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Heme is essential for a variety of proteins involved in vital physiological functions
in the body, such as oxygen transport, drug metabolism, biosynthesis of steroids,
signal transduction, antioxidant defense and mitochondrial respiration. However,
free heme is potentially cytotoxic due to the capacity of heme iron to promote
the oxidation of cellular molecules. The liver plays a central role in heme
metabolism by significantly contributing to heme synthesis, heme
detoxification, and recycling of heme iron. Conversely, enzymatic defects in
the heme biosynthetic pathway originate multisystemic diseases (porphyrias) that
are highly associated with liver damage. In addition, there is growing evidence
that heme contributes to the outcomes of inflammatory, metabolic and
malignant liver diseases. In this review, we summarize the contribution of the
liver to heme metabolism and the association of heme dyshomeostasis with liver
disease.
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1 Introduction

Heme, a complex of iron with protoporphyrin IX, serves as a prosthetic group in several
hemoproteins involved in oxygen transport and storage (hemoglobin and myoglobin),
peroxide inactivation (catalase, peroxidases), electron transport, energy generation and
chemical transformation (cytochromes), oxidation of tryptophan (tryptophan
dioxygenases), among others (Ponka, 1999). In humans and other higher animals, both
heme synthesis and degradation are highly regulated processes. Heme biosynthesis, mainly
performed by developing erythroid cells and hepatocytes (which are responsible for 15% of
the daily heme production) is a highly conserved process that involves eight enzymes, four
of which are cytoplasmic, whereas the remaining four are mitochondrial (Ajioka et al.,
2006). In both erythroid and nonerythroid tissues, heme biosynthesis is mainly regulated at
the level of the first and rate-controlling enzyme, Aminolevulinic acid synthase (ALAS),
albeit by different mechanisms. Tissue-specific regulation is ensured by the existence of
2 different genes for ALAS, one expressed ubiquitously (ALAS1) and the other expressed
only in erythroid precursors (ALAS2), which are differentially regulated. ALAS2 is
regulated by erythroid specific factors (Surinya et al., 1997) and by the interaction of
IRE binding protein (IRP) with an iron regulatory element (IRE) in the 5′-untranslated
region of ALAS2 mRNA. The IRE–IRP complex prevents translation of the ALAS2 mRNA,
whereas addition of an iron–sulfur cluster (Fe/S) abrogates the ability of IRPs to bind to the
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IRE and allows translation to occur. This ensures that the rate-
limiting step of erythroid heme production is controlled by iron
availability (Wingert et al., 2005; Ajioka et al., 2006). Likewise,
expression of ferroportin (FPN1), the unique cellular iron exporter,
is mostly regulated by erythroid-specific factors, as erythroid
precursors make use of an alternative upstream promoter to
express FPN1 transcript that lacks the IRE and is thus not
repressed in iron-deficient conditions (Zhang et al., 2009). As a
result, in iron-depleted conditions, iron export from FPN1 increases,
which further contributes to repress heme synthesis and
erythropoiesis (Zhang et al., 2011). On the other hand, ALAS1 is
regulated by the Peroxisome proliferator-activated receptor γ
coactivator 1α (PGC-1α) (Handschin et al., 2005) and the hepatic
heme synthesis is regulated by heme-mediated feedback inhibition,
through inhibition of transcription of ALAS1 gene and translation of
ALAS1 mRNA, destabilization of ALAS1 transcript, and inhibition
of translocation of the ALAS1 protein precursor into the
mitochondrial matrix (Ponka, 1999).

Heme breakdown is also a highly controlled process, regulated
by Heme oxygenase (HMOX). Most of the iron-containing
porphyrin that is degraded comes from the hemoglobin present
in senescent erythrocytes that are phagocytosed by
reticuloendothelial macrophages in the spleen and liver. During
erythrophagocytosis, heme transport from the phagolysosome to the
cytoplasm relies on SLC48A1 (also known as Heme-responsive
gene-1, HRG1), a heme transporter that is highly expressed in
reticuloendothelial macrophages (White et al., 2013).
HRG1 deficiency in mice induces hemozoin formation due to
heme accumulation into lysosomes, thus preventing heme
recycling (Pek et al., 2019). The reaction catalyzed by HMOX
leads to the release of iron, which is recycled, and the final
products carbon monoxide (CO) and biliverdin, which is
eventually reduced to the antioxidant bilirubin (Kikuchi et al.,
2005). HMOX1, the inducible isoform of HMOX, is highly
expressed in splenic macrophages and Kupffer cells (Bauer et al.,
1998). Increased intracellular heme levels induce
HMOX1 expression via transcription factor Nuclear factor
erythroid 2-related factor 2 (NRF2), upon release of the heme-
sensitive transcriptional repressor BTB domain and CNC homology
1 (BACH1) from stress response elements located in an enhancer
region of the gene (Ogawa et al., 2001).

