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Objective: To develop and validate a method for detecting ureteral stent
encrustations in medical CT images based on Mask-RCNN and 3D
morphological analysis.

Method: All 222 cases of ureteral stent data were obtained from the Fifth Affiliated
Hospital of Sun Yat-sen University. Firstly, a neural network was used to detect the
region of the ureteral stent, and the results of the coarse detection were
completed and connected domain filtered based on the continuity of the
ureteral stent in 3D space to obtain a 3D segmentation result. Secondly, the
segmentation results were analyzed and detected based on the 3D morphology,
and the centerline was obtained through thinning the 3D image, fitting and
deriving the ureteral stent, and obtaining radial sections. Finally, the abnormal
areas of the radial section were detected through polar coordinate
transformation to detect the encrustation area of the ureteral stent.

Results: For the detection of ureteral stent encrustations in the ureter, the
algorithm’s confusion matrix achieved an accuracy of 79.6% in the validation
of residual stones/ureteral stent encrustations at 186 locations. Ultimately, the
algorithm was validated in 222 cases, achieving a ureteral stent segmentation
accuracy of 94.4% and a positive and negative judgment accuracy of 87.3%. The
average detection time per case was 12 s.

Conclusion: The proposed medical CT image ureteral stent wall stone detection
method based on Mask-RCNN and 3D morphological analysis can effectively
assist clinical doctors in diagnosing ureteral stent encrustations.
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1 Introduction

Since the introduction of the ureteral stent in 1978 by Finney (1978). The ureteral stent
is a common implanted device placed by doctors inside the patient’s body after surgery for
urinary tract stone (Chew and Lange, 2009). It serves to protect and restore kidney function,
drain renal pelvis fluid, and relieve temporary blockages caused by ureteral inflammation
and edema, prevent postoperative urine leakage and ureteral strictures (Tomer et al., 2021).
However, as the duration of stent placement in the body increases, it may lead to the
formation of stones on the inner and outer walls of the stent (Dyer et al., 2002; Saadi et al.,
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2023). According to the report in J Urol in 2021, the incidence of
encrustations in ureteral stents can be as high as 13%, and the
incidence gradually increases with the prolonged duration of stent
placement (Chew and Lange, 2009). Accumulation of encrustations
may make it difficult to remove the stent for patients, subsequently.
For patients with relatively smooth ureteral stents and less severe
encrustations, stent removal can be performed in the outpatient
department. However, in cases the encrustations in the ureteral stent
are severe, extracorporeal shock wave lithotripsy may be necessary
before removing the intrarenal stent, and in some cases, surgical
stone fragmentation may be required before stent removal. If
patients do not undergo comprehensive imaging examinations
and doctors are unaware of the situation of the ureteral stent in
the body, attempting to remove the stent in the outpatient
department without prior assessment can lead to stent removal
failure due to the influence of ureteral stent encrustations, increasing
the patient’s pain and burden.

However, identifying ureteral stent encrustations is still a
challenge. Since its invention in the 1970s, CT have established it
as an indispensable tool in the practice of medicine (McCollough
and Rajiah, 2023). As a routine examination method, has the
advantages of non-invasiveness, fast imaging, and high image
resolution, making it an important means of screening. A clinical
study show that traditional CT imaging methods lack sensitivity,
specificity, positive predictive value, negative predictive value, and
accuracy (Tang and Attwell-Heap, 2011). Moreover, Saadi A et al.
used the KUB encrusted stent scoring system and FECal grading
system to predict the complexity of ureteral stent removal surgery
(Saadi et al., 2023). None of the above can fail to identify ureteral
stent encrustations quickly and accurately.

With the rapid improvement of computer hardware
performance, deep learning methods have emerged and
demonstrated powerful capabilities in image processing tasks.
Shen et al. summarized various medical image analysis methods
(Chan et al., 2020). The Microsoft team, led by He, proposed a
residual network architecture, effectively addressing the problem of
neural network gradient dispersion. Prathiba et al. integrated various
network structures to construct a deep residual fully convolutional
network (FCN), which significantly improves the automatic
segmentation of melanoma in dermatoscopy images (He et al.,
2016). The aforementioned technological advancements have
effectively improved the radiological diagnosis of diseases such as
pulmonary nodules, but there is a lack of research in the detection of
ureteral stent encrustations.

