.3 Limitations and future work

While theMGCNA achieved satisfactory results in both patient-
specific and patient-independent experiments, the MGCNA has
several limitations. Firstly, spatial distance graph learning requires
the prior determination of channel locations and is not robust
to variations in EEG channel count. If channels are missing or
if channel locations change, it can adversely affect recognition
performance. Secondly, our model has a relatively long computation
time because it involves calculating Pearson correlation coefficients
for each sample to extract features for constructing EEG graph
representations. Finally, the performance of model may depend on
the quality and diversity of the data it has been trained on, and it
is crucial to validate it on larger, more diverse datasets to ensure
its generalizability. Specifically, both functional connectivity graph
learning and spatial distance graph learning employ thresholds.

In future work, it is essential to explore graph representation
methods that are more suitable for epileptic signals.
While many scholars have already employed various graph
representations (Raeisi et al., 2022), these often involve manual
feature engineering and have long computation times. In the
future, it’s possible to explore alternative composition methods
or utilize clustering algorithms to identify the most suitable
adjacency matrix. In the future, we will explore alternative graph
generation techniques, such as imposing appropriate constraints
on trainable adjacency matrix or using clustering algorithms
to identify the most suitable graph generator. Identifying the
most suitable graph representation method for epileptic signal
recognition is of paramount importance. In this study, patient-
independent experiments hold more clinical relevance, and there is
significant room for improvement in accuracy. To capture common
seizure characteristics among different patients, techniques such
as transfer learning will be considered to enhance the accuracy of
patient-independent experiments. In current research, considerable
attention has been devoted to the occurrence of seizures, yet there
exist variations in seizure types among individuals. Consequently,
in future investigations, emphasis will be placed on the analysis of
seizure types in epilepsy research.

5 Conclusion

This study proposes a children epilepsy detection model named
as MGCNA that combines a multi-branch GCN with multi-
head attention. The MGCNA leverages three graph structures
to learn spatiotemporal features among channels. It uses spatial
graph representations to capture spatial distances between
channels, functional connections between channels to learn
spatial dependencies in the signals, and employs learnable graph
representations to complement spatiotemporal features. The
model employs a multi-head attention to assign importance
weights to graph signals, learning relationships between graph
representations. The model’s performance in classifying epileptic

EEG signals is validated on the CHB-MIT dataset through patient-
specific and patient-independent experiments. The experimental
results indicate that the MGCNA shows excellent performance of
childhood seizure detection surpassing other existing methods.
This method can be used to assist in the childhood seizure
detection and effectively reduce the workload of physicians. The
EEG classification algorithm introduced in this research provides
the potential to establish an EEG monitoring system for children
with epilepsy.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/supplementarymaterial, further inquiries can be directed
to the corresponding authors.

Author contributions

YL: Data curation, Investigation, Methodology,
Writing–original draft, Writing–review and editing, Validation.
YY: Funding acquisition,Methodology, Resources,Writing–original
draft. SS: Investigation, Resources, Supervision,Writing–review and
editing. HW: Funding acquisition, Methodology, Writing–review
and editing. MS: Investigation, Methodology, Writing–review and
editing,Validation. XL: Investigation,Methodology,Writing–review
and editing. PZ: Methodology, Writing–review and editing. BW:
Methodology, Writing–review and editing. NW: Methodology,
Writing–review and editing. QS: Methodology, Writing–review and
editing. ZH: Methodology, Writing–review and editing.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. This
study was supported by the Shandong Provincial Natural Science
Foundation of China, grant numbers ZR2019ZD01, ZR2020MF027,
and ZR2020MF143.

Conflict of interest

Authors MS and XL were employed by Neusoft Medical
Systems Co., Ltd.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Frontiers in Physiology 15 frontiersin.org

https://doi.org/10.3389/fphys.2024.1439607
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Li et al. 10.3389/fphys.2024.1439607

References

Abbas, A. K., Azemi, G., Ravanshadi, S., and Omidvarnia, A. (2021). An eeg-based
methodology for the estimation of functional brain connectivity networks: application
to the analysis of newborn eeg seizure. Biomed. Signal Process. Control 63, 102229.
doi:10.1016/j.bspc.2020.102229

Abu, A., and Diamant, R. (2023). Underwater object classification combining sas
and transferred optical-to-sas imagery. arXiv Prepr. arXiv:2304.11875 144, 109868.
doi:10.1016/j.patcog.2023.109868