In addition, the liver plays an important role in recycling the
heme iron of damaged erythrocytes. In mice, stress
erythrophagocytosis is performed by a population of bone
marrow-derived Ly-6C+ monocytes that home to the
liver, where they differentiate into Ferroportin 1 (FPN1)-
expressing macrophages, which deliver iron to hepatocytes
(Theurl et al., 2016). The differentiation depends on growth
factor Colony Stimulating Factor 1 (CSF1) and on NRF2
(Theurl et al., 2016), which is known to mediate the
transcriptional activation of the FPN1 gene in macrophages
(Marro et al., 2010).

In addition to regulating genes involved in its own biosynthesis
or breakdown, heme regulates genes coding for globins,
cytochromes, myeloperoxidase, and iron import/export proteins
(Transferrin receptor, FPN1) (Chiabrando et al., 2014).

Whilst heme proteins are essential for a variety of vital
physiological functions in the body, free heme is potentially

cytotoxic due to the capacity of heme iron to promote the
oxidation of cellular proteins, lipids and DNA (Chiabrando
et al., 2014). The liver plays a major role in the regulation of
circulating heme levels, by producing the two soluble scavengers
of free hemoglobin and heme, haptoglobin (Schaer and Buehler,
2013; Schaer et al., 2013) and hemopexin, respectively.
Haptoglobin binds to circulating hemoglobin, preventing its
extravascular translocation, as well as its reaction with nitric
oxide (NO) and peroxides, and the release of hemin (Schaer
et al., 2013). Haptoglobin-hemoglobin complexes are
endocytosed in liver macrophages through the hemoglobin
scavenger receptor CD163 (Kristiansen et al., 2001).
Hemopexin binds free heme forming hemopexin-heme
complexes that are internalized by Low-density lipoprotein
receptor-related protein (LRP)/CD91-expressing hepatocytes
and the Kupffer cells (Hvidberg et al., 2005). These hepatic
cell types catabolize heme, thus preventing heme-mediated
oxidative stress and heme-bound iron loss, particularly in
pathologic conditions associated with intravascular hemolysis
(Tolosano et al., 2010). Besides hemopexin and haptoglobin,
other circulating proteins produced by the liver are known to
bind heme, thus preventing heme-mediated oxidative stress:
albumin, high/low-density lipoprotein (LDL/HDL), and α1-
microglobulin (Larsen et al., 2012).

In summary, the liver contributes significantly to heme synthesis
and recycling, and the detoxification of circulating heme relies on
proteins produced in the liver (Figure 1).

2 Heme biosynthesis gone wrong:
hepatic and erythropoietic porphyrias

The porphyrias are a group of eight genetic diseases that result from
defects in the different enzymatic steps of the heme biosynthetic
pathway (Dickey et al., 2024): X-linked protoporphyria (XLP),
d-aminolevulinic acid dehydratase (ALAD) deficiency porphyria
(ADP), acute intermittent porphyria (AIP), congenital erythropoietic
porphyria (CEP), porphyria cutanea tarda (PCT), hereditary
coproporphyria (HCP), variegate porphyria (VP), and
erythropoietic protoporphyria (EPP). The accumulation of
specific enzyme substrates explains the clinical symptoms,
which include either acute neurovisceral attacks or
photosensitivity or both. Neurovisceral symptoms are due to
neurotoxic effects of porphyrin precursors, whereas the
photosensitivity is due to the fluorescent properties of
porphyrins. Some authors have classified porphyrias according
to their clinical symptoms as acute hepatic porphyrias (AHP) (AIP,
VP, HCP, and ADP) and cutaneous, with the latter category
comprising both blistering (PCT, CEP, VP, HCP) and
nonblistering (EPP, XLP). Porphyrias are also traditionally
divided into two categories, depending on the primary site of
heme precursor overproduction: hepatic (ADP, AIP, PCT, HCP
and VP) and erythropoietic porphyrias (XLP, CEP and EPP). For
an up-to-date classification of the porphyrias and for insights on
their clinical management, readers are advised to consult the
excellent review of Dickey and colleagues (Dickey et al., 2024).