Early identification and prevention encrustation are one of the
most effective measures to treat the complications of encrustation. A
newmethod for identifying ureteral stent encrustations is developed,
allowing doctors to more accurately identify the presence of ureteral
stent encrustations and assess their severity before removing the
ureteral stent from the patient, optimizing the stent removal process.
Ultimately the model could benefit patients.

2 Materials and methods

All experiments in this paper were conducted in the same
experimental environment, with a computer configuration of
Intel(R) Core i5-9400 CPU at 2.90 GHz, 16 GB of memory, and

an NVIDIA GeForce RTX 3080 graphics card. The software platform
is based on the Python three language and the Porch framework.

A medical CT image-based method is proposed for detecting
ureteral stent encrustation in ureteral stents using Mask-RCNN (He
et al., 2017) and 3D morphological analysis. The method can
segment the ureteral stent and differentiate residual stones and
ureteral stent encrustation near the stent. Firstly, a neural
network is used to detect the region of the ureteral stent in the
input 2D CT medical image sequence, and the results of the coarse
detection are completed and connected by filling in the gaps and
filtering the connected domains based on the continuity of the
ureteral stent in 3D space to obtain the 3D segmentation result.
Secondly, the segmentation result is analyzed and detected based on
3D morphology analysis. The center line is obtained by 3D image
thinning, and the ureteral stent is re-sliced and radial sections are
obtained by fitting and derivation. Finally, the abnormal area of the
re-sliced section is detected by polar coordinate transformation to
detect the encrustation area of the ureteral stent. The overall
algorithm flowchart is shown in Figure 1.

2.1 Ureteral stent segmentation

2.1.1 2D neural network detection
Mask-RCNN is an important breakthrough in the development

of two-stage object detection networks. In addition to introducing
simple masks to achieve instance segmentation, the most critical
aspect is the introduction of the feature pyramid network (FPN).
The FPN network adds up features layer by layer from bottom to
top, generating new four-layer feature maps that fuse multiple depth
information. This structure can improve accuracy to some extent
when added to many networks, especially for small target objects.
The output channel number of each layer of FPN is usually set to
256, because it fuses depth features layer by layer from the bottom
with enough information, and will not cause a decrease in accuracy
due to excessive dimensionality reduction and information loss,
while also reducing the complexity of the network.

The atrous spatial pyramid pooling (ASPP) layer proposed in
the DeepLab series by Google (Chen et al., 2017a; Chen et al., 2018;
Chen et al., 2017b) is an effective network structure for small target
semantic segmentation tasks. It increases the receptive field of each
shared convolutional kernel, avoids the pooling downsampling
process, and fills the lost contextual information during feature
compression. ASPP structure is to use dilated convolutions with
different dilation rates to obtain compressed features at different
receptive field ranges for the same input feature, and then
concatenate the results containing different scale information.
Finally, a convolutional layer is used to reduce the channel
dimension of the concatenated result.

2.1.2 Multi-Task learning
Multi-Task learning is a machine learning method that

integrates multiple related tasks using shared representation
technology, fully utilizing the correlation information between
tasks to improve the generalization performance of single-task
learning network. Joint learning of different tasks can effectively
mine different feature correlation information in images, improving
the performance and generalization of the model.
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In this study, the idea of joint learning is integrated into the
Mask-RCNN network, and a semantic segmentation branch is
added. The overall joint learning neural network framework is
shown in Figure 2.

