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Cardiovascular diseases remain one of the main threats to human health,
significantly affecting the quality and life expectancy. Effective and prompt
recognition of these diseases is crucial. This research aims to develop an
effective novel hybrid method for automatically detecting dangerous
arrhythmias based on cardiac patients’ short electrocardiogram (ECG)
fragments. This study suggests using a continuous wavelet transform (CWT) to
convert ECG signals into images (scalograms) and examining the task of
categorizing short 2-s segments of ECG signals into four groups of dangerous
arrhythmias that are shockable, including ventricular flutter (C1), ventricular
fibrillation (C2), ventricular tachycardia torsade de pointes (C3), and high-rate
ventricular tachycardia (C4). We propose developing a novel hybrid neural
network with a deep learning architecture to classify dangerous arrhythmias.
This work utilizes actual electrocardiogram (ECG) data obtained from the
PhysioNet database, alongside artificially generated ECG data produced by the
Synthetic Minority Over-sampling Technique (SMOTE) approach, to address the
issue of imbalanced class distribution for obtaining an accuracy-trained model.
Experimental results demonstrate that the proposed approach achieves high
accuracy, sensitivity, specificity, precision, and an F1-score of 97.75%, 97.75%,
99.25%, 97.75%, and 97.75%, respectively, in classifying all the four shockable
classes of arrhythmias and are superior to traditional methods. Our work
possesses significant clinical value in real-life scenarios since it has the
potential to significantly enhance the diagnosis and treatment of life-
threatening arrhythmias in individuals with cardiac disease. Furthermore, our
model also has demonstrated adaptability and generality for two other datasets.
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1 Introduction

Cardiovascular disease remains one of the most severe threats to
human health, with a significant impact on quality of life and
longevity. Within the framework of research in this area, one of
the most urgent tasks is the classification of arrhythmias (Zhang
et al., 2022) since the effective and accurate identification of types of
arrhythmias is a crucial aspect in making decisions about treating
and managing heart diseases. Among the variety of arrhythmias,
special attention is paid to ventricular flutter (VFL), ventricular
fibrillation (VF) (Zeppenfeld et al., 2022), ventricular tachycardia
(VTTdP), and high-rate ventricular tachycardia (VTHR), as they are
characterized by a high degree of severity and require immediate
medical attention (Rajendra Acharya et al., 2018). Arrhythmias are
deviations from the heart’s normal rhythm and can range frommild,
almost imperceptible changes to life-threatening conditions. One
critical challenge cardiologists and heart specialists face is the
accurate classification of arrhythmia types to determine the best
treatment strategy. In addition, there are restrictions on the time of
the ECG analysis, which in different studies varies from 2 to 10 s
(Bukhari et al., 2023). Reducing the analysis time seems extremely
important since the instant indication of a dangerous violation,
especially in implanted cardioverter-defibrillators (CDs), helps the
patient save life. With the availability of large volumes of
electrocardiogram (ECG) data and the development of machine
learning technologies, it has become possible to classify arrhythmias
with high accuracy (Xiao et al., 2023) automatically. Machine
learning algorithms such as neural networks and signal
processing algorithms can analyze ECG data to determine the
type of arrhythmia accurately. There are a lot of algorithms for
the automatic detection of cardiac disorders based on ECG, which
are based on the detection of the ventricular ECG complex wave
(QRS complex) and the analysis of the morphological features of this
complex (Li et al., 1995; Al-Naima and Al-Timemy, 2009; Pandit
et al., 2017). This method is appropriate for exploring dangerous
arrhythmias, as the QRS complex is a pivotal indicator of the heart’s
state and electrical activity. Many works based on the isolation of
cardio cycles based on signal segmentation, which includes the
detection of PQRS-T waves. The detection of QRS complexes in
ECG signals has been carried out for many years with the help of
widely used methods such as the pattern matching method in fetal
ECG analysis (Liu et al., 2019), the differential threshold method
(Pandit et al., 2017), and wavelet transform (Tuncer et al., 2019).
Some algorithms have also been developed to extract features from P
and T waves (Madeiro et al., 2017). RR intervals (RRI) are one of the
most essential ECG features used for ECG classification (Kennedy
et al., 2016). In addition, morphological features such as wave
amplitude and ECG wave intervals were used, such as
morphological features obtained from P-QRS-T waves of ECG
signals (Alquraan et al., 2019). Some other features can be
obtained using ECG signal processing methods, such as higher-
order spectral cumulants (Alquraan et al., 2019), discrete and
continuous wavelet transforms, and independent component
analysis. However, some of the above methods have
disadvantages, such as dependence on the subjective perceptions
of the subjects, variability of results depending on the instructions
given to the subject, and the requirement of enormous computing
resources to analyze extensive data. Therefore, to diagnose high-risk