Cai, S., Li, H., Wu, Q., Liu, J., and Zhang, Y. (2022). Motor imagery decoding in the
presence of distraction using graph sequence neural networks. IEEE Trans. Neural Syst.
Rehabilitation Eng. 30, 1716–1726. doi:10.1109/TNSRE.2022.3183023

Cao, J., Feng, Y., Zheng, R., Cui, X., Zhao, W., Jiang, T., et al. (2022). Two-stream
attention 3-d deep network-based childhood epilepsy syndrome classification. IEEE
Trans. Instrum. Meas. 72, 1–12. doi:10.1109/tim.2022.3220287

Chen, J., Chen, C., Huang,W., Zhang, J., Debattista, K., andHan, J. (2024a). Dynamic
contrastive learning guided by class confidence and confusion degree formedical image
segmentation. Pattern Recognit. 145, 109881. doi:10.1016/j.patcog.2023.109881

Chen, Y., Xu, X., Bian, X., and Qin, X. (2024b). Eeg emotion recognition based
on ordinary differential equation graph convolutional networks and dynamic time
wrapping. Appl. Soft Comput. 152, 111181. doi:10.1016/j.asoc.2023.111181

Cheng, C., Yu, Z., Zhang, Y., and Feng, L. (2023). Hybrid network using dynamic
graph convolution and temporal self-attention for eeg-based emotion recognition. IEEE
Trans. Neural Netw. Learn. Syst., 1–11. doi:10.1109/tnnls.2023.3319315

Cimr, D., Fujita, H., Tomaskova, H., Cimler, R., and Selamat, A. (2023).
Automatic seizure detection by convolutional neural networks with computational
complexity analysis. Comput. Methods Programs Biomed. 229, 107277.
doi:10.1016/j.cmpb.2022.107277

Cui, G., Xia, L., Tu, M., and Liang, J. (2017). Automatic classification of epileptic
electroencephalogram based on multiscale entropy and extreme learning machine. J.
Med. Imaging Health Inf. 7, 949–955. doi:10.1166/jmihi.2017.2121

Cui, X., Cao, J., Hu, D., Wang, T., Jiang, T., and Gao, F. (2022a). Regional scalp
eegs analysis and classification on typical childhood epilepsy syndromes. IEEE Trans.
Cognitive Dev. Syst. 15, 662–674. doi:10.1109/tcds.2022.3175636

Cui, X., Hu, D., Lin, P., Cao, J., Lai, X., Wang, T., et al. (2022b). Deep feature fusion
based childhood epilepsy syndrome classification from electroencephalogram. Neural
Netw. 150, 313–325. doi:10.1016/j.neunet.2022.03.014

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural
networks on graphs with fast localized spectral filtering. Adv. neural Inf. Process. Syst.
29.

Deng, Z., Li, C., Song, R., Liu, X., Qian, R., and Chen, X. (2023). Eeg-based seizure
prediction via hybrid vision transformer and data uncertainty learning. Eng. Appl. Artif.
Intell. 123, 106401. doi:10.1016/j.engappai.2023.106401

Ding, X., Nie, W., Liu, X., Wang, X., and Yuan, Q. (2023). Compact convolutional
neural network with multi-headed attention mechanism for seizure prediction. Int. J.
Neural Syst. 33, 2350014. doi:10.1142/S0129065723500144

Dong, C., Zhao, Y., Zhang, G., Xue, M., Chu, D., He, J., et al. (2022). Attention-
based graph resnet with focal loss for epileptic seizure detection. J. Ambient Intell. Smart
Environ. 14, 61–73. doi:10.3233/ais-210086

Ein Shoka, A. A., Alkinani, M. H., El-Sherbeny, A., El-Sayed, A., and Dessouky, M.
M. (2021). Automated seizure diagnosis system based on feature extraction and channel
selection using eeg signals. Brain Inf. 8, 1–16. doi:10.1186/s40708-021-00123-7

Feng, Y., Zheng, R., Cui, X., Wang, T., Jiang, T., Gao, F., et al. (2022). 3d residual-
attention-deep-network-based childhood epilepsy syndrome classification.Knowledge-
Based Syst. 248, 108856. doi:10.1016/j.knosys.2022.108856

Grattarola, D., Livi, L., Alippi, C., Wennberg, R., and Valiante, T. A. (2022). Seizure
localisation with attention-based graph neural networks. Expert Syst. Appl. 203, 117330.
doi:10.1016/j.eswa.2022.117330