In the feature extraction network module, the ResNet34 backbone
network is used, and the features of the last four layers of different
depths are taken. Then, the FPN layer is added to add up the features
layer by layer from bottom to top to generate new four-layer feature
maps that fuse multiple depth information, which can achieve good
detection results for small targets. In the ResNet34-FPN encoder,
based on the extraction of features at different depths by ResNet34, the
FPN layer is used to exchange information between features at
different depths and unify them into 256 channels, removing
redundant information while avoiding complete loss of deep
semantic information, and without significantly increasing the
complexity of the network. Two branches are connected after the
feature extraction network. The first branch is for instance
segmentation task, which first uses the region proposal network
(RPN) to select the regions of interest, and then performs
bounding box regression, classification, and mask segmentation
within the regions of interest to obtain the detection result of the
ureteral region. The second branch is for semantic segmentation task,

using a simplified version of the ASPP structure. In the decoder of the
semantic segmentation task, the features of different scales with the
number of four layers of output channels of 256 are obtained through
the miniDL module, so it could be capturing contextual information
from a larger receptive field, which reduces the false positive rate.
Unlike the binarymask segmentation only within the detection box in
the instance segmentation task, this task starts from the overall image,
analyzes and learns high-level semantic features, and realizes pixel-
level classification of the ureteral stent. Finally, the loss functions of
the two sub-tasks are weighted and output, and joint learning affects
the parameters of the two sub-tasks together.

2.1.3 3D connected domain filtering
Due to the overlapping density ranges of urinary tract stones and

ureteral stents in the human body, i.e., similar CT values in CT
images, neural network detection on 2D images alone will result in
partial small stones being falsely detected. Hence, the connectivity of
the ureteral stent in 3D space is an important condition for
excluding the remaining scattered stones.

Connected component labeling is the basis for all binary image
analysis. It marks the target pixels in the binary image, allowing each
separate connected region to form a labeled block. Further, we can

FIGURE 1
Flow chart of the method.

FIGURE 2
The framework of joint learning neural network.
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obtain geometric parameters such as contours, bounding rectangles,
centroids, and moments for these blocks. In 3D discrete space, there
are three types of adjacency relationships, 6-adjacency, 18-
adjacency, and 26-adjacency.

A connected component is a pixel set composed of adjacent
pixels with the same pixel value. By using these two conditions,
connected regions can be found in the image, and for each connected
region found, a unique label is assigned to distinguish it from other
connected regions. The two-pass scanning method is used, and the
algorithm is as follows in Table 1.

The detection results of the 2D sequence are combined to obtain
the rough detection results of the 3D ureteral stent. After connected
component filtering, the final 3D segmentation results of the ureteral
stent are obtained, as shown in Figure 3.

2.2 Ureteral stent encrustation detection

2.2.1 3D image refinement
The simplified 1D curve describes the original 3D object in a

linear representation, which is generally referred to as a centerline or
curve-skeleton. The curve-skeleton is defined as follows:

Set up a collection X ∈ Zn, B is a closed unit ball, then the
skeleton SK(X) of set X is composed of a series of skeleton subsets
SK(X)_r, SK(X) � ∪

r≥ 0
SKr(X),which SKr � ∩

k≥ 0
[(X ⊗ rB)kB].

This paper adopts the centerline of the 3D ureteral stent
obtained by the template-based algorithm in the topological
refinement method (Lee et al., 1994). Starting from the boundary
of the shape andmoving inwards, the position of the central skeleton
is gradually searched. The basic idea is to uniformly peel off the
boundary points of the shape layer by layer, and the remaining
innermost part that cannot be further peeled off forms the skeleton
of the shape. The template-based algorithm applies a refinement
operator to each point on the image or object in the order of scan
lines, and it makes a judgment by examining the neighborhood of
point p. This refinement operator can be viewed as a Boolean
function, with its input being the value of p and its neighboring
elements, and its output being the new value of p. The entire process
is carried out repeatedly, with all points being scanned each time,
identifying and removing points that can be deleted, until no more
points can be removed. This algorithm is based on the neighborhood
of a given point, typically using an 8-neighborhood (3 × 3 template)
in 2D images and a 26-neighborhood (3 × 3 × 3 template) in
3D space.

The 3D visualization of the skeleton graph is shown in
Figure 4A, where the blue area represents the original 3D
segmentation result of the ureteral stent, and the red line
represents the obtained centerline. To observe the accuracy of the
skeleton extraction more clearly, projection images in the x and y
directions are plotted, as shown in Figure 4B.