arrhythmias correctly, it is necessary to consider other technologies,
such as deep learning, that can extract unique characteristics of the
signals by end-to-end form, etc. Many deep learning neural network
models have been used to analyze ECG signals in recent years due to
their high efficiency, such as convolutional neural networks (CNN)
(Byeon et al., 2019; Olanrewaju et al., 2021; Xiao et al., 2023; Ba
Mahel and Kalinichenko, 2024). In terms of the model input
method, both one-dimensional fragments of the initial time
readings of the ECG signal (1D-CNN) (Rajendra Acharya et al.,
2018; Acharya et al., 2019) and two-dimensional representations of
time fragments (2D-CNN) (Byeon et al., 2019; Olanrewaju et al.,
2021) are used. The 2D conversion of an ECG signal to an image is
related to the tremendous success of applying deep neural networks
in image analysis. Short-time Fourier transform (STFT) -
spectrograms (Al-Naima and Al-Timemy, 2009), continuous
wavelet transform (CWT) - scalograms (Byeon et al., 2019;
Olanrewaju et al., 2021), and Markov transition fields (MTF) are
commonly usedmethods conversing a one-dimensional signal into a
two-dimensional image. However, it is worth noting that the deep
learning model also faces particular challenges in arrhythmia
classification. Lack of data, irregularity in the distribution of
arrhythmia types, and noise in the signals can affect the accuracy
and reliability of the classification. It requires careful preparation of
the data and the development of algorithms capable of handling
such complexities. Recent works using continuous wavelet
transform (CWT)—scalograms and convolutional neural
networks (CNN) are the most closely related to the subject under
consideration. Using the CNN model, Acharya et al. (2018)
proposed a new tool for automatically differentiating shockable
and non-shockable ventricular arrhythmias. The authors
processed 2-s ECG fragments with an eleven-layer CNN model
to identify life-threatening ventricular arrhythmias. Their work
demonstrated the effectiveness of the proposed approach in
accurately detecting shock and non-shock ventricular
arrhythmias using ECG signals, providing a promising tool for
the early diagnosis and treatment of life-threatening ventricular
arrhythmias (Rajendra Acharya et al., 2018). The maximum
accuracy obtained by the authors was 93.18%. The shortcomings
of this work are that training requires a considerable dataset, the
classification is binary, and the performance indexes of the proposed
CNN model require improvements. Olanrewaju et al. (2021)
developed an integrated model using CWT and deep neural
networks to accurately classify ECG signals to detect arrhythmia,
congestive heart failure, and normal sinus rhythm. Their work
demonstrated the effectiveness of the proposed approach in
accurately predicting common heart disease using ECG signals,
providing a promising method for diagnosing heart disease.
Byeon et al. (2019) compared applying deep machine learning
models in biometrics using ECG scalograms. The authors
proposed a biometric recognition system that used ECG
waveforms and deep learning models to achieve a high accuracy
of 94% in biometric recognition. Their results showed that the
proposed method outperformed conventional ECG-based
biometric recognition methods, demonstrating the effectiveness
of the proposed approach. Wang et al. (2021) proposed an
automatic ECG classification method that uses CWT and CNN.
The method has achieved an overall performance of 67.47% and
68.76% sensitivity and F1-score, respectively, in the classification of
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ECG signals of the following class: Normal (N), Ventricular Ectopic
Beat (VEB), Supraventricular Ectopic Beat (SVEB), and Fusion Beat
(F), demonstrating the effectiveness of the proposed approach.
However, the overall performance achieved by this approach still
has to be improved. Ba Mahel et al. (2022) proposed an arrhythmia
classificationmethod that uses scalograms of heart vector magnitude
(HVM), signal segmentation, and a deep network to classify five
different classes of arrhythmias (healthy control (HC), myocardial
infarction (MI), cardiomyopathy (CM), bundle branch block (BB)
and dysrhythmias (DS)), achieving a high classification accuracy of
98%. The proposed approach has demonstrated the potential of
using deep learning methods for accurate ECG classification.
However, this study uses the HVM for arrhythmia classification,
which has limited information since HVM reduces the electrical
activity of the heart to a vector representation, potentially losing
some vital information that can be useful for accurately classifying
arrhythmias. Other characteristics of the ECG, such as ECG
waveform and duration, may be more informative.

