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Men with sickle cell disease (SCD) frequently experience priapism, defined as
prolonged, painful erections occurring without sexual arousal or desire. This
urological emergency can lead to penile fibrosis and permanent erectile
dysfunction if not treated adequately. Due to its complex pathophysiology,
there is currently no effective preventative treatment for this condition.
Recent studies have highlighted the dysfunction of the nitric oxide (NO) and
cyclic guanosine monophosphate (cGMP) pathway in erectile tissues as a critical
mechanism in developing priapism in SCD. Additionally, further research
indicates that intravascular hemolysis promotes increased smooth muscle
relaxation in the corpus cavernosum and that excess heme may significantly
contribute to priapism in SCD. Pharmacological treatments should ideally target
the pathophysiological basis of the disease. Agents that reduce excess free heme
in the plasma have emerged as potential therapeutic candidates. This review
explores themolecularmechanisms underlying the excess of heme in SCD and its
contribution to developing priapism. We discuss pharmacological approaches
targeting the excess free heme in the plasma, highlighting it as a potential
therapeutic target for future interventions in managing priapism.
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1 Introduction

Sickle cell disease (SCD) is a genetic disorder that results in the production of abnormal
hemoglobin, known as hemoglobin S (HbS) (Kavanagh et al., 2022). This aberrant
hemoglobin causes red blood cells to deform into a sickle shape under stressful
conditions, leading to numerous health complications (Kato et al., 2018). Among the
acute manifestations of SCD are vaso-occlusive crises, characterized by the blockage of
blood flow due to these sickled cells, which results in pain, potential organ damage, and an
elevated risk of infection (Kavanagh et al., 2022).

Another severe complication of SCD is priapism, defined as prolonged, painful
erections that occur without sexual arousal or desire (Bivalacqua et al., 2022). The
median age of onset for priapism in SCD patients is 15 years, and up to 48% of men
with the disease may experience at least one episode during their lifetime (Arduini and
Trovó de Marqui, 2018). This condition represents a urological emergency requiring
prompt diagnosis and treatment to prevent irreversible damage to the erectile tissue,
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potentially leading to permanent erectile dysfunction due to penile
fibrosis (Musicki and Burnett, 2020). Studies indicate that
approximately 30% of men experiencing recurrent priapism
episodes develop erectile dysfunction (Mantadakis et al., 1999;
Adeyoju et al., 2002; Alvaia et al., 2020). Furthermore, priapism
leads to psychological stress and diminishes the quality of life.

Despite the frequent occurrence of priapism, existing treatment
modalities tend to be reactive rather than preventive and are typically
applied too late during a priapism episode. Currently, there is limited
focus on developing preventative strategies for priapism in individuals
with SCD (Bivalacqua et al., 2022). Although there has been notable
progress in delineating the intricate pathophysiological processes
underlying priapism, additional research is necessary to develop
preventative therapies that address the pathophysiological basis of
the disease (Musicki and Burnett, 2020).

The pathology of SCD is closely associated with intravascular
hemolysis. Clinical studies have demonstrated a positive correlation
between priapism and elevated levels of intravascular hemolysis in
male patients with SCD (Nolan et al., 2005; Kato et al., 2006; Cita
et al., 2016). The process of intravascular hemolysis leads to the release of
hemoglobin into the plasma (Reiter et al., 2002). Hemoglobin present in
the plasma or interstitial space can rapidly undergo oxidation, producing
methemoglobin (HbFe3+), which readily releases its heme group, leading
to the excessive release of heme into the bloodstream (Bunn and Jandl,
1968; Reiter et al., 2002; Gbotosho et al., 2021). Elevated levels of plasma
heme contribute to the pathophysiology of SCD by driving an
inflammatory response, vaso-occlusion, and the formation of reactive
oxygen species (ROS) (Belcher et al., 2014; Belcher et al., 2018b).

In the context of priapism in SCD, the role of heme is
particularly significant. This mini-review explores the molecular
mechanisms underlying the excess of heme in SCD and its
contribution to the development of priapism. Furthermore, we
discuss pharmacological approaches targeting the excess of free
heme in the plasma, highlighting it as a potential therapeutic
target for future interventions for the management of priapism.