2.2.2 3D repeat sections
Figure 5 shows the complex and variable morphology of the

ureteral stent in the human body, which can easily tilt. However, CT
imaging only slices at fixed intervals in one direction, as shown in①,
causing the cross-section to become an irregular circle, which can
interfere with the assessment of ureteral stent encrustation. In this
case, it is necessary to re-slice the entire ureteral stent, resulting in a
circular shape in the direction of the pipe diameter, as shown in②.

TABLE 1 Two-pass scanning method.

Input: 3D data matrix

Output: 3D connected domain sequences

Step 1: The first scan
Access the current voxel B (x, y, z), if B (x, y, z) = 1:
a, If the label values in the neighborhood of B (x, y, z) are all 0, then assign a new

label to B (x, y)
label + = 1, B (x,y,z) = label
b, If there are voxels Neighbors with voxel values >1 in the neighborhood of B (x, y,

z):
1) Assign the minimum value in Neighbors to B (x, y, z)

B (x,y,z) = min{Neighbors}
2) Record the equality relationship between the values (labels) in Neighbors,

indicating that these values (labels) belong to the same connected region

Step 2: The second scan:
Access the current voxel B (x, y, z), if B (x, y, z) > 1:
Find the minimum label value in the equality relationship with label = B (x, y, z),

and assign it to B (x, y, z)

Step 3: Complete the scan, voxels with the same label values in the image consisted of
the same connected region

FIGURE 3
Comparison of segmentation results before and after filtering in
connected domain.

FIGURE 4
Visualization of the centerline of 3D ureteral stent.
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This allows for effective assessment of any abnormalities in the
ureteral stent. The re-slicing steps of the ureteral stent are as follows.

Step 1: Use the B-spline method to fit the centerline of the ureteral
stent, as shown by the gray line in Figure 5.

Step 2: Take the derivative of the fitted curve to obtain the tangent
at each center point, as shown by the red line in Figure 5.

Step 3: Use the tangent as the normal vector to calculate the cross-
section corresponding to each center point in the direction
of the pipe diameter.

After completing the re-slicing, the cross-sectional area of each re-
slice is calculated. The area sequence is then normalized and sorted. If
the area values before and after in the sequence exceed a threshold, they
are used as boundary points. The points with area values greater than
the boundary points are divided into the stone area, which can
preliminarily identify abnormal sections of the ureter.

2.2.3 Differentiating residual stones from ureteral
stent encrustations

Polar coordinate transformation refers to converting Cartesian
coordinates into polar coordinates, with the two axes being the
angle θ and the major axis. The position of a point is represented
by the angle with the horizontal direction from the origin and the
distance to the origin. It is challenging to describe circular objects when
distinguishing features. Therefore, the polar coordinate transformation
method is often used to map circular objects to rectangular features for
analysis in the defect detection of circular objects. In this study, there are
three categories to differentiate, including ureteral stents without
encrustations, residual stones that have fallen and come into contact
with the stent and ureteral stent encrustations. All of them are small

targets with similar shapes and are difficult to distinguish directly. As
shown in the shape comparison in Figure 6, the left side shows the
enlarged contrast of the original single CT image, and the right side
shows the feature map after the polar coordinate transformation of a
continuous segment corresponding to the region.

The image after polar coordinate transformation can be interpreted
as a continuous radius sequence for a circular shape. From the top image
in Figure 6, it can be observed that the ureteral stent without stones tends
to be a standard circle, with a stable and not very noticeable fluctuation in
the radius. The stent with residual stones shows a concentration of
abnormally increased radius in a continuous segment, indicating that the
residual stones are in contact with the stent, but not closely, and with a
larger increase in radius, which does not conform to the growth pattern
of ureteral stent encrustations. On the other hand, ureteral stent
encrustations show intermittent increases in the entire radius
sequence, consistent with the growth pattern of encrustations around
the stent. The detailed algorithm flow for differentiating residual stones
and ureteral stent encrustations is shown in Figure 7.