In (BaMahel and Kalinichenko, 2022), the same author presented a
practical algorithm for classifying cardiac cycles based on images using a
convolutional neural network. However, it is essential to note that using
only two classes in theworkmay not be sufficient for addressing real-life
problems.Moreover, the F1-score (73.1%), recall (85.4%), and precision
(68.6%) all have the potential for further improvement. This study
utilizes CWT technology to convert 2-s ECG fragments into
scalograms, followed by developing a novel lightweight hybrid
neural network that combines a 2DCNN and a Gated Recurrent
Unit (GRU). The objective of developing this network is to
accurately categorize four shockable types of dangerous arrhythmias
on short 2-s fragments of ECG signals. The results of the conducted
experiments indicate that the average classification accuracy, F1-score,
specificity, and sensitivity for all classes were 97.75%, 97.75%, 99.25%,
and 97.75%, respectively. These findings significantly improve
compared to existing approaches and effectively address the
constraints identified in earlier research studies. The contributions of
this manuscript are summarized as follows:

(1) Our study makes a significant contribution to the field of
medical diagnostics by developing a novel lightweight hybrid
model to improve the classification of arrhythmias on short
ECG signals.

(2) The application of this model to the classification of shockable
arrhythmia effectively utilizes a combination of wavelet
transform, 2DCNN, and GRU.

(3) Using synthetic data generated by the Synthetic Minority
Over-sampling Technique (SMOTE) method for class
balancing and subsequent training of convolutional neural
networks (CNNs) improves the deep learning model
robustness, a prevalent concern in medical and other
applications. It is particularly significant in arrhythmia
classification, as it directly influences the dependability and
consistency of the classification outcomes.

(4) Our experiments also contributed to deep learning
methodology by providing a comparative analysis between
six different state-of-the-art convolutional neural networks
(CNN) in the context of data analysis. This analysis may be
helpful for other researchers working in signal processing and
medical data analysis to select the appropriate model for their

tasks. Thus, our study has methodological implications by
expanding the understanding of the capabilities of deep
learning in the medical field, especially in ECG
arrhythmias analysis and classification.

(5) Development of an innovative end-to-end lightweight hybrid
model that is an efficient tool suitable for adaptation and
application in various image classification problems.

2 Materials and methods

2.1 Real and synthetic data

This study utilized the ECG Fragment Database for the Exploration
of Dangerous Arrhythmia (EFEDA, https://physionet.org/content/ecg-
fragment-high-risk-label/1.0.0/, which consists of high-risk segments of
ECG that were available on the PhysioNet platform (Nemirko et al.,
2022). This database comprises an extensive collection of medical data
primarily focused on high-risk arrhythmias. The analysis of these high-
risk ECG fragments allows us to more accurately study the
characteristics of various types of arrhythmias and develop
algorithms that can determine them with a high degree of accuracy.
Thus, this study selected the actual ECG data of VFL (C1), VF(C2),
VTTdP(C3), and VTHR (C4) in this database. The quantitative
composition of the selected arrhythmias is presented in Table 1.