2 Nitric oxide signaling in
penile erection

Penile erection is the result of a complex interplay among
vascular, neural, and hormonal factors (MacDonald and Burnett,
2021). Central to this process is nitric oxide (NO), which serves as the
primary mediator of erection. The release of NO from vascular
endothelium and penile nerve terminals is crucial for the initiation
of an erection. Once released, NO diffuses into the adjacent smooth
muscle cell, which binds to the ferrous heme group of soluble
guanylate cyclase (sGC-Fe2+) (Andersson, 2011). This binding
triggers the conversion of GTP to cGMP, a secondary messenger
that plays a central role in the erection process. Elevated levels of
cGMP activate cGMP-dependent protein kinase, which modulates
several proteins responsible for muscle relaxation, including myosin
light chain phosphatase and potassium channels (Andersson, 2011).
Activating these proteins decreases intracellular calcium levels,
facilitating smooth muscle relaxation and, consequently, the
dilation of penile vessels, which is essential for erection
development (Andersson, 2011). Moreover, the dynamics between
the production of cGMP and its degradation by a specific enzyme,

phosphodiesterase type 5 (PDE5), are fundamental for maintaining
the necessary balance for an adequate erection. PDE5 hydrolyzes
cGMP to GMP, which is a crucial step that leads to the termination of
an erection (MacDonald and Burnett, 2021). This balance between
synthesis and degradation ensures that erections occur in a regulated
and efficient manner (MacDonald and Burnett, 2021).

3 Nitric oxide pathway dysfunctions in
SCD-associated priapism
pathophysiology

Experimental research has shown that priapism associated with SCD
primarily arises from decreased bioavailability of NO and the consequent
downregulation of PDE5 function (Champion et al., 2005; Lagoda et al.,
2014; Silva et al., 2016b). The reduction in NO bioavailability in the
erectile tissue in SCD is attributed to several alterations, including reduced
expression and activity of endothelial NO synthase (eNOS), increased
production of ROS that inactivates NO, and excess plasma hemoglobin
that reacts with NO (Bivalacqua et al., 2013; Musicki et al., 2020; Pereira
et al., 2022; 2023; 2024a). This downregulation of PDE5 in the smooth
muscle of the corpus cavernosum is attributed to reduced basal levels of
cGMPas PDE5 expression is positively regulated by cGMP levels (Corbin
et al., 2000; Lin et al., 2002; Champion et al., 2005; Lagoda et al., 2014;
Silva et al., 2016b; Musicki et al., 2018; 2020; Pereira et al., 2022). A
decrease in PDE5 protein expression has been observed in patients with
SCD who suffer from priapism and in SCD mouse models (Champion
et al., 2005; Lagoda et al., 2014; Silva et al., 2016a). With reduced
PDE5 activity, when NO activates GCs to produce cGMP, an
excessive accumulation of cGMP occurs in the erectile tissue,
following sexual stimulation or during nocturnal erections (Anele
et al., 2015). This excess of cGMP leads to an exaggerated relaxation
of the smooth muscle in the corpus cavernosum, potentially resulting in
priapism (Pereira et al., 2024a). In vitro functional studies have
demonstrated enhanced nitrergic relaxation (elicited by electrical field
stimulation), as well as both endothelium-dependent (mediated by
acetylcholine) and endothelium-independent (induced by NO donors)
relaxation in the corpus cavernosum of transgenic mouse models for
SCD, specifically the “Berkeley” and “Townes” models (Mi et al., 2008;
Claudino et al., 2009; Silva et al., 2016a; Silva et al., 2016b; Musicki et al.,
2018; Pereira et al., 2022; Pinheiro et al., 2022). These findings are
associated with reduced PDE5 expression (Champion et al., 2005; Silva
et al., 2016b; Musicki et al., 2018; Pereira et al., 2022).