3 Results

3.1 Data summary indicates

This study was approved by the Ethics Review Committee of the
Fifth Affiliated Hospital of Sun Yat-sen University. The CT dataset
for detecting ureteral stent encrustations were collected by clinical
doctors in the urology department of the Fifth Affiliated Hospital of
Sun Yat-sen University, with a total of 222 patient cases, including
67 positive cases and 155 negative cases. The data have been
obtained with the informed consent of the patients.

FIGURE 5
3D reslice schematic.
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For the ureteral stent segmentation task, clinical doctors
performed semantic segmentation labeling on the ureteral stent
area of 21−ΔΔCT datasets, totaling 2985 images. These were divided
into a training set and a validation set in a 4:1 ratio. In addition,
132 cases without semantic labeling were selected as the test set,
totaling 16,262 images.

For encrustation detection, clinical doctors further conducted
detailed stone area annotations, distinguishing between residual stones
and encrustations. Residual stones generally refer to stones that have
fallen from the kidney area to the ureteral area after lithotripsy and are in
contact with the ureteral stent, without affecting stent removal. On the
other hand, encrustations refer to stones that grow on the outer wall of
the ureteral stent as time passes while the stent is in place in the body.
Among the 222 patient cases, there were 87 instances of attached stones
and 99 instances of residual stones.

3.2 Ureteral stent segmentation in different
neural network models

For the small object detection problem, comparative tests were
conducted on different basic object detection frameworks, including
semantic segmentation models Deeplab v3+ and BiseNet, and object
detection models Mask-RCNN, YOLO v5, and CenterNet. From
Table 4, it can be seen that Mask-RCNN has a loss rate of 1.8% and a
false alarm rate of 2.9% in testing, performing the best among all
models. The comparison results of the missed detection and false
alarm rates on the 16,262 test set images are shown in Table 2.

3.3 Effect of joint learning and connected
domain filtering on the segmentation results

The Intersection over Union (IoU) measure is a standard for
assessing the accuracy of visual methods, commonly used to evaluate
the performance of techniques such as object detection and semantic
segmentation. The commonly used metric for object detection tasks is
Mean Average Precision (MAP). mAP means the average AP for all

classes after computing the AP for each individual class. The comparison
of joint learning and the validation set metrics for each subtask is shown
in Table 3. From the training indicators, the mIOU for the semantic
segmentation subtask increased from 0.836 to 0.861, and the mAP for
the object detection subtask increased from 0.842 to 0.855. Combination
learning can effectively improve the accuracy of both subtasks.

Further analysis of the missed detection and false alarm
situations in actual cases was conducted to verify the
effectiveness of the connected component filtering method. The
test results in 132 cases are compared in Table 4. It can be observed
that the introduction of 3D connected components can significantly
reduce the false alarm rate for ureteral stents, with the number of
cases with false alarms decreasing from 69 to just 1.

3.4 Analysis of the detection results of
ureteral stent encrustations

For the task of detecting ureteral stent encrustations, as there were
no previous studies in this direction for comparison, the proposed
experimental method was tested in 222 cases. The confusion matrix for
the algorithm validation in 186 cases of residual stones and ureteral
stent encrustations is shown in Table 5, with an accuracy of 79.6%.The
confusionmatrix of sex judgments in 222 cases is shown inTable 6, with
an accuracy of 87.3%.

Thefinal algorithmvalidationwas conducted in 222 cases for the two
tasks proposed in this paper. The accuracy of ureteral stent segmentation
reached 94.4%, and the accuracy of differentiating between positive and
negative cases reached 87.3%. The average detection time per case was
12 s. It can be observed that the proposed method can effectively assist
hospital doctors in diagnosing ureteral stent encrustations.

4 Discussion

Ureteral stents are commonly used postoperatively in urological
stone surgery, and encrustations may form on the surface and/or
within the lumen of the stent after insertion (Chew and Lange, 2009;

FIGURE 6
Comparison diagram of the morphology and polar coordinate transformation characteristics of three types of ureteral stents.
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Zhao et al., 2016). People always focus on the material and structure
of ureteral stents to prevent complications, such as using “suture
stents” to reduce symptoms associated with ureteral stents; Vogt

et al. (2015) introduced an improved polyurethane double-J stent to
alleviate the discomfort caused by ureteral stents, all of the above
often overlook the complications themselves. No matter how to

FIGURE 7
Flow chart of algorithm to distinguish residual stones and encrustations.

