
Near-infrared spectroscopy
(NIRS) in vivo assessment of
skeletal muscle oxidative
capacity: a comparison of results
from short versus long exercise
protocols and reproducibility in
non-athletic adults

Fistra J. Tandirerung1,2†, Alexandra Jamieson1†*,
Elizabeth Hendrick1, Alun D. Hughes1 and Siana Jones1

1MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science and Experimental
Medicine, Institute for Cardiovascular Science, University College London, London, United Kingdom,
2Department of Cardiology and Vascular Medicine, Sardjito Central Public Hospital, Gadjah Mada
University, Yogyakarta, Indonesia

Background: Near-infrared spectroscopy (NIRS) provides a non-invasive, cost-
effective method for assessing skeletal muscle oxidative capacity when
combined with a short exercise protocol and arterial occlusions. However, the
impact of different exercise protocols and reproducibility of the method in non-
athletic adults have not previously been assessed.

Methods: Young, non-athletic adults (YA) were invited to perform a short duration,
fast frequency contraction (SF) exercise protocol and a long duration slow frequency
(LS) contraction protocol, combined with NIRS measurements and arterial
occlusions to assess skeletal muscle oxidative capacity. YA and older non-athletic
adults (OA; >65 years old) were invited to perform the SF exercise protocol twice to
assess the reproducibility of this oxidative capacity measurement.

Results: We included 25 participants (14 male (56%), age range: 18–86 years) in
the analyses. There was a strong positive correlation and good agreement
between time constants derived following the SF and LS exercise protocols
(Lin’s concordance correlation coefficient: 0.69, p-value < 0.001 mean bias
[LoA]: −3.2 [−31.0, 24.4] seconds. There was a strong positive correlation and
good agreement between time constants derived from the SF exercise protocol
in the YA & OA group (Lin’s concordance correlation coefficient: 0.63, p-value <
0.001; mean bias [LoA] −6.4 [−34.0, 21.3] seconds).

Conclusion: These data provide evidence to suggest that NIRS is a reliable in vivo
method for the assessment of skeletal muscle oxidative capacity irrespective of
exercise protocol duration or muscle contraction frequency. NIRS-measured
oxidative capacity via the SF exercise protocol was reproducible in non-athletic
adults with a wide range in age.
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Introduction

Skeletal muscle function declines with age and in a multitude of
disease phenotypes potentially leading to reduced physical function,
frailty and loss of independence (Marzetti and Leeuwenburgh, 2006;
Gomes et al., 2017). Tracking pathophysiological alterations in
skeletal muscle function is critical for understanding disease
mechanisms, progression and response to intervention (Coen
et al., 2019). Skeletal muscle oxidative capacity is a key feature,
representing the overall performance of the muscle tissue to extract
and utilize oxygen, which is known to decline with aging and in the
presence of many diseases (Santanasto et al., 2016; Gonzalez-Freire
et al., 2018; Trevino et al., 2019). There is an urgent need to develop
cost-effective, non-invasive methods for assessing oxidative capacity
in skeletal muscle.

Current methods for assessing skeletal muscle oxidative capacity
include tissue biopsy for high resolution respirometry (HRR) and
phosphorus magnetic resonance spectroscopy (31P-MRS) to capture
Phosphocreatine (PCr) depletion and recovery and maximal rates of
ATP production via oxidative phosphorylation (Lanza et al., 2010).
Although HRR provides detailed mechanistic insight into
mitochondrial bioenergetic pathways, the invasive nature of the
biopsy can be uncomfortable for participants and requires clinical
facilities and expertise. 31P-MRS is the reference-standard for
directly measuring maximal rates of PCr recovery following a
short bout of exercise, however, is limited to specialist centres
that have access to expensive scanners.