He, J., Cui, J., Zhang, G., Xue, M., Chu, D., and Zhao, Y. (2022). Spatial–temporal
seizure detection with graph attention network and bi-directional lsm architecture.
Biomed. Signal Process. Control 78, 103908. doi:10.1016/j.bspc.2022.103908

Ho, T. K. K., and Armanfard, N. (2023). Self-supervised learning for anomalous
channel detection in eeg graphs: application to seizure analysis. Proc. AAAI Conf. Artif.
Intell. 37, 7866–7874. doi:10.1609/aaai.v37i7.25952

Ji, X., Li, Y., and Wen, P. (2022). Jumping knowledge based spatial-temporal graph
convolutional networks for automatic sleep stage classification. IEEE Trans. Neural Syst.
Rehabilitation Eng. 30, 1464–1472. doi:10.1109/tnsre.2022.3176004

Jia, Z., Lin, Y., Wang, J., Ning, X., He, Y., Zhou, R., et al. (2021). Multi-view
spatial-temporal graph convolutional networks with domain generalization for sleep
stage classification. IEEE Trans. Neural Syst. Rehabilitation Eng. 29, 1977–1986.
doi:10.1109/TNSRE.2021.3110665

Jia, Z., Lin, Y., Wang, J., Zhou, R., Ning, X., He, Y., et al. (2020). Graphsleepnet:
adaptive spatial-temporal graph convolutional networks for sleep stage classification.
IJCAI 2021, 1324–1330. doi:10.24963/ijcai.2020/184

Kalaganis, F. P., Laskaris, N. A., Chatzilari, E., Nikolopoulos, S., and
Kompatsiaris, I. (2020). A data augmentation scheme for geometric deep
learning in personalized brain–computer interfaces. IEEE access 8, 162218–162229.
doi:10.1109/access.2020.3021580

Kannathal, N., Choo, M. L., Acharya, U. R., and Sadasivan, P. (2005). Entropies
for detection of epilepsy in eeg. Comput. methods programs Biomed. 80, 187–194.
doi:10.1016/j.cmpb.2005.06.012

Kipf, T. N., and Welling, M. (2016). Semi-supervised classification with graph
convolutional networks

Lee, S., Yu, Y., Back, S., Seo, H., and Lee, K. (2024). Sleepy: automatic sleep
scoring with feature pyramid and contrastive learning. Expert Syst. Appl. 240, 122551.
doi:10.1016/j.eswa.2023.122551

Li, M., Chen, H., and Cheng, Z. (2022a). An attention-guided spatiotemporal
graph convolutional network for sleep stage classification. Life 12, 622.
doi:10.3390/life12050622

Li, M., Qiu, M., Zhu, L., and Kong, W. (2023). Feature hypergraph representation
learning on spatial-temporal correlations for eeg emotion recognition. Cogn.
Neurodynamics 17, 1271–1281. doi:10.1007/s11571-022-09890-3

Li, Y., Chen, J., Li, F., Fu, B., Wu, H., Ji, Y., et al. (2022b). Gmss: graph-based multi-
task self-supervised learning for eeg emotion recognition. IEEE Trans. Affect. Comput.
14, 2512–2525. doi:10.1109/taffc.2022.3170428

Lian, J., and Xu, F. (2023). Epileptic eeg classification via graph transformer network.
Int. J. neural Syst. 33, 2350042. doi:10.1142/S0129065723500429

Liu, D., Dong, X., Bian, D., and Zhou, W. (2023). Epileptic seizure prediction
using attention augmented convolutional network. Int. J. Neural Syst. 33, 2350054.
doi:10.1142/S0129065723500545

Liu, H., Zhang, J., Liu, Q., and Cao, J. (2022). Minimum spanning tree based
graph neural network for emotion classification using eeg. Neural Netw. 145, 308–318.
doi:10.1016/j.neunet.2021.10.023

Lopez, S., Del Percio, C., Lizio, R., Noce, G., Padovani, A., Nobili, F., et al.
(2023). Patients with alzheimer’s disease dementia show partially preserved parietal
‘hubs’ modeled from resting-state alpha electroencephalographic rhythms. Front. Aging
Neurosci. 15, 780014. doi:10.3389/fnagi.2023.780014

Mehta, S., and Rastegari, M. (2022). Separable self-attention for mobile vision
transformers. arXiv Prepr. arXiv:2206.02680. doi:10.48550/arXiv.2206.02680