TABLE 2 The segmentation and detection results of different neural network models.

Type of task Network model Loss (%) Mischeck rate (%)

Semantic Segmentation BiseNet 4.3 2.7

DeepLab v3+ 4.1 3.1

Object Detection Mask-RCNN 1.8 2.9

yolo v5 2.8 6.3

CenterNet 2.7 4.9
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delay the formation of encrustations, with the increase of indwelling
time, the encrustation is inevitable (Lange et al., 2015), so the key is
to early and more accurately detect encrustation. Meanwhile
endourological management of ureteral stent encrustation
remains technically and strategically challenging (Tsaturyan et al.,
2023). Multi-angle and multiaspect strategies are generally required.
A systematic review on behalf of the EAU YAU Urolithiasis Group
revealed that 27% of the encrusted stents require a combined
surgery, followed by 24% of URS alone or 19% of SWL alone as
a single surgery (Massella et al., 2023; Juliebø-Jones et al., 2021). The
combined model enables identification of suspicious encrustation
with high accuracy, which assists urologists to distinguish
encrustations from the residual stones,and in taking a single
timely surgery and prevents further aggravation (Lombardo et al.,
2022; Geraghty et al., 2023).

Artificial intelligence (AI) is being increasingly integrated into
scientific discovery to augment and accelerate research, including
geometric deep learning (Wang et al., 2023). Abdolmanafi et al., for
example, utilized a deep-learning CNN in the classification of coronary
artery optical coherence tomography (OCT) images in patients with
Kawasaki disease (Ng et al., 2016). Zhang et al. (2023) uesd an artificial
intelligence network-guided signature for predicting outcome and
immunotherapy response in lung adenocarcinoma patients based on
26 machine learning algorithms. For ureteral stent encrustation, Liu
et al. (2024) predicted the risk of encrustation in patients with calculi
based on their biochemical data; Qiu et al. (2023) usedmedical imaging-
based techniques to preliminarily identify ureteral stent encrustation.
These are just simple explorations into whether encrustations exist, and
cannot accurately and efficiently identify them.

Therefore, A computer vision method for detecting encrusted
stones on ureteral stents to assist doctors in judgment is crucial.

Firstly, there are strict criteria for distinguishing between the ureteral
stent area and non-ureteral stent area, which can be accurately
segmented and reconstructed to create a 3D model of the ureteral
stent, making it more convenient for doctors to view compared to
2D images. As for the severity of the stones, distinguishing residual
stones and encrustations, which are subjective and less strict in
nature, computer vision can accurately locate the abnormal areas,
provide preliminary diagnostic results, and then have the doctors
confirm the case results through film reading. There have been no
reports in the literature so far on a medical CT imaging method for
detecting encrusted stones on ureteral stents that combines Mask-
RCNN with 3D morphological analysis.

We use a deep learning model, Mask-RCNN, to accurately
identify ureteral stents in CT images and analyze if there are
encrustations around them. As shown in Table 4, Compared to
other conventional neural network models, our model has lower loss
and false positive rates in both semantic segmentation and object
detection models. Additionally, as shown in Table 5, by employing a
joint learning approach, we were able to increase the Intersection
over Union (IoU) to 85.5% and improve the Mean Average
Precision (MAP) to 86.1%.Compared with the common methods
for identifying encrustations on ureteral stents, such as CT and DR
imaging examinations, the proposed method has higher accuracy
and also improves the efficiency of clinical doctors. Then, compared
to the currently recognized gold standard of ureteroscopy, our
method is simple, fast, and non-invasive.