Near-infrared spectroscopy (NIRS) offers an alternative, non-
invasive and cost-effective technique for estimating skeletal muscle
oxidative capacity in vivo. When combined with low intensity
exercise and subsequent transient arterial occlusions, the recovery
kinetics of local muscle oxygen consumption post-exercise provide
an estimate of PCr pay-back (Ryan et al., 2012; Scheeren et al., 2012;
Sumner et al., 2020). Despite cross-validation of NIRS with 31P-MRS
demonstrating a strong correlation (Nagasawa et al., 2003; Ryan
et al., 2013a; Ryan et al., 2014a; Jones et al., 2016), only limited work
exists investigating the exercise protocols that can be applied when
using NIRS (Ryan et al., 2013b). Prior 31P-MRS studies have applied
exercise protocols of varying lengths and frequency of muscle
contractions. McCully et al utilised a 5-minute exercise phase
with plantar flexion muscle contractions every 4–5 s, whereas
Sedivy et al used a 6-min exercise phase with plantar flexion
every 2-s (McCully et al., 1993; McCully et al., 1994; Šedivý
et al., 2015). In contrast, NIRS exercise protocols described in the
literature are relatively short (10–30 s) and involve rapid, vigorous
contractions (Ryan et al., 2012; Ryan et al., 2013a; Ryan et al., 2013b;
Ryan et al., 2014b; Sumner et al., 2020; Menon et al., 2021). A
comparison of recovery time constants derived following each of
these approaches has not previously been described. A 10-second
short-fast protocol was chosen as it is routinely used in NIRS
exercise protocol studies and is a practical approach for the
future application of this method in a clinical context. It is
compared with the 5-minute long-slow protocol that is generally
used for 31P-MRS studies as the standard for in-vivo direct
measurement of PCr recovery rates. Furthermore, assessing the
reproducibility of this method in non-athletic adults and older
adults, where oxidative performance is an extremely useful health
metric, would be a beneficial addition to the literature. The

recruitment of adults of a wide age range would also contribute
to the development of this method and its application to large
population-based studies.

Thus, the objectives of this study were two-fold, (1) to compare
NIRS-measured skeletal muscle oxidative capacity using two
different exercise protocols, a short duration rapid muscle
contraction protocol (short-fast) and long duration dispersed/
controlled muscle contraction protocol (long-slow), in young
healthy subjects and (2) to assess the reproducibility of NIRS-
measured oxidative capacity in a non-athletic adult population
with a wide age range.

Materials and methods

Study participants

Participants were either young, healthy adults (YA) recruited
from the University College London student and staff pool and
invited to attend a single research visit, or were older adults
(OA), >65 years old, that had previously been enrolled in a
longitudinal cohort study (the Southall and Brent Revisited,
SABRE study) and were undergoing an oxidative capacity
measure as part of a follow-up visit (Jones et al., 2020). All
procedures were in accordance with the principles of the Helsinki
declaration and all participants gave written informed consent. The
study procedures were approved by the reviewer board of the UCL
Research Ethics Committee (21787.001) for the YA and by the
National Research Ethics Service (NRES) Committee
London—North Fulham for the OA SABRE study. Participants
were asked not to smoke, consume alcohol, or do moderate-to-
vigorous physical activity in the 24 h prior to the testing.

Participant characteristics and
anthropometrics

Year of birth, sex, and ethnicity were reported by the
participant. Height was measured barefoot using a stadiometer
(Seca 217; Seca, Hamburg, Germany) to the closest centimetre
and weight was measured in kilograms using digital bio-
impedance scales (BC-418; Tanita, IL, United States), to
calculate body mass index (BMI).

Skeletal muscle NIRS measurements

Device and device placement
A portable continuous wave (CW) NIRS device (Portamon,

Artinis Medical System, Netherlands) that measures oxy-
haemoglobin (O2Hb) and deoxy-haemoglobin (HHb) changes at
a sampling frequency of 10 Hz was used for all tests. Participants
were invited to recline in a semi-supine position on a medical
examination couch to reduce hemodynamic variability and
optimize cardiovascular exercise adaptation (Kubota et al., 2015;
Kubota et al., 2017). The small, wireless CWNIRS device was placed
on the skin overlaying the left gastrocnemius muscle, held in
position by micropore tape and covered with a neoprene sleeve
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to avoid ambient light contamination (Figure 1). The neoprene
sleeve was included as part of the Artinis Medical System Portamon
NIRS equipment kit and used in line with manufacturer guidelines.
The leg was supported by cushioned pads placed beneath the knee
and ankle. A rapidly inflatable cuff was wrapped around the leg
proximal to the NIRS device above the knee and connected to a rapid
cuff inflation system (Hokanson Companies, United States). A
resistance band was secured around the ball of the left foot and
the opposite end secured to a Velcro waistband to avoid arm fatigue
during the exercise protocols or changes in tension throughout the
exercise (Figure 1). The length of the resistance band was adjusted by
the technician so that there was light tension in the dorsi-flexed foot
position to account for differences in participant leg length.