Regardless of whether they are classified as hepatic or
erythropoietic, nearly all porphyrias relate in some way to the
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liver. Firstly, because some porphyrias are caused by liver
damage. PCT, the most common type of porphyria, is in
most cases (type I) an acquired deficiency of
Uroporphyrinogen decarboxylase (UROD), the fifth enzyme
in heme biosynthesis, caused by underlying liver diseases
triggered by alcohol, iron overload, chlorinated hydrocarbons,
oestrogens or viral hepatitis (Frank and Poblete-Gutierrez,
2010). Secondly, some porphyrias are associated with
increased risk of primary liver cancer. This is the case of both
PCT and AHP, as discussed below (Section 4). Thirdly, even
erythropoietic porphyrias are known to damage the liver. EPP is
caused by an inherited loss-of-function mutation in the gene for
the final enzyme of heme biosynthesis, Ferrochelatase (FECH),
whereas XLP patients carry gain-of-function pathogenic

variants in erythroid-specific ALAS2, which encodes the first
enzyme of heme synthesis. Erythropoietic protoporphyrias (EPP
and XLP) are characterized by tissue accumulation of
hydrophobic protoporphyrin, which can absorb energy from
light and damage the endothelium and subcutaneous tissues
through a process that is mediated by the production of reactive
oxygen species (ROS). Patients are mostly affected by severe
painful cutaneous phototoxicity after light exposure (Hussain
et al., 2023). However, since protoporphyrin is excreted in the
bile, some patients accumulate porphyrin-containing bile plugs,
leading to severe cholestatic liver disease (Anstey and Hift,
2007). A recent study proposed the silencing of the hepatic
bile acid-related nuclear farnesoid x receptor (FXR), which
induces the expression of genes involved in heme

FIGURE 1
The liver plays a central role in hememetabolism. The liver is tightly involved in all stages of hememetabolism, from its biosynthesis to its breakdown,
and recycling of heme iron. About 15% of heme daily production occurs in hepatocytes, where the heme biosynthetic pathway is mainly regulated by the
isoform 1 of the rate-limiting enzyme ALAS (ALAS1), which is feedback regulated by heme.Moreover, reticuloendothelial macrophages of the liver are vital
to clear senescent RBCs by phagocytosis. RBCs-derived heme is transported from the phagolysosome to the cytoplasm by HRG1, then catalyzed by
HMOX and the resulting ferrous iron (Fe2+) is either retained in ferritin molecules or exported through FPN1 and recycled for production of new RBCs in
the bonemarrow. Hepatocytes are also responsible for production of Hp andHPX, which bind toHb or free heme, respectively, targeting them toCD163+

liver macrophages or LRP/CD91+ hepatocytes and Kupffer cells. These molecular scavengers reduce heme oxidative reactivity and subsequent
cytotoxicity, preventing organ damage. Created with BioRender.com. ALA, 5-aminolevulinic acid; ALAD, Aminolevulinic acid dehydratase; ALAS1,
Aminolevulinic acid synthase-1; BACH1, BTB and CNC homology 1; CO, Carbon monoxide; CPOX, Coproporphyrinogen III oxidase; FECH,
ferrochelatase; FLVCR1b, Feline leukemia virus subgroup C receptor-protein; FPN1, Ferroportin; Hb, Hemoglobin; HMOX1, heme oxygenase 1; Hp,
Haptoglobin; HPX, Hemopexin; HRG1, Heme-responsive gene-1; NRF2, Nuclear factor erythroid 2-related factor 2; PBGD, Porphobilinogen deaminase;
PPOX, Protoporphyrinogen oxidase; RBC, Red blood cell; ROS, Reactive Oxygen Species; UROD, Uroporphyrinogen decarboxylase; UROS,
Uroporphyrinogen synthase.
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biosynthesis, as a potential new therapeutic approach against
EPP-associated cholestasis (Dean et al., 2023). Lastly, the
treatment of some porphyrias may require liver
transplantation (Lissing et al., 2024), either to treat the
porphyria or its symptoms, as is the case of AIP (Lissing
et al., 2021) or EPP (Anstey and Hift, 2007). Likewise,
increasing the hepatic production of specific enzymes of the
heme biosynthetic pathway via systemic messenger RNA
therapy (e.g., hPBGD mRNA) is emerging as a potential
treatment for porphyria patients (Jiang et al., 2018).