Compared to methods based on mathematical morphology, edge
detection, and thresholding, the segmentation method based on deep
learning neural networks has the advantage of automatically extracting
image information features, iteratively optimizing, and utilizing the
network’s non-linear characteristics for boundary segmentation during
training. However, the limitation of thismethod is that when facing new
image features, the network model needs to be retrained, and the
parameter tuning process is relatively complex. Moreover, judging
image features locally through convolution may not ensure good
connectivity in 3D segmentation. In the end, we use 2D object
detection to segment the ureteral stent area in CT images, introduce
the idea of vessel tracking to complete the center points, effectively
connect difficult-to-segment parts, and then filter the 3D connected
regions to remove similar ureteral stents and stones.

TABLE 3 Comparison of the joint-learning segmentation results.

Type of task mAP miaou

Semantic Segmentation — 0.836

Object Detection 0.842 —

Combination Learning 0.855 0.861

TABLE 4 Comparison of the segmentation results for connected domain filtering.

Error Cause of error Combination learning
(case)

Combination learning + 3D connected
domain filtering (case)

False
Detection

Close stent small stones 29 0

Complex large stone at the distal end of the DJ
tube

19 0

Bone false alarm 20 1

False detection of other tubular objects 1 0

Total 69 1

Leak
Detection

Missed detection of the complex part at the distal
end of the DJ tube

5 5

Missed detection at the sharp bend of the DJ tube 3 2

Total 8 7

Frontiers in Physiology frontiersin.org08

Hu et al. 10.3389/fphys.2024.1432121

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1432121


For the detection method of ureteral stent encrustations, it is more
of a mathematical morphological analysis, summarizing and classifying
the 2D morphology of ureteral stents obtained from re-slicing. The 3D
reconstruction of the ureteral stent actually involves a process that starts
with the input of 2D CT image sequences, followed by 2D deep
learning-based segmentation of the ureteral stent, reconstruction of
the stent’s cross-sectional sequence to obtain rough 3D data, and then
uses 3D connected domain screening to remove stones that are not
attached to the ureteral stent, ultimately achieving a precise 3D
segmentation result of the ureteral stent. The ureters have a complex
shape and are surrounded by stones with similar CT values, making
them difficult to directly use threshold-based segmentation to
distinguish the stent from the stones. Moreover, since the ureteral
stent is a connected object, introducing connected domain screening
can effectively remove isolated stones. This reconstruction method can
also be applied to other connected organs, such as vessels, which have
similar characteristics. The main purpose of the 3D repeat sections in
our article is to re-slice the reconstructed data after completion, making
the sections used for stone detection perpendicular to the centerline of
the stent. This has significant benefits in judging abnormalities in
inclined and complex tubular structures. Because encrustations and
residual stones will both increase the diameter of the ureteral stent, it is
impossible to directly use the original Z-axis slices to detect the presence
of encrustations by analyzing the inner circle radius abnormality.
Instead, re-slicing is necessary to obtain sections perpendicular to
the centerline for further analysis, and the detailed judgment process
can be seen in the supplementary explanation of the previous comment.
It is possible to accurately measure the increase in radius of
encrustations growing on ureteral stents using a computer, reducing
the workload of doctors and improving work efficiency. At the same
time, abnormal radius areas can be selected and analyzed before being
provided to doctors for auxiliary judgment.

There are also some limitations in this study. Due to the limited
sample size, we were unable to validate our model across multiple
centers. In the future, we plan to use our equipment to validate it in
different scenarios across multiple hospitals. The method based on
deep learning needs to be further validated on a more extensive
dataset. Therefore, transfer learning will be used to improve the
model’s generalization to patients with urological stones in future
work. Additionally, judgement metrics from deep learning outputs
will be used to develop a new evaluation standard to quantify the
severity of encrustations. In addition, interpretability is very

important in medical image analysis applications. Enhancing the
interpretability of deep neural networks in various tasks of medical
image analysis has always been a challenge, and further research in
this area is needed.

5 Conclusion

A method for detecting encrustations on ureteral stents in
medical CT images is proposed, which integrates Mask-RCNN
with 3D morphological analysis. This method can effectively
detect and differentiate residual stones and encrustations, thereby
improving the efficiency of radiologists in reviewing images.
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