Participants were permitted to push against the resistance
band to familiarize themselves with the exercise action (plantar
flexion) before resting in the baseline position. Baseline NIRS
signals were acquired for at least a minute, or until stable. A
resting arterial occlusion was performed for 30 s using a cuff
pressure of at least 275 mmHg followed by recovery until NIRS
signals returned to baseline. During the cuff inflation, visual
inspection of the NIRS traces was performed to check for loss of
pulsatility and reciprocity in the oxy-Hb and deoxy-Hb signals. If
a complete arterial occlusion was not achieved, participants were
excluded from subsequent analyses. Participants were also asked
if they could tolerate the cuff inflation at the given
pressure (275 mmHg).

Exercise protocols
Comparison of NIRS measured skeletal muscle oxidative
capacity exercise protocols

Each participant was invited to complete two exercise protocols
in series, the order of which was randomised by alternate allocation.

Firstly, a “short-fast” protocol in which participants were asked to
perform rapid plantar flexion against the resistance band as many
times as possible for a period of 10-s and secondly, a “long-slow”
exercise protocol in which participants were asked to perform 5 min
of plantar flexion against a resistance band at a rate of 30 plantar
flexions a minute in response to a metronome. Following each
exercise protocol, short transient arterial occlusions lasting 5–8 s
were applied over 3 min (5 s in the first minute and 8 s in the second
and third minutes) to track recovery musVO2 and measure the
recovery time constant (τ), an estimate of oxidative capacity (Ryan
et al., 2013c; Ryan et al., 2014b; Southern et al., 2014). Longer values
of τ represent poorer skeletal muscle oxidative capacity (Ryan et al.,
2013c). An additional 2 min recovery period was given between
each protocol.

Flow-charts illustrating the exercise protocols are presented in
the supplementary information file (Supplementary Figures S1, S2).

Reproducibility of NIRS measured skeletal muscle oxygen
consumption and oxidative capacity

After stabilisation of the trace, two resting arterial occlusions
were imposed by rapidly inflating the cuff to at least 275 mmHg
for 30 s on each occasion (ensuring stabilisation of the trace in
between occlusions with an interval of approximately 30 s). Local
skeletal muscle oxygen consumption (musVO2) was estimated
from the change in oxy- and deoxy-Hb (Van Beekvelt et al.,
2001). Each participant was invited to complete two short-fast
exercise protocols in series in which participants were asked to
perform rapid plantar flexion against the resistance band as many
times as possible for a period of 10-s. Following each exercise
protocol, short transient arterial occlusions were applied over
3 min as described above. An additional 2 min recovery period
was given between each protocol.

FIGURE 1
Experimental set-up for the skeletal muscle near-infrared spectroscopy (NIRS) measurements. The participant’s leg is supported with cushioned
pads under the knee and ankle. A NIRS optode is positioned on the skin overlaying the gastrocnemius of the left calf, secured with micropore tape, and
covered by a black neoprene sleeve. A rapidly inflatable cuff is placed above the knee (proximal to the NIRS optode) and is connected to a rapid cuff
inflator. A resistance band is then placed around the participant’s foot and secured using a waistband. The participant’s foot is shown pushing against
the resistance band in the plantar flexion position.
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Adipose tissue thickness

Adipose tissue thickness (ATT) was measured at the NIRS
measurement site using B-mode ultrasound (Philips EPIQ 7G
Ultrasound System, Netherlands) by four experienced technicians
who were involved in data capture. Three ATT measurements were
recorded for each participant and averaged.

Data processing

NIRS data were processed using custom written scripts in
MATLAB R2021a (The MathWorks, United States) (Ryan et al.,
2012). All processing was performed by one experienced
technician. For each participant, all traces were plotted and
assessed by eye for the presence of artifacts or incomplete
arterial occlusion. Incomplete arterial occlusions were
identified by pulsatility in the NIRS signals, a lack of
reciprocity of the oxy-Hb and deoxy-Hb signals, or noise in
the signal whereby the downward slope of the oxy-Hb signal
could not be visualised during cuff inflation. The start of the
resting arterial occlusion and each intermittent arterial occlusion
was selected by eye, all further processing was automated.