4 The role of free heme in the
pathophysiology of sickle cell disease

Under physiological conditions, haptoglobin and hemopexin are the
primary plasma proteins responsible for protecting the body against the
accumulation of free hemoglobin and heme in the plasma. In the plasma,
haptoglobin binds to free hemoglobin, while hemopexin binds to the
heme group, forming haptoglobin–hemoglobin and hemopexin–heme
complexes. These complexes are metabolized by macrophages in the
reticuloendothelial system and hepatocytes (Smith and Morgan, 1979;
Hvidberg et al., 2005). However, in SCD, the extensive release of
hemoglobin into the plasma leads to depleting haptoglobin levels,
consequently elevating free hemoglobin concentration in the
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bloodstream (Reiter et al., 2002; Schaer et al., 2013). Free hemoglobin in
the plasma or interstitial space can release its heme group into the plasma
(Schaer et al., 2013). In patients with SCD, the levels of haptoglobin and
hemopexin are significantly reduced because the capacity of these
protective systems is overwhelmed in hemolytic conditions (Muller-
Eberhard et al., 1968; Schaer et al., 2013; Santiago et al., 2018). This results
in high residual levels of hemolysis products in circulation, posing a
substantial oxidative and pro-inflammatory risk (Muller-Eberhard et al.,
1968; Schaer et al., 2013; Santiago et al., 2018).

Plasma heme is as a potent inducer of inflammation and is recognized
as an erythrocytic danger-associated molecular pattern (eDAMP)
molecule (Gbotosho et al., 2021). This molecule significantly
contributes to a pro-inflammatory state, promoting various
complications of SCD, such as vaso-occlusion and acute lung injury
(Figueiredo et al., 2007; Bozza and Jeney, 2020). Inmurinemodels of SCD,
it has been demonstrated that heme can activate vascular endothelium
through toll-like receptor 4 (TLR4) (Belcher et al., 2014). Activation of this
receptor triggers the production of inflammatory mediators, including
interleukins IL-1, IL-6, and IL-8, as well as ROS. This process also leads to
the release of vonWillebrand factor and P-selectin, which are involved in
blood coagulation and cellular adhesion, thereby promoting vascular stasis
and vaso-occlusion (Belcher et al., 2014). Moreover, extracellular heme
exposure in SCD can increase the expression of placental growth factor
(PlGF) and IL-6 (Kapetanaki et al., 2019; Gbotosho et al., 2020). These
elevations have significant implications for the secretion of endothelin-1
and the development of pulmonary hypertension (Sundaram et al., 2010).
Elevated levels of thesemolecules can lead to renal and cardiac dysfunction
due to sustained inflammation and oxidative stress within the vascular
system (Nath et al., 2018; Rubio-Navarro et al., 2019; Gbotosho et al., 2020;
Gbotosho et al., 2021).

In summary, these findings highlight the critical role of plasma
heme in exacerbating the inflammatory state and the related
complications in SCD, underscoring the importance of targeting
these pathways for therapeutic interventions.

5 Implications of heme excess for
priapism in sickle cell disease

Heme is a fundamental biological molecule that plays a critical
role in various physiological and biochemical processes essential to
life. Despite its essential functions and benefits, heme can also
contribute to pathogenesis under conditions of imbalance or
stress (Gbotosho et al., 2021). Excessive release of heme, resulting
from hemolysis or tissue damage, can exacerbate oxidative stress,
promote inflammation, and activate pathological immune responses
(Vinchi et al., 2013; Belcher et al., 2014; Kapetanaki et al., 2019;
Gbotosho et al., 2020; Menon et al., 2022). Consequently, heme
metabolism and regulation are meticulously controlled within the
organism to maintain homeostasis and prevent tissue damage. To
counteract the toxicity resulting from hemolysis, heme is
metabolized by two enzymes, inducible heme oxygenase-1 (HO-
1) and constitutive heme oxygenase-2 (HO-2) (Thomsen et al.,
2013). This metabolic process produces carbon monoxide (CO),
biliverdin, and iron, thereby reducing the harmful effects of
hemolysis (Chiabrando et al., 2014).

CO, produced through the degradation of heme, influences multiple
cellular signaling pathways (Chiabrando et al., 2014). Despite its notoriety

as a toxic environmental pollutant, endogenously produced CO exerts
significant physiological effects, including the induction of vasodilation
(Stone and Marletta, 1994; Kozma et al., 1997; Wang et al., 1997). This
effect is mediated through the activation of sGC, an enzyme that catalyzes
the conversion of guanosine triphosphate (GTP) into cGMP (Stone and
Marletta, 1994). cGMP acts as a crucial secondary messenger that
promotes the relaxation of vascular smooth muscle, thereby facilitating
vasodilation and contributing to the regulation of blood pressure (Stec
et al., 2008). The activation of the CO-sGC-cGMP pathway promotes
vasodilation independently of endothelialmechanisms (Wang et al., 1997;
Lu et al., 2022). Furthermore, in the corpus cavernosum of rats, CO has
been shown to produce a concentration-dependent relaxation of the
smooth muscle through an activation-dependent mechanism involving
the sGC-cGMP pathway (Ushiyama et al., 2004; Decaluwé et al., 2017).