3 Heme, vascular occlusion, immune
response and metabolic alterations in
liver disease

Liver damage is a common finding in patients with sickle cell
disease (SCD), mostly due to vascular occlusion from intrahepatic
sickling of erythrocytes with concomitant acute ischemia
(Theocharidou and Suddle, 2019). In SCD, hemolysis results in the
release of large quantities of free heme and heme-laden erythrocyte
membrane microparticles into the circulation (Figure 2A). This

FIGURE 2
Heme dyshomeostasis is associated with liver disease. (A) In sickle cell disease, RBCs are more fragile and break apart during circulation, releasing
significant amounts of heme and heme-enriched membrane microparticles. Such amounts of cell-free heme in circulation activate endothelial cells via
ROS production and promote abnormal RBC adhesion, originating clumps that can block blood flow. This vascular occlusionmay occur in liver sinusoids,
preventing liver oxygenation and thus causing severe tissue damage. (B)Heme is a danger-associated molecular pattern (DAMP) that can modulate
different cells in the immune compartment. Heme can activate innate immune receptors (e.g., TLR-4) and neutrophil NET formation, activating and
amplifying inflammation. In turn, heme may inhibit dendritic cell maturation or modulate HMOX1 expression in monocytes, favoring Treg expansion and
macrophageM2 polarization. These anti-inflammatory responses are of the utmost importance in sterile liver inflammation or liver transplantation. Heme
can also increase the expression of heme-inducible HMOX1 in immature neutrophils, inhibiting a proper oxidative burst in resulting mature neutrophils,
thereby preventing host defense against pathogens targeting different organs, including the liver. (C) Cell-free heme, released during hemolysis, may
promote metabolic liver disease by disruption of hepatic lipid metabolism. Hemolysis has been shown to promote lipid accumulation and block
intracellular breakdown of lipid droplets by lipophagy, resulting in liver steatosis, a well-known trait of MAFLD. Heme-iron may also initiate lipid
peroxidation, mediating the death of hepatocytes by ferroptosis, which potentially plays a role in the progression of MAFLD to NASH. (D) Enzymatic
defects in the heme biosynthetic pathway result in metabolic disorders known as porphyrias, due to accumulation of different heme precursors
(i.e., porphyrins), some of which are genotoxic. Their accumulation is associated with an increased risk of carcinogenesis. Created with BioRender.com.
HMOX1, heme oxygenase 1; KC, Kupffer cell; LSEC, Liver sinusoidal endothelial cell; MAFLD, Metabolic dysfunction-associated fatty liver disease; NASH,
Non-alcoholic steatohepatitis; NET, Neutrophil extracellular trap; NF-kB, Nuclear factor kappa B; NO, nitric oxide; RBC, Red blood cell; ROS, Reactive
Oxygen Species; SC, Stellate cell; TLR-4, Toll-like receptor 4; Treg, Regulatory T cell.

Frontiers in Physiology frontiersin.org04

Duarte et al. 10.3389/fphys.2024.1436897

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1436897


triggers endothelial cell activation, via production of ROS, and
abnormal red blood cell adhesion (Camus et al., 2015; An et al.,
2023). In addition, free plasma hemoglobin depletes circulating levels
of NO, which causes smooth muscle contractions and
vasoconstriction (Piccin et al., 2019). Another consequence of
chronic hemolysis in SCD is the development of pigment
gallstones, whereas viral hepatitis and iron overload may develop
secondary to multiple blood transfusions (Theocharidou and Suddle,
2019). Additionally, some SCDpatients present autoimmune hepatitis
(Lynch et al., 2023).

Free heme is a well-established danger-associated molecular
pattern (DAMP), which can initiate immune responses upon
binding to Toll-like receptor 4 (TLR4) (Canesin et al., 2020).
However, there is accumulating evidence that hemolysis can
modulate immune cell differentiation and function in different
ways (reviewed by Zhong and Yazdanbakhsh, 2018). Via the
production of ROS, free heme can induce the formation of
neutrophil extracellular traps (NETs), which contributes to the
vaso-occlusive crises in SCD patients. Heme can also induce
HMOX1 in immature neutrophils, which inhibits the oxidative
burst and impairs the capacity of leukocytes to destroy
pathogenic agents (Evans et al., 2015). Hemolysis can also favor
anti-inflammatory immune cell polarization by inhibiting dendritic
cell maturation required for effector T-cell responses (Zhong and
Yazdanbakhsh, 2018), and induce the differentiation of liver
macrophages into anti-inflammatory erythrophagocytes (Pfefferlé
et al., 2020), which was shown to provide protection against sterile
liver inflammation (Pfefferlé et al., 2021). Likewise, hemolysis may
promote regulatory T-cell (Treg) expansion through modulation of
HMOX1 expression in nonclassical monocytes (Zhong and
Yazdanbakhsh, 2018; Figure 2B).