Muscle oxygen consumption (musVO2) was measured as the
downward slope of the O2Hb to HHb difference signal during
each occlusion using at least 40 data points (4 s). The difference
signal was used to account for potential shifts in blood volume
into the region of interrogation during the cuff inflation (Ryan
et al., 2012). The time constant (τ) was calculated using the
repeated post-exercise musVo2 measurements from the
transient occlusions. These were fit to a mono-exponential
curve, visually inspected and only curves with a good fit (r2 >
0.70) were included in subsequent analyses. A sensitivity analysis
was performed using thresholds of r2 > 0.60 and r2 > 0.65,
however, the pattern of results remained similar. The time
constant for recovery indicating oxidative capacity was derived
from the fit as described previously (Ryan et al., 2014b).

Statistical analysis

Statistical analysis was performed with STATA MP17 (StataCorp,
United States). Categorical descriptive data are presented as n (%) and
continuous variables are presented asmean ± standard deviation (SD) if
normally distributed or as median [interquartile range, IQR] if skewed.
The Shapiro-Wilk test was used to formally test the assumption of data
normality and data were visualised with histograms. Correlations were
assessed using Pearson`s or Spearman`s correlation coefficient,
depending on data normality. Lin’s concordance correlation
coefficients (CCC) and Bland-Altman plots [presented as mean bias
(Limits of Agreement; LoA)] were used to assess the level of agreement
between measurements derived from the short-fast and long-slow
exercise protocols and between measurements derived from test
1 versus test 2 of the short-fast exercise protocol in the
reproducibility study. For resting and end-exercise musVO2

assessment, the negative slope values were converted to positive
values (multiplying by −1) to simplify the analysis and
interpretation. The level of significance was set at p < 0.05.

Results

In total, 16 YA were recruited for the exercise protocol comparison
study. In 3 YA participants, time constants for the recovery of mus _VO2

were excluded from summary analyses due to mono-exponential fits
not exceeding our quality inclusion criteria (r2 > 0.70).We believe this is
due to a failure of the muscle tissue to fully recover following the
exercise and discuss potential explanations in more detail in the
discussion section. We excluded one additional YA participant due
to an observed positive change in O2-Hb during the resting occlusion,
indicating that an arterial occlusion had not been achieved; potential
explanations for this are also described in the discussion section.
Therefore, 13 of the 16 YA participants recruited were included in
the short-fast vs. long-slow resting and end exercise musVO2 analysis,
and 12 participants were included in the time constant analysis,
respectively.

Twenty eight participants (14 YA and 14OA)were recruited for the
reproducibility study. In three participants, time constants for the
recovery of musVO2 were excluded from summary analyses due to
mono-exponential fits not exceeding our quality inclusion criteria (r2 >
0.70). We excluded two additional participants from the reproducibility
of resting arterial occlusion assessment due to either an observed
positive change in O2-Hb during the resting occlusion, indicating
that an arterial occlusion had not been achieved. Therefore, 25 of
the 28 participants recruited were included in the time constant
reproducibility analysis and 23 participants were included in the
resting musVO2 reproducibility analysis, respectively.

Participant characteristics

13 YA (9 male (70%), age 26 ± 3 years old) were included in the
summary analyses for the exercise protocol comparison and 25 adult
participants [14 male (56%), age 59 (26, 78) years old] were included
in the summary analyses for the reproducibility study. YA participants
in the exercise protocol comparison study were predominantly of self-
reported Asian ethnicity (77%). By study design SABRE participants
(OA included in the reproducibility analyses) were either first
generation Indian Asian, African Caribbean or of White European
ethnicity. This was because one of the primary research questions of
the original SABRE study addresses health disparities by ethnic group
in the UK (Jones et al., 2020). ATT was <1.5 cm in all participants. A
summary of participant characteristics is presented in Table 1.