Table 1 illustrates that the sample numbers among C1-C4 are
pretty unbalanced. To balance our dataset, we employed synthetic data
created by the SMOTE method (Chawla et al., 2002) and fragments
from the ECG database. The SMOTE approach was proposed by
Chawla et al., 2002. This method generates synthetic minority class
samples by interpolating between existing samples, thus increasing the
minority class’s representation in the dataset. This strategy is very
beneficial when dealing with imbalanced datasets with significantly
fewer samples in certain classes than others. For example, SMOTE has
been found to improve the performance of machine learning models
on imbalanced datasets (Joloudari et al., 2023). It has been used for a
range of tasks, such as fraud detection (Almhaithawi et al., 2020),
medical diagnostics (Lee and Lee, 2023), and credit risk assessments
(Niu et al., 2020). Thus, we can increase the model’s ability to
distinguish minority classes by generating synthetic data, resulting
in a more balanced classification performance. The proportion of
actual and synthetic data for each class is described in Table 1.

2.2 Transforming ECGs into scalograms

The ECG signal is a time-varying signal that depicts the heart’s
electrical activity. It comprises three components: the P-wave, the
QRS complex, and the T-wave. These components differ in
frequency, composition, and length, which is significant for
diagnosing various cardiac disorders. The ECG signal can be
decomposed into its frequency components using CWT, which
can ascertain the frequency composition of a signal over multiple
temporal scales. It is beneficial for identifying and assessing the
different elements of an ECG signal, including the P-wave, QRS
complex, and T-wave. By employing CWT to transfer the ECG
signal from the time domain to the time-frequency domain, we can
gain a more comprehensive understanding of the underlying
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physiological systems responsible for generating the signal (Byeon
et al., 2019; Olanrewaju et al., 2021). It can aid in diagnosing
cardiovascular disease and offer crucial insights into the
mechanics of electrical activity in the heart.

Transforming ECGs into scalograms offers the following
advantages: depiction of localized resolution in the frequency
domain, identification of momentary occurrences and subtle
variations, flexibility in accommodating frequency fluctuations,
examination of non-linear dynamic attributes, exploration of the
integration of time-frequency properties, and avoidance of
windowing issues encountered in methods like STFT (Al-Naima
and Al-Timemy, 2009). In general, CWT provides a more flexible
and informative approach to the analysis of ECG signals, enriching
the interpretation and expanding the possibilities of diagnosing and
monitoring the condition of the heart. Therefore, we transform
ECGs into scalograms by CWT.

The CWTmathematical formulation (Ozaltin and Yeniay, 2023)
of any signal f(t) is presented in Eq. 1.

CWT t( ) � 1��
a

√ ∫+∞

−∞
f t( ) · ψ t − b

a
( )dt (1)

Where f(t) is the signal, a is the scale parameter, b ∈ R is the
shift parameter, and ψ(t) is the mother wavelet function. We select
the Morlet mother wavelet function as it has equal variance in time
and frequency to perform the transformation from ECGs to
scalograms, as shown in Eq. 2 (Lee and Choi, 2019):

ψMorl t( ) � e2πite−
t2

2σ2 � cos 2πt + i sin 2πt( )e− t2

2σ2 (2)

The results of the CWT are many wavelet–coefficients that are the
function of the scale a and shift b. In this study, we used the CWT
coefficients in the form of scalograms, which can serve as input (Ba
Mahel et al., 2022) into our hybrid deep neural network model to
classify dangerous arrhythmias. The size of the scalograms used as input
for the proposed model is 227 × 227 pixels with three color channels,
which is in line with the requirements of the developed hybrid model.