The heme-inducible enzyme HMOX1 was reported to play a
protective role in hepatic ischemia–reperfusion injury (IRI) following
orthotopic liver transplantation. Low HMOX1 expression by liver
macrophages correlates with hepatocellular death and worse patient
survival (Nakamura et al., 2017). Mechanistically, HMOX1 prevents
macrophage M1 polarization (Zhang et al., 2018) and TLR4-driven
inflammatory responses (Rao et al., 2015). Another study reported the
ability of HMOX1 to modulate Treg expansion and to inhibit
infiltration of CD4+ and CD8+ cells in transplanted livers (Sun
et al., 2011).

Hemolysis may enhance liver damage by promoting
metabolic dysfunction-associated fatty liver disease (MAFLD)
(Figure 2C). Using a mouse model of acute intravascular
hemolysis, Rayego-Mateos et al. (2023), demonstrated that
heme disturbs lipid metabolism and promotes liver steatosis.
Specifically, hemolysis exacerbates lipid accumulation and blocks
the lipophagy pathway. On the other hand, heme-inducible
enzymes and products of heme breakdown with antioxidant
properties seem to be protective. The catabolism of heme
mediated by HMOX produces biliverdin, which is reduced to
bilirubin by Biliverdin reductase (BVR) (O’Brien et al., 2015).
HMOX1 expression is increased in non-alcoholic steatohepatitis
(NASH) patients (Malaguarnera et al., 2005) and an in vitro study
suggests that HMOX1 may have a protective role by suppressing
endoplasmic reticulum stress in hepatocytes (Li X. et al., 2020).
Several studies have shown that serum bilirubin levels are
inversely correlated with the prevalence of MAFLD in the

general population (Kwak et al., 2012; Han et al., 2024), and
with less severe liver disease among MAFLD patients (Kumar
et al., 2012; Puri et al., 2013; Salomone et al., 2013; Han et al.,
2024), which was repeatedly hypothesized to be due to the
antioxidant effect of bilirubin. However, this was never
demonstrated experimentally and remains a speculation. In
fact, a study by Stec et al. (2016) demonstrated that bilirubin
inhibits lipid accumulation in mice through direct binding to
Peroxisome proliferator-activated receptor α (PPARα).
Moreover, Biliverdin reductase A (BVRA), the enzyme that
reduces biliverdin IXα to bilirubin IXα, was also shown to
prevent hepatic lipid accumulation in a study using mice with
liver-specific BVRA KO fed with high-fat diet, through inhibition
of Glycogen synthase kinase (GSK) 3β and activation of PPARα
(Hinds et al., 2016).

In addition to the effects on hepatic steatosis, hepatocellular
free heme may also promote the progression of MAFLD to NASH
by catalyzing Fenton-like reactions, lipid peroxidation and
ultimately hepatocellular death by ferroptosis (Zhao et al.,
2023). Ferroptosis is an iron-dependent and lipid
peroxidation-mediated nonapoptotic cell death that was shown
to be the initiator of inflammation in the methionine-choline
deficient diet mouse model of NASH (Tsurusaki et al., 2019; Li D.
et al., 2020; Qi et al., 2020). Taking all the evidence above into
consideration, reducing free heme may constitute a therapeutic
approach in the treatment of metabolic liver disease (Zhao
et al., 2023).

4 Heme and liver cancer

The AHP, especially AIP, are associated with a marked
increased risk of primary liver cancer, mainly hepatocellular
carcinoma (HCC) (Baravelli et al., 2017; Saberi et al., 2021;
Lissing et al., 2022; Figure 2D). Notably, HCC in AHP occurs
in the absence of cirrhosis, unlike other chronic liver diseases
(Saberi et al., 2021). The pathogenesis of hepatocarcinogenesis in
AHP remains unknown but it may be related to the intrahepatic
accumulation of 5-Aminolevulinic acid, which is pro-oxidant
and genotoxic (Onuki et al., 2002). Alternative hypotheses such
as a loss of antioxidant effects due to heme deficiency, or direct or
indirect effects of mutations in heme metabolism genes have also
been proposed (Peoc’h et al., 2019). This is in contrast with PCT
patients, who also show increased risk of primary liver cancer
(Baravelli et al., 2019), but whose porphyria is concomitant to an
underlying liver disease that increases the risk of cirrhosis and
primary liver cancer. Likewise, chronic exposure of laboratory
rodents to some chemicals, drugs and pesticides that cause
hepatic porphyria is associated with liver carcinogenesis
(reviewed by Smith and Foster, 2018).