Short-fast versus long-slow
exercise protocol

Representative time constant curves generated from the short-fast
and long-slow exercise protocols for a YA participant are included in
the supplementary information file (Supplementary Figures S3, S4). The
mean time constants (τ) derived after the short-fast and long-slow
exercise protocols for 12 participants were 35.1 ± 19.2 s and 38.4 ±
17.3 s, respectively. There was a strong positive correlation between the
two measurements (r = 0.70, p-value = 0.011; Lin’s CCC = 0.69,
p-value <0.001; Figure 2A). The bias was small without indication of
systematic bias, but the limits of agreement were fairly wide [mean bias
(LoA): −3.2 (−31.0, 24.4) seconds; Figure 2B].
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Resting and end-exercise musVO2

The mean resting musVO2 for 13 participants was 0.12 ±
0.09 HbDiffµM/s. The mean end-exercise musVO2 derived after the
short-fast and long-slow exercise protocols were 1.39 ± 1.00 and
1.44 ± 1.23 HbDiffµM/s, respectively. There was a strong positive
correlation between end-exercise musVO2 measured during the
short-fast versus long-slow exercise protocols (r = 0.82,
p-value <0.001; Lin’s CCC = 0.78, p-value <0.001; Figure 2C).
A Bland-Altman plot depicts the mean bias and limits of
agreement [Mean bias (LoA): 0.25 (−1.15, 1.65) HbDiffµM/s;
Figure 2D].

Reproducibility study

The mean values for the first and second time constant
derived from the short-fast exercise protocol were 34.0 ±
16.4 s and 40.4 ± 18.5 s, respectively. There was a strong
positive correlation (cc = 0.68, p < 0.001; Lin’s CCC = 0.63;
p < 0.001; Figure 3A) and good agreement between the first and

TABLE 1 Participant characteristics for 13 young adults included in the
short-fast (SF) versus long-slow (LS) exercise protocol comparison and
25 adults included in the SF reproducibility study.

Mean ± SD, median [IQR] or n (%)

SF vs. LS exercise
(n = 13)

SF reproducibility
(n = 25)

Age (years) 26 ± 3 59 [26, 78]

Sex, male 9 (70%) 14 (56%)

Ethnicity

White european 1 (8%) 17 (61%)

Asian 10 (77%) 7 (25%)

African caribbean 2 (15%) 4 (14%)

Height (cm) 172.2 ± 12.1 1,697 ± 8.6

Weight (kg) 73.2 ± 16.9 71.1 ± 16.3

BMI (kg/m2) 23.5 [21.5, 26.5] 22.8 [21.7, 25.4]

ATT (cm) 0.57 ± 0.29 0.51 ± 0.22

ATT, Adipose Tissue Thickness; BMI, Body Mass Index.

FIGURE 2
NIRS-measured oxidative capacity and end exercise muscle oxygen consumption (ExmusVO2) measure from short-fast (SF) and long-slow (LS)
exercise protocols. (A, C) correlations between the SF and LS exercise protocol time constant (TC; τ) and SF and LS end exercise oxygen consumption.
The line of best fit is plotted in solid black. (B, D) Bland-Altman plots demonstrating levels of agreement between the SF and LS time constant (TC; τ) and
SF and LS end exercise oxygen consumption. The mean difference is plotted as the long-dashed line and the upper and lower limits of agreement
are plotted as short-dashed lines.
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second measurements with a mean difference [LoA]
of −6.4 [−34.0, 21.3] seconds (Figure 3B).

Resting musVO2

The mean values for the first and second resting musVO2

measurements were 0.11 ± 0.07 HbDiffµM/s and 0.11 ±
0.07 HbDiffµM/s, respectively. There was a positive correlation (cc =
0.99, p < 0.001; Lin’s CCC = 0.99, p < 0.001; Figure 3C) and good
agreement between the first and second musVO2 measurements with a
mean difference [LoA] of 0.004 [−0.02, 0.02] HbDiffµM/s (Figure 3D).

Discussion

In this study we present evidence for good agreement between
NIRS measures of oxidative capacity (τ) in the gastrocnemius
performed using a short, rapid-contraction (short-fast) versus
long, low frequency contraction (long-slow) exercise protocol.
We also show good reproducibility of oxidative capacity
measured using the short-fast protocol in non-athletic adults.