2.3 Deep models applied for the task of
classification and recognition

2.3.1 2D convolutional neural network
Modern image classification problems widely use deep

learning methods, especially convolutional neural networks
(CNN). Convolutional Neural Networks (CNNs) provide the

ability to extract distinctive characteristics from images and
dynamically adjust to variations in illumination, rotations,
scales, and other influencing factors. A prevalent variant of
CNNs is the two-dimensional CNNs (2DCNNs), which
process images represented as pixel matrices. Deep two-
dimensional convolutional neural networks are composed of
multiple layers, including a convolutional layer, pooling layer,
activation layer, and fully connected layer. The convolutional
layer applies filters to the input image and produces feature
maps. The pooling layer reduces the dimensionality of feature
maps and increases their invariance. The activation layer adds
nonlinearity to the output of the convolutional or pooling layer.
The fully connected layer performs classification based on the
extracted features. 2DCNNs have several advantages over other
types of CNNs, such as three-dimensional CNNs (3DCNNs).
First, 2DCNNs have fewer parameters and require fewer
computational resources. Secondly, 2DCNNs are more
accessible to train and optimize since they avoid the problem
of overfitting and gradient decay. Third, 2DCNNs can
effectively deal with various image domains, such as natural,
satellite, medical, etc. In recent years, many 2DCNNmodels that
use different architectures have been used for image
classification and object detection, demonstrating high
accuracy and speed (Ahmad et al., 2021; Duseja, 2021; Al-
gaashani et al., 2022; Kanwal and Chandrasekaran, 2022;
Singh and Kumar, 2022; Tang, 2022; Al-Gaashani et al., 2023;
Ashurov et al., 2023; Farhan et al., 2023; Farhan and Yang,
2023). Recently, 2DCNNs have become a vital tool in ECG
analysis. For example, the work (Yousuf et al., 2023)
presented an innovative approach to detecting myocardial
infarction. At the same time, the study’s authors (Mewada,
2023) opened new horizons in ECG classification by
proposing a computer diagnostic system based on 2DCNN.
Additionally, in this research (Ayatollahi et al., 2023), the
authors demonstrated the use of transfer learning to adapt
2DCNN for obstructive sleep apnea (OSA) classification. All
these studies highlight the importance and effectiveness of
2DCNN in medical diagnostics.

2.3.2 Gated recurrent unit (GRU) module
A Gated Recurrent Unit (GRU) is a recurrent neural network

introduced by Cho et al. (Cho et al., 2014). GRU is similar to long
short-term memory (LSTM) but has only two gates - reset and
update. The update gate in the GRU model plays a crucial role in
determining the amount of information from the past that needs

TABLE 1 Information on real and synthetic ECG data.

Data Real (Number of fragments in each class) Synthesized (Number of fragments in each class) Total

Class

VFL(S1) 97 903 1,000

VF(S2) 240 760 1,000

VTTdP(S3) 72 928 1,000

VTHR(S4) 169 831 1,000

Total 578 3,422 4,000
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to be transferred to the future. It is crucial for capturing long-term
dependencies and determining what information should be stored
in the model’s memory. On the other hand, the reset gate
determines how much past information should be forgotten. It
allows the model to estimate the importance of each input to the
current state, which is helpful for prediction. The operations
taking place inside the GRU can be represented by the
following Eqs 3–6:

• Update Gate

zt � σ Wz · ht−1, xt[ ]( ) (3)

• Reset Gate

rt � σ Wr · ht−1, xt[ ]( ) (4)

• Candidate Hidden State

~ht � tanh W · rt ⊙ ht−1, xt[ ]( ) (5)

• Final Hidden State

ht � 1 − zt( ) ⊙ ht−1 + zt ⊙ ~ht (6)
In this context, σ represents the sigmoid function, tanh is the

hyperbolic tangent function, Wz, Wr and W serve as parameter
matrices, ht−1 denotes the previous hidden state, xt indicates the
current input, the symbol ⊙ symbolizes element-wise multiplication,
and ht reflects the current hidden state. GRU has a lower parameter
count, generally making it simpler and quicker to train than LSTM
models. The architecture in Figure 1 illustrates the structure of the
GRU model in the context of deep learning.

In recent years, using the GRU model for electrocardiogram
(ECG) analysis has become an essential trend in the medical field.
GRU, a new recurrent neural network (RNN), performs well in
applications with long sequences. It can achieve a better feature
extraction effect while saving computation and is very suitable for
long-time series such as ECG signals (Nath et al., 2021; Yao
et al., 2021).