Meng, L., Hu, J., Deng, Y., and Hu, Y. (2022). Electrical status epilepticus
during sleep electroencephalogram waveform identification and analysis based on
a graph convolutional neural network. Biomed. Signal Process. Control 77, 103788.
doi:10.1016/j.bspc.2022.103788

Na, J., Wang, Z., Lv, S., and Xu, Z. (2021). An extended k nearest
neighbors-based classifier for epilepsy diagnosis. IEEE Access 9, 73910–73923.
doi:10.1109/access.2021.3081767

Peh, W. Y., Thangavel, P., Yao, Y., Thomas, J., Tan, Y.-L., and Dauwels, J.
(2023). Six-center assessment of conn-transformer with belief matching loss for
patient-independent seizure detection in eeg. Int. J. Neural Syst. 33, 2350012.
doi:10.1142/S0129065723500120

Qiu, X., Yan, F., and Liu, H. (2023). A difference attention resnet-lstm network for
epileptic seizure detection using eeg signal. Biomed. Signal Process. Control 83, 104652.
doi:10.1016/j.bspc.2023.104652

Raeisi, K., Khazaei, M., Croce, P., Tamburro, G., Comani, S., and Zappasodi,
F. (2022). A graph convolutional neural network for the automated detection of
seizures in the neonatal eeg. Comput. Methods Programs Biomed. 222, 106950.
doi:10.1016/j.cmpb.2022.106950

Rennie, J., Chorley, G., Boylan, G., Pressler, R., Nguyen, Y., and Hooper, R. (2004).
Non-expert use of the cerebral functionmonitor for neonatal seizure detection.Archives
Dis. Childhood-Fetal Neonatal Ed. 89, 37–40. doi:10.1136/fn.89.1.f37

Shoeb, A. H. (2009). Application of machine learning to epileptic seizure onset
detection and treatment. Ph.D. thesis, Mass. Inst. Technol.

Singh,G., Singh, B., andKaur,M. (2019).Grasshopper optimization algorithm–based
approach for the optimization of ensemble classifier and feature selection to
classify epileptic eeg signals. Med. and Biol. Eng. and Comput. 57, 1323–1339.
doi:10.1007/s11517-019-01951-w

Song, T., Liu, S., Zheng,W., Zong, Y., Cui, Z., Li, Y., et al. (2021). Variational instance-
adaptive graph for eeg emotion recognition. IEEE Trans. Affect. Comput. 14, 343–356.
doi:10.1109/taffc.2021.3064940

Song, T., Zheng, W., Song, P., and Cui, Z. (2018). Eeg emotion recognition using
dynamical graph convolutional neural networks. IEEE Trans. Affect. Comput. 11,
532–541. doi:10.1109/taffc.2018.2817622

Sukriti, Chakraborty, M., and Mitra, D. (2021). A computationally efficient
automated seizure detection method based on the novel idea of multiscale
spectral features. Biomed. Signal Process. Control 70, 102990. doi:10.1016/j.bspc.2021.
102990