Agreement between τ derived after short-
fast versus long-slow exercise protocols

This study demonstrates, for the first time, comparable measures
of oxidative capacity can be derived following two different
resistance-band exercise protocols. This finding has important
implications for protocol development in both the field of NIRS
and 31P-MRS, where the reference-standard for PCr recovery can be
measured (Šedivý et al., 2015; Menon et al., 2021; Meyerspeer et al.,
2020). During 31P-MRS, depletion of PCr can be tracked using a
long-slow protocol which permits measurements to be made
intermittently throughout exercise whilst minimising movement
artifact. When conducting NIRS assessments, the recovery of PCr
(estimated through repeat measures of oxygen consumption during
arterial occlusions) is the measurement of interest, therefore a short-
fast protocol, is sufficient to deplete PCr and the potential for
movement artifact during exercise is less problematic. Previously,
Ryan et al. concluded that NIRS-measured muscle oxidative capacity
is comparable across different 15-s exercise performed on a
mechanical pedal versus electrical stimulation of various
randomized contraction frequencies (Ryan et al., 2013b). In line
with Ryan et al., this study further demonstrates that NIRS can be
used for oxidative capacity assessment using different duration and
contraction frequency exercise protocols. A limitation of this study,
however, is the use of alternate allocation randomization of exercise
protocols. The use of a randomization software would have been a
more rigorous approach.

In this study, the mean NIRS-measured oxidative capacity
values for both short duration-fast contraction and long
duration-slow contraction exercise protocols (35 and 38 s,
respectively) are similar to values previously reported (31–35 s)
(Nagasawa et al., 2003; Ryan et al., 2013a; Ryan et al., 2014b) and
similar to values for PCr recovery previously reported in a similar
group of young healthy, non-athletic individuals (McCully et al.,
1993; McCully et al., 1994; Forbes et al., 2009; Ryan et al., 2013a;
Ryan et al., 2014a).

For future NIRS studies, it is arguably more convenient and
time-efficient to employ the 10-s exercise protocol. This is in line
with Larsen et al. who propose that a short, moderate-to-vigorous
exercise is sufficient to achieve approximately 50% PCr depletion
from baseline without inducing acidosis (Larsen et al., 2012). Similar
studies comparing oxidative capacity measured across muscle
groups or from different positions within the same muscle would
permit better characterisation of NIRS reliability.

Several studies have previously employed NIRS to estimate
oxidative capacity in individuals with different physical activity
levels (Ryan et al., 2013c; Erickson et al., 2013; Lagerwaard et al.,
2020), in different age groups (Lagerwaard et al., 2020) and across
different muscle groups/locations (Nagasawa et al., 2003; Adami
et al., 2020; Lagerwaard et al., 2020). We observed a considerably
wide range of time constant values across our YA group for both
short-fast and long-slow protocols (10–86 s). We speculate that this
may be due to participants undertaking different volumes of
physical activity or exercise training, both of which are known to
improve skeletal muscle oxidative capacity and therefore reduce τ
(McCully et al., 1994). Conversely, detraining or inactivity is known
to deteriorate oxidative capacity and lengthen τ (Šedivý et al., 2015).
A limitation of our study is that we did not measure habitual
physical activity in our participants and therefore, we cannot
confirm this speculation. Furthermore, we included a
heterogenous population with respect to age, sex and ethnicity
into our study which may also contribute to our wide range of
oxidative capacity values across individuals (Erickson et al., 2013).

We observed a small bias of ~3 s shorter τ following the short-
fast exercise protocol. One possible explanation for this is that the LS
protocol elicited a slightly higher intensity or workload compared to
the short-fast protocol, however, the confidence limits around this
estimate are wide and therefore the direction of the difference is
more likely a chance finding than a systematically shorter TC
following the SF protocol. Previous work suggests high intensity
exercise severely prolongs the recovery time constants (Arnold et al.,
1984; McCully et al., 1993; McCully et al., 1994), likely due to the
onset of anaerobic metabolism and associated drop in intracellular
pH that impairs the highly active skeletal muscle creatine kinase
activity and reduces PCr re-synthesis rate (Arnold et al., 1984;
Bendahan et al., 1990). A limitation of NIRS is that it is not
possible to measure pH during exercise. To explore this further,
we compared the muscle oxygen consumption values measured
immediately at the end of exercise (end-exercise musVO2). End-
exercise musVO2 slopes were well-correlated between the two
exercise protocols, indicating a similar rate of oxygen
consumption at the end of exercise. End-exercise musVO2 was
on average greater in the short-fast protocol, however, in line
with our τ findings, this was also likely a chance finding.