In animal arteries, the heme group induces concentration-
dependent relaxation by activating the CO-sGC pathway (Kozma
et al., 1997; Hosein et al., 2002). Until recently, the effect of heme on
erectile tissue remained unexplored. A pioneering study has now
demonstrated, for the first time, that heme induces concentration-
dependent relaxation in the corpus cavernosum through the HO-CO-
sGC-cGMP signaling pathway (Pereira et al., 2024b). Furthermore,
excess heme has been shown to potentiate the relaxation triggered by
the NO-sGC pathway in erectile tissue, stimulated by agents such as
acetylcholine, electric field stimulation, and NO donors (Pereira et al.,
2024b). These findings are similar to those observed in SCDmice (Mi
et al., 2008; Claudino et al., 2009; Silva et al., 2016a). Moreover,
another study from our group has revealed that the induction of
intravascular hemolysis in mice leads to a priapism phenotype
characterized by an increased expression of HO-1, which is
associated with enhanced relaxation of the corpus cavernosum
stimulated by the NO-cGMP pathway (Iacopucci et al., 2022). This
suggests that CO produced by HO-1 plays a crucial role in the
increased relaxation of the CC (Iacopucci et al., 2022).

Given these findings, it is imperative to conduct studies with
human corpus cavernosum tissues to investigate the relaxant effect
of heme and validate these mechanisms in a clinical setting. Such
studies would provide essential insights and potentially confirm the
therapeutic targets identified in the animal models. Additionally,
molecular studies should be carried out on erectile tissue from
patients with SCD to confirm the increased expression of HO-1
and further understand the interaction between heme metabolism
and the pathological mechanisms leading to priapism. This would
not only enhance our understanding of the disease pathology but
also aid in the development of targeted treatments for managing
priapism in patients with SCD.

In summary, the findings underscore the pivotal role of heme
metabolism in vascular physiology and its pathological
implications in SCD. By delineating the mechanisms through
which heme and its metabolic byproduct, CO, modulate the
relaxation of the corpus cavernosum, this research offers
important understanding of the pathophysiology of priapism in
SCD. The ability of heme to induce relaxation via the HO-CO-
sGC-cGMP pathway highlights a novel therapeutic avenue for
managing priapism. Modulating this pathway could provide a
targeted strategy to alleviate symptoms, contributing to a better
quality of life for patients. Continued research into the molecular
interactions of heme in vascular tissues is advocated to translate
these findings into clinical therapies.
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6 Therapeutic targeting of heme in
priapism treatment

The role of heme in the pathophysiology of SCD presents a
compelling opportunity for therapeutic intervention (Gbotosho
et al., 2021). Emerging approaches that focus on modulating the
heme levels and its downstream effects hold promise for
addressing this complication. Strategies are being investigated
to reduce excess free heme in the bloodstream and mitigate its
detrimental effects. One promising avenue involves the use of
heme scavengers, such as hemopexin (Vallelian et al., 2022).
Hemopexin, a plasma protein that binds free heme, neutralizes
its pro-oxidant and pro-inflammatory effects, thereby
preventing pathological consequences (Vallelian et al., 2022).
Preclinical studies have demonstrated the significant
therapeutic potential of hemopexin in reducing the
complications of SCD.