2.3.3 Description and architecture of the proposed
2DCNN-GRU model

This section provides a theoretical justification for the high
accuracy, efficiency, and robustness of combining 2DCNNs with
GRUs. Since 2DCNNs can process and store spatial information
locally, they effectively process two-dimensional input, including
images (Wang and Hu, 2021). They are perfect for processing
images and other two-dimensional data because they can
recognize intricate patterns and structures in data (Wang and
Hu, 2021). Conversely, recurrent neural networks (RNNs) with
GRUs effectively process sequential input, such as text or time
series (Chen et al., 2022). They are perfect for processing
sequential data because they can recall and apply knowledge
from previous states to create a current prediction (Chen et al.,
2022). Combining 2DCNN and GRU allows us to take advantage of
both architectures (Gupta et al., 2023). 2DCNN can be used to learn
spatial patterns in data, while GRU can be used to learn temporal
dependencies (Gupta et al., 2023). As a result, models may become
more robust, precise, and efficient as they can recognize and utilize a
broader range of intricate patterns seen in the data (Gupta
et al., 2023).

In line with recent advances in deep learning, we propose a

reliable new hybrid model that combines 2DCNN and GRU. Our

model takes advantage of both architectures to achieve high

accuracy and efficiency. The proposed model architecture

consists of several layers of 2DCNN to extract features from the

input data and then GRU to analyze the temporal dependencies

between the extracted features. It allows our model to capture spatial

and temporal dependencies in the data, critical for many tasks such

as image and time series analysis. Our main goal is to offer an

efficient and reliable model that can be used in various applications

and tasks.
In this section, we will also take a closer look at the architecture of

our model and discuss each of its layers. We will also present a table
withmodel parameters and a description of each layer. The architecture
of ourmodel is shown in Figure 2. This figure shows the structure of our
model, including all the layers and their order within the architecture.
The roles of each layer are described as follows.

FIGURE 1
Gated recurrent unit.
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1. The input layer (Silver module in Figure 2): In our
architecture, the input layer accepts 227 × 227 images
with three color channels. This data is then sent over the
network for further processing.

2. Five 2DCNN layers with ReLU activation (Blue modules in
Figure 2): These layers are used to extract features from the
input data. Each layer consists of several convolutional filters
that sweep over the input data and transform it into feature
maps. A ReLU activation function is applied to the output of
each convolutional layer to add nonlinearity.

3. Five max pooling layers (Yellow modules in Figure 2): These
layers reduce the dimensionality of feature maps while
preserving the most essential features. It helps reduce the
number of model parameters and increases its invariance to
small changes in the input data.

4. Three dropout layers (Bronze modules in Figure 2): These layers
randomly turn off some neurons during training to prevent
overtraining. It helps the model generalize better to new data.

5. One Global Averaging Layer (Grey module in Figure 2): This
layer averages information across the entire spatial dimension
of each feature map while preserving depth. It allows the model
to focus on global features.

6. Reshape Layer (Burgundy module in Figure 2): This layer
reshapes the input data to match the next GRU layer.

7. GRU Layer (Cyan module in Figure 2): This layer analyzes the
temporal dependencies between the extracted features. It uses
gate mechanisms to control the flow of information.

8. First fully connected layer (Pink module in Figure 2): This fully
connected layer has a ReLU activation function. This layer

performs classification based on the extracted features. It
transforms high-level features into class predictions.

9. Second fully connected layer (Green module in Figure 2):
This is a fully connected layer with a SoftMax activation
function. The SoftMax function converts the outputs of the
last fully connected layer into class probabilities, ensuring
that the sum of all probabilities equals one. It allows the
outputs to be interpreted as membership probabilities in
each class.

The model parameters and training hyperparameters, including
the filters, activation functions, outputs, and types of each layer, are
described in Supplementary Table S1. This table provides detailed
information about each layer and helps the reader better understand
the functioning of our model.