Frontiers in Physiology 16 frontiersin.org

https://doi.org/10.3389/fphys.2024.1439607
https://doi.org/10.1016/j.bspc.2020.102229
https://doi.org/10.1016/j.patcog.2023.109868
https://doi.org/10.1109/TNSRE.2022.3183023
https://doi.org/10.1109/tim.2022.3220287
https://doi.org/10.1016/j.patcog.2023.109881
https://doi.org/10.1016/j.asoc.2023.111181
https://doi.org/10.1109/tnnls.2023.3319315
https://doi.org/10.1016/j.cmpb.2022.107277
https://doi.org/10.1166/jmihi.2017.2121
https://doi.org/10.1109/tcds.2022.3175636
https://doi.org/10.1016/j.neunet.2022.03.014
https://doi.org/10.1016/j.engappai.2023.106401
https://doi.org/10.1142/S0129065723500144
https://doi.org/10.3233/ais-210086
https://doi.org/10.1186/s40708-021-00123-7
https://doi.org/10.1016/j.knosys.2022.108856
https://doi.org/10.1016/j.eswa.2022.117330
https://doi.org/10.1016/j.bspc.2022.103908
https://doi.org/10.1609/aaai.v37i7.25952
https://doi.org/10.1109/tnsre.2022.3176004
https://doi.org/10.1109/TNSRE.2021.3110665
https://doi.org/10.24963/ijcai.2020/184
https://doi.org/10.1109/access.2020.3021580
https://doi.org/10.1016/j.cmpb.2005.06.012
https://doi.org/10.1016/j.eswa.2023.122551
https://doi.org/10.3390/life12050622
https://doi.org/10.1007/s11571-022-09890-3
https://doi.org/10.1109/taffc.2022.3170428
https://doi.org/10.1142/S0129065723500429
https://doi.org/10.1142/S0129065723500545
https://doi.org/10.1016/j.neunet.2021.10.023
https://doi.org/10.3389/fnagi.2023.780014
https://doi.org/10.48550/arXiv.2206.02680
https://doi.org/10.1016/j.bspc.2022.103788
https://doi.org/10.1109/access.2021.3081767
https://doi.org/10.1142/S0129065723500120
https://doi.org/10.1016/j.bspc.2023.104652
https://doi.org/10.1016/j.cmpb.2022.106950
https://doi.org/10.1136/fn.89.1.f37
https://doi.org/10.1007/s11517-019-01951-w
https://doi.org/10.1109/taffc.2021.3064940
https://doi.org/10.1109/taffc.2018.2817622
https://doi.org/10.1016/j.bspc.2021.102990
https://doi.org/10.1016/j.bspc.2021.102990
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Li et al. 10.3389/fphys.2024.1439607

Sun, Q., and Yang, Y. (2023). Unsupervised video anomaly detection based on
multi-timescale trajectory prediction. Comput. Vis. Image Underst. 227, 103615.
doi:10.1016/j.cviu.2022.103615

Thuwajit, P., Rangpong, P., Sawangjai, P., Autthasan, P., Chaisaen, R.,
Banluesombatkul, N., et al. (2021). Eegwavenet: multiscale conn-based spatiotemporal
feature extraction for eeg seizure detection. IEEE Trans. Industrial Inf. 18, 5547–5557.
doi:10.1109/tii.2021.3133307

Wagh, N., and Varatharajah, Y. (2020). “Eeg-gcnn: augmenting
electroencephalogram-based neurological disease diagnosis using a domain-
guided graph convolutional neural network,” in Machine Learning for health (PMLR),
367–378.

Wang, H., Xu, L., Bezerianos, A., Chen, C., and Zhang, Z. (2020). Linking attention-
based multiscale conn with dynamical gcn for driving fatigue detection. IEEE Trans.
Instrum. Meas. 70, 1–11. doi:10.1109/tim.2020.3047502

Wang, J., Gao, R., Zheng, H., Zhu, H., and Shi, C.-J. R. (2023a). Ssgcnet: a sparse
spectra graph convolutional network for epileptic eeg signal classification. IEEE Trans.
Neural Netw. Learn. Syst. 35, 12157–12171. doi:10.1109/tnnls.2023.3252569

Wang, J., Liang, S., Zhang, J., Wu, Y., Zhang, L., Gao, R., et al. (2023b). EEG signal
epilepsy detection with a weighted neighbor graph representation and two-stream
graph-based framework. IEEE Trans. Neural Syst. Rehabilitation Eng. 31, 3176–3187.
doi:10.1109/tnsre.2023.3299839

Wang, Y., Cui, W., Yu, T., Li, X., Liao, X., and Li, Y. (2023c). Dynamic multi-
graph convolution based channel-weighted transformer feature fusion network for
epileptic seizure prediction. IEEE Trans. Neural Syst. Rehabilitation Eng. 31, 4266–4277.
doi:10.1109/tnsre.2023.3321414

Wang, Y., Shi, Y., Cheng, Y., He, Z., Wei, X., Chen, Z., et al. (2022). A spatiotemporal
graph attention network based on synchronization for epileptic seizure prediction. IEEE
J. Biomed. Health Inf. 27, 900–911. doi:10.1109/JBHI.2022.3221211

Wang, Z., Hou, S., Xiao, T., Zhang, Y., Lv, H., Li, J., et al. (2023d). Lightweight
seizure detection based onmulti-scale channel attention. Int. J. Neural Syst. 33, 2350061.
doi:10.1142/S0129065723500612

Wei, Z., Zou, J., Zhang, J., and Xu, J. (2019). Automatic epileptic eeg detection
using convolutional neural networkwith improvements in time-domain.Biomed. Signal
Process. Control 53, 101551. doi:10.1016/j.bspc.2019.04.028