Hemopexin treatment has decreased the release of P-selectin
and von Willebrand factor, which are critical mediators of vaso-
occlusion and inflammation (Belcher et al., 2018a). In murine
models of SCD, hemopexin effectively inhibited these processes,
thereby reducing the incidence of vaso-occlusive events and
associated inflammation (Belcher et al., 2018a; Gentinetta et al.,
2022). Additionally, hemopexin positively impacts endothelial
function and cardiovascular health. Vinchi et al. (2013)
demonstrated that hemopexin administration improved
endothelial dysfunction, corrected cardiac alterations, and
decreased mean arterial pressure. The treatment increased eNOS
activity in the aortas of these mice while reducing oxidative and
nitrosative stress, which are significant contributors to endothelial
damage (Vinchi et al., 2013). Hemopexin treatment also improved
cardiopulmonary dysfunction in murine SCD models. Hemopexin
administration dose dependently attenuated pulmonary fibrosis and
oxidative modifications in the lung and myocardium of the right
ventricle, highlighting its potential to mitigate pulmonary and
cardiac complications associated with SCD (Buehler et al., 2021).
A recent study reported that Townes SCD mice exhibited higher
levels of free heme in the serum, levels of lipid peroxidation, and
increased cardiomyopathy, which were effectively corrected by
hemopexin treatment (Menon et al., 2022). This suggests that
hemopexin can restore cardiac function and reduce cardiac stress
in SCD (Menon et al., 2022).

Moreover, hemopexin deficiency has been identified as a risk
factor for acute kidney injury in SCD. Studies have shown that
hemopexin treatment can prevent acute kidney injury by mitigating
the adverse effects of free heme on renal tissues (Ofori-Acquah et al.,
2020). Collectively, these studies underscore the therapeutic
potential of hemopexin in managing various complications of
SCD, including vaso-occlusion, inflammation, endothelial
dysfunction, cardiopulmonary abnormalities, and acute kidney
injury. Future research and clinical trials are warranted to
translate these preclinical benefits into effective treatments for
patients with SCD.

Chronic treatment with hemopexin has been shown to reverse
pathophysiological mechanisms associated with priapism, such as
endothelial dysfunction, decreased NO bioavailability, and increased
oxidative stress (Vinchi et al., 2013; Belcher et al., 2018a; Ofori-
Acquah et al., 2020; Buehler et al., 2021; Gentinetta et al., 2022;

Menon et al., 2022). As a result, hemopexin has emerged as a
promising therapeutic option for managing priapism associated
with SCD. Additionally, given the experimental evidence that
excess heme and intravascular hemolysis can generate a priapism
phenotype, hemopexin treatment may reduce the heme levels in the
plasma, decreasing its availability to enter the HO-CO-sGC-cGMP
pathway. This reduction can helpmitigate excessive relaxation in the
corpus cavernosum, potentially preventing the onset of priapism
(Figure 1). These strategies aim to mitigate the adverse effects of free
heme and offer a targeted approach to address the underlying
pathophysiological mechanisms of priapism in SCD. Future
preclinical studies are essential to confirm these findings and
validate hemopexin as a therapeutic intervention for patients
with SCD who experience recurrent priapism. Establishing the
efficacy and safety of hemopexin through these studies will pave
the way for its use in clinical settings, ultimately improving patient
outcomes and quality of life.

Another strategy to reduce plasma heme levels is through
treatment with haptoglobin. Haptoglobin functions by
sequestering excess plasma hemoglobin, thereby reducing the
release of the heme group from hemoglobin (Buehler et al.,
2021). Recently, a study published by our research group
demonstrated that haptoglobin treatment reversed the priapism
phenotype in SCD mice, characterized by excessive relaxation of
the corpus cavernosum mediated by NO-sGC pathway stimulation
(Pereira et al., 2022). Additionally, haptoglobin treatment reduced
oxidative and nitrosative stress (Pereira et al., 2022).

FIGURE 1
Hemopexin as a candidate for priapism prevention in SCD.
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Considering these findings, haptoglobin and hemopexin offer
multifaceted therapeutic strategies that address the root causes of
various SCD complications, providing hope for better management
and outcomes for patients with this debilitating condition. Future
clinical studies must validate these findings and establish
haptoglobin and hemopexin as standard treatments for SCD-
related complications.