Heme per se is also believed to be carcinogenic, at least in
colorectal cancer. There is wide evidence that heme iron is the
critical component of red meat that promotes colorectal
carcinogenesis (Seiwert et al., 2020). Excess heme iron may
promote carcinogenesis by: favoring ROS production and the
oxidation of DNA, lipids and proteins; suppressing TP53 activity;
modulating immune cell function, inflammation, and gut dysbiosis
(Gamage et al., 2021).
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Cancer cells are reported to have greater activity of heme-
containing proteins and increased heme content, which may be
partly explained by the upregulation of the main enzymes in
heme synthesis (e.g., ALAS) (Fiorito et al., 2020; Gamage et al.,
2021). In other cases, such as in acute myeloid leukemia, heme
biosynthesis is downregulated (Lin et al., 2019). The heme-iron
exporter Feline leukemia virus subgroup C receptor-related
protein 1 (FLVCR1) is also over-expressed in several tumors
(Peng et al., 2018; Russo et al., 2019), possibly to establish a
balance in intracellular heme homeostasis. In fact, both increased
heme synthesis and increased heme export were shown to control
the energetic metabolism of cells with high-energy demand, such
as tumor cells (Fiorito et al., 2021). Notably, in the particular case
of HCC, analyses of publicly available RNAseq data at the “The
Cancer Genome Atlas” (TCGA) showed that: a) FLVCR1 mRNA
expression is significantly increased in HCC when compared with
normal liver tissue; b) FLVCR1 amplification or mRNA
upregulation are observed in 21% of HCC cases; c)
FLVCR1 mRNA expression is significantly associated with
HCC disease status, histological grade, and vascular invasion;
and d) higher expression of FLVCR1 is associated with poor
overall survival in HCC (Shen et al., 2018; Tang et al., 2020; Wei
et al., 2020). Likewise, analyses of tissue samples obtained from
the Human Protein Atlas showed that FLVCR1 protein is
strongly detected in HCC tissue, but not in normal liver tissue
(Shen et al., 2018; Wei et al., 2020). While FLVCR1 is emerging as
a new significant predictor of prognosis and a useful diagnosis
marker in HCC, its role in the pathophysiology of HCC
remains unknown.

Increased expression of proteins involved in heme uptake
has also been implicated in cancer (Hooda et al., 2013).
HRG1 may contribute to cancer cell invasiveness (Fogarty
et al., 2014) by regulating the activity of vacuolar-(H(+))
ATPase (V-ATPase), which is essential for endosomal
acidification and receptor trafficking in mammalian cells
(O’Callaghan et al., 2010). Although this has not been
addressed specifically in the context of liver cancer, HRG-1
may also represent a target for disrupting V-ATPase activity
and decrease the metastatic potential of cancer cells (Fogarty
et al., 2014).

Finally, excess iron may promote cell death by ferroptosis,
which is a mechanism of tumor suppression that has been
implicated in the action of clinical agents used to treat HCC
(e.g., sorafenib). There is increasing evidence that activating
ferroptosis may potently inhibit the growth of HCC cells
(Chen et al., 2022; Jiang et al., 2024). The fact that cancer
cells exhibit higher levels of heme could potentially be
explored in the search for a novel therapeutic strategy for
HCC, which is among the leading causes of cancer-related

mortality worldwide. However, the contribution of heme-
bound iron to ferroptosis remains unclear.

5 Conclusion

Heme is a key component of cellular respiration and function.
Heme biosynthesis is therefore tightly regulated and changes in
enzymatic activity of the pathway are associated with disease. Heme
also plays an essential role in oxygen transport and its uncontrolled
release (e.g., hemolysis) is associated with vascular damage and
malfunction and tissue oxidation. An emerging topic of research is
how cellular heme impacts on cancer cell proliferation and death. This is
particularly relevant in tissues enriched for heme proteins, such as the
liver. Its study may reveal cancer-specific cell dependencies related with
heme production and heme handling that are still unknown.
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