Wu, G., Yu, K., Zhou, H., Wu, X., and Su, S. (2024). Time-series anomaly detection
based on dynamic temporal graph convolutional network for epilepsy diagnosis.
Bioengineering 11, 53. doi:10.3390/bioengineering11010053

Xiao, T., Wang, Z., Zhang, Y., Wang, S., Feng, H., Zhao, Y., et al. (2024).
Self-supervised learning with attention mechanism for eeg-based seizure
detection. Biomed. Signal Process. Control 87, 105464. doi:10.1016/j.bspc.2023.
105464

Xu, X., Lin, M., and Xu, T. (2022). Epilepsy seizures prediction based on nonlinear
features of eeg signal and gradient boosting decision tree. Int. J. Environ. Res. Public
Health 19, 11326. doi:10.3390/ijerph191811326

Zhang, M., Zhang, B., Wang, F., Chen, Y., and Jiang, N. (2010). Multi-scale phase
average waveform of electroencephalogram signals in childhood absence epilepsy
usingwavelet transformation.NEURALRegen. Res. 5, 774–780. doi:10.3969/j.issn.1673-
5374.2010.10.010

Zhao, P., Zheng, Q., Ding, Z., Zhang, Y., Wang, H., and Yang, Y.
(2022a). A high-dimensional and small-sample submersible fault detection
method based on feature selection and data augmentation. Sensors 22, 204.
doi:10.3390/s22010204

Zhao, X., Peng, X., Niu, K., Li, H., He, L., Yang, F., et al. (2022b). A multi-
head self-attention deep learning approach for detection and recommendation of
neuromagnetic high frequency oscillations in epilepsy. Front. Neuroinformatics 16,
771965. doi:10.3389/fninf.2022.771965

Zhao, Y., Chu, D., He, J., Xue, M., Jia, W., Xu, F., et al. (2023a). Interactive local and
global feature coupling for eeg-based epileptic seizure detection. Biomed. Signal Process.
Control 81, 104441. doi:10.1016/j.bspc.2022.104441

Zhao, Y., He, J., Zhu, F., Xiao, T., Zhang, Y., Wang, Z., et al. (2023b). Hybrid
attention network for epileptic eeg classification. Int. J. Neural Syst. 33, 2350031.
doi:10.1142/S0129065723500314

Frontiers in Physiology 17 frontiersin.org

https://doi.org/10.3389/fphys.2024.1439607
https://doi.org/10.1016/j.cviu.2022.103615
https://doi.org/10.1109/tii.2021.3133307
https://doi.org/10.1109/tim.2020.3047502
https://doi.org/10.1109/tnnls.2023.3252569
https://doi.org/10.1109/tnsre.2023.3299839
https://doi.org/10.1109/tnsre.2023.3321414
https://doi.org/10.1109/JBHI.2022.3221211
https://doi.org/10.1142/S0129065723500612
https://doi.org/10.1016/j.bspc.2019.04.028
https://doi.org/10.3390/bioengineering11010053
https://doi.org/10.1016/j.bspc.2023.105464
https://doi.org/10.1016/j.bspc.2023.105464
https://doi.org/10.3390/ijerph191811326
https://doi.org/10.3969/j.issn.1673-5374.2010.10.010
https://doi.org/10.3969/j.issn.1673-5374.2010.10.010
https://doi.org/10.3390/s22010204
https://doi.org/10.3389/fninf.2022.771965
https://doi.org/10.1016/j.bspc.2022.104441
https://doi.org/10.1142/S0129065723500314
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

	1 Introduction
	2 Methods
	2.1 General structure
	2.2 Extraction of intrachannels features
	2.3 Multi-branch graph convolutional network
	2.3.1 Graph generator
	2.3.1.1 Spatial distance graph learning
	2.3.1.2 Functional connectivity graph learning
	2.3.1.3 Adaptive graph learning

	2.3.2 Graph convolution

	2.4 Multi-head attention mechanism
	2.5 Classifier module
	2.6 Training procedure
	2.7 Dataset
	2.8 Implementation details
	2.9 Performance evaluation metrics

	3 Experimental results
	3.1 Patient-specific experiments
	3.2 Patient-independent experiments
	3.3 Ablation study

	4 Discussion
	4.1 The influence of thresholds on graph representations
	4.2 Comparisons with state-of-the-art methods
	4.3 Limitations and future work

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