Hydroxyurea, the first drug approved by the FDA in 1998 for
treating SCD, has consistently demonstrated significant benefits in
reducing the frequency and severity of vaso-occlusive crises and
enhancing the overall quality of life for SCD patients (Charache
et al., 1995; Tshilolo et al., 2019). The primary mechanism of action
of hydroxyurea is to induce the production of fetal hemoglobin
(HbF), which inhibits the polymerization of hemoglobin S and, thus,
reduces red blood cell sickling and hemolysis (Cokic et al., 2003).
Clinical studies have reported that hydroxyurea can decrease
markers of intravascular hemolysis, such as plasma hemoglobin
levels and lactate dehydrogenase (Chenou et al., 2021). However,
hydroxyurea treatment did not reduce the plasma heme
concentrations in patients with SCD (Chenou et al., 2021). Few
clinical studies have reported the beneficial effects of hydroxyurea
treatment in men with SCD (Saad et al., 2004; Anele et al., 2014). A
preclinical study reported that hydroxyurea treatment did not alter
the priapism phenotype in transgenic SCD mice, suggesting that its
effectiveness in preventing priapism through the reduction of
hemolysis might be limited (Pereira et al., 2023).

L-glutamine, approved in 2017, has been recognized for its role
in reducing pain crises in patients with SCD. L-glutamine plays a
critical role in regulating oxidative stress, which is a pivotal
contributor to the pathophysiology of SCD (Niihara et al., 2018).
A clinical study reported that L-glutamine reduces lactate
dehydrogenase levels, a marker of intravascular hemolysis
(Elenga et al., 2022). However, the effects of L-glutamine on
plasma heme and priapism have yet to be investigated.

Voxelotor, approved in 2019, binds to HbS and inhibits its
polymerization, thereby mitigating the sickling of red blood cells and
reducing hemolysis (Vichinsky et al., 2013). A clinical study
reported that voxelotor treatment increased hemoglobin levels
and decreased indirect bilirubin levels in SCD patients, which is
a hemolysis-associated biomarker (Vichinsky et al., 2013). However,
the effects of voxelotor on plasma heme and its role in priapism have
yet to be investigated, representing a critical gap in current SCD
treatment research.

Crizanlizumab, approved in 2019, inhibits the P-selectin
adhesive pathway, which is activated during inflammation,
leading to a reduced frequency of pain crises in patients with
SCD (Ataga et al., 2017). A clinical study has reported that
crizanlizumab treatment does not alter hemolysis markers such
as hemoglobin levels, lactate dehydrogenase, haptoglobin levels,
reticulocyte counts, and indirect bilirubin (Ataga et al., 2017).
These findings suggest that the observed clinical benefits derived
from P-selectin inhibition do not involve a reduction in hemolysis. A
clinical trial is underway to evaluate the efficacy and safety of
crizanlizumab in SCD patients with priapism (NCT03938454).

Given the pivotal role of heme in the pathophysiology of SCD, it
is imperative to design clinical trials that assess the effects of
medications on plasma heme levels and priapism. Among the
currently approved drugs for SCD, voxelotor shows the most

evident effect in reducing hemolysis due to its mechanism of
action. However, considering the complex pathophysiology of
SCD, the future management of priapism will likely require a
combination of therapies rather than solely relying on
monotherapy. Future clinical trials should explore the synergy of
combining therapies such as hydroxyurea, voxelotor, crizanlizumab,
and L-glutamine with new pharmacological agents. Such approaches
could greatly enhance treatment efficacy and directly influence the
management of priapism, offering a more comprehensive solution
for patients suffering from this debilitating complication.

7 Conclusion

Priapism in SCD presents significant clinical challenges due to
its complex pathophysiology, demanding urgent and effective
treatments to improve the patient’s quality of life. Accumulating
evidence underscores the roles of intravascular hemolysis and excess
heme in contributing to the priapism phenotype, emphasizing the
need for targeted therapeutic strategies. In this context, haptoglobin
and hemopexin have emerged as promising agents, showing the
potential to mitigate the adverse effects of free heme and playing a
crucial role in managing this debilitating complication. Although
treatments like hydroxyurea, L-glutamine, voxelotor, and
crizanlizumab have demonstrated benefits in reducing pain crises
and managing general SCD symptoms, their impacts on plasma
heme levels and direct effects on priapism remain less well
understood. This identifies a critical gap in the current treatment
paradigms and highlights the necessity for continued research and
development of combination therapies. Such approaches should aim
not only to control hemolysis but also to reduce heme levels, offering
a more targeted and comprehensive relief from priapism, thereby
potentially transforming patient outcomes in SCD.
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