Mono-exponential curves were excluded from our summary
analyses based on poor fit (r2 < 0.70) and had associated prolonged
time constants. It is possible that the prolonged time constants were
due to myocellular acidosis leading to a failure of the participant to
recover fully within the 3-min window where we monitored
recovery, highlighting the importance of monitoring recovery
beyond 3 min. However, we cannot rule out a methodological
error that may have led to these outliers.

To date, most published studies that assessed muscle oxidative
capacity by comparing exercises of different intensities were carried
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out with 31P-MRS. PCr recovery after exercise is independent of
exercise intensity as long as pH remains relatively constant, but
will be prolonged with decreased pH (McCully et al., 1993;
McCully et al., 1994; Walter et al., 1997; Forbes et al., 2009).
Forbes et al. demonstrated a similar PCr recovery time constant
between low and high-intensity exercise, despite a significantly
different end-exercise PCr level, but with similar end-exercise pH.
In such a case, fast glycolytic ATP production following higher-
intensity exercise offsets the higher post-exercise PCr reduction,
thereby resulting in a comparable PCr time constant between
lower and higher-intensity exercise (Forbes et al., 2009). Using
31P-MRS of different protocols, Walter et al. (1997), Ryan et al.
(2013a), and McCully et al. (1993), McCully et al. (1994)
documented end-exercise pH of ≥7.00 results in comparable
PCr time constants.

Therefore, our study provides novel evidence that, similar to
31P-MRS, NIRS can be a reliable alternative for in vivo oxidative
capacity assessment with different intensity exercise protocols.
Compared to the long exercise protocol, the short exercise is
arguably more feasible, time efficient and acceptable for participants.

Reproducibility in non-athletic adults

We present evidence for good agreement between repeated
measures of oxidative capacity in the gastrocnemius using the short-
fast protocol in a group of non-athletic adults of wide age range
(18–86 years old). Our findings are aligned with good
reproducibility of these measures in young adults and in lean
athletic older adults undertaking NIRS measures from the vastus
lateralis muscle (Fennell et al., 2023). NIRS-measured oxidative
capacity was also found to be reproducible in OA smokers with and
without chronic obstructive pulmonary disease (COPD) (Adami et al.,
2018). Interestingly, compared to Fennel et al (Fennell et al., (2023), we
obtained a shorter mean time constant despite including obese and
older participants. This suggests the variability of oxidative capacity of
different muscle, relative to muscle activeness, as the gastrocnemius is
the primary locomotor muscle in walking, standing, or in sway (Adami
et al., 2018). Another notable strength of this study is that we have
included an ethnically diverse population. This is an important
contribution to the literature, as previous NIRS studies have
predominantly been performed in Caucasian individuals only. In

FIGURE 3
Reproducibility of NIRS-measured oxidative capacity and resting muscle oxygen consumption (RestmusVO2) in adults. (A, C) correlations between
the first and second time constant (TC; τ) and first and second resting oxygen consumption measure. The line of best fit is plotted in solid black. (B, D)
Bland-Altman plots demonstrating levels of agreement between the first and second time constant (TC; τ) and first and second resting oxygen
consumption measure. The mean difference is plotted as the long-dashed line and the upper and lower limits of agreement are plotted as short,
dashed lines.
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addition, participants in this study were non-athletic and therefore
likely reflect the general population. A limitation of this study, however,
is that an objective and formal assessment of habitual physical activity
levels was not performed. A further strength of our work is that the
gastrocnemius muscle was selected as the NIRS measurement site,
limiting the NIR light scattering that may occur at other measurement
sites where ATT is likely to bemuch higher.We also utilised an exercise
protocol set-up which consisted of a Velcro waistband and plastic
resistance band that isMRI compatible, allowing for future applications.
Despite selecting the difference signal to account for blood volume shifts
and greater signal to noise ratio in our analyses, as has been previously
described (Ryan et al., 2012), a general limitation of this work is that we
cannot exclude the possibility that this signal might be influenced by
changes in local blood volume.

Conclusion

In conclusion, there is good agreement between different exercise
protocols for estimates of skeletal muscle oxidative capacity using NIRS.
The short-fast exercise protocol was reproducible in non-athletic adults.
Together these findings support NIRS as a valuable non-invasive tool
for measuring muscle oxidative capacity in young and older non-
athletic adults alike.
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