2.3.4 Training details
The training hyperparameters are presented in Supplementary

Table S1. The optimization method chosen was the Adam algorithm
with a 0.001 learning rate and 1e-6 decay, while the loss function
used was the categorical cross-entropy metric. Compared to
alternative optimizers, the Adam method usually exhibits
accelerated dynamics during the neural network training process.
The model applies a batch size of 16 and limits the number of
training epochs to 400. The proposed neural network is
implemented using Python 3.10 and TensorFlow package
2.10 and the training process was performed on a computing
platform with a 12th Gen Intel® CoreTM i7-12700 2.10 GHz
processor, 64-bit operating system, and 32GB of RAM.

FIGURE 2
The architecture of the proposed hybrid model combining 2DCNN and GRU.
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3 Results

This section shows the outcomes of our experiments on our
model for classifying four shockable arrhythmias types. It also
compares these outcomes to previous studies and discusses their
practical applications.

3.1 Analysis of the electrocardiogram
represented by the time-frequency scalogram

In converting a one-dimensional ECG signal from the time
domain to the time-frequency domain using wavelet transform, the
ECG signal is converted into a two-dimensional matrix (Byeon et al.,
2019). It allows multi-resolution signal analysis, enabling an in-

depth analysis of its properties. Figure 3 shows examples of the
obtained scalograms using CWT of the segmented ECG signals with
a length of 2 seconds from the C3 and C4 classes, respectively. The
difference between ECGs and scalograms in.

Figure 3 can be analyzed from two aspects as follows:

• The two ECG segments show characteristic wave changes and
interval associated with corresponding arrhythmias,
respectively. For example, VTHR (C3) may present as rapid
and regular ventricular QRS complexes, while VTTdP (C4)
may present as a rapid and pulsatile change in QRS amplitude
around the isoelectric line.

• The VTHR (C3) scalogram shows the high frequency and
regular components associated with this arrhythmia. In
contrast, the VTTdP (C4) scalogram shows rotational

FIGURE 3
The transformations of two segments fromC3 (VTHR) and C4 (VTTdP) classes, respectively. (A) A 2-s-ECG segment fromC3; (B) The corresponding
scalogram of C3 ECG segment; (C) A 2-s-ECG segment from C4; (D) The corresponding scalogram of C4 ECG segment.
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signal amplitude changes around a specific frequency, which is
characteristic of this tachycardia.

Thus, it can be seen that the transformation of the ECG signal
associated with arrhythmias from the temporary domain into a
time-frequency one using CWT can provide a complete and more
accurate signal characteristic. It can help in the classification of
various arrhythmias, as well as in the development of new diagnostic
and monitoring strategies for heart diseases.

3.2 Model performances

3.2.1 Experimental validation results
In this research work, the original data set was divided into

three distinct samples: training, validation, and testing to ensure
thorough evaluation and development of the model. The
rationale for this strategy decision was to achieve balance
across many aspects of the deep learning process, including
training, hyperparameter tuning, and the ultimate assessment
of model performance. Prior to partitioning the data, all images
are normalized to values within the range of [0 255]. The images
were normalized by dividing each pixel value by 255.
Consequently, all the pixels in the image are adjusted so that
their values are confined inside this specific range. This crucial
preprocessing step enhances model performance by ensuring all
input variables are normalized to the same scale.

The training set, containing 80% (3200 fragments) of the
original data, served as the primary data set for training the
model. This amount of data was chosen based on the model’s
desire to learn patterns and generalizations from many examples,
allowing it to better learn from various scenarios. A validation set
of 10% (400 fragments) of the original data was used to tune the
model’s hyperparameters and monitor its performance. This
sampling allowed for the necessary iterations of model tuning
to achieve optimal results and prevent overfitting. The test
set also comprised 10% (400 fragments) of the original data
and was used to ultimately evaluate the performance of the
trained model. It remained “hidden” from the model during
training and tuning, ensuring an objective measurement of its
ability to generalize knowledge to new data. This strategy of
splitting training, validation, and testing sets provided a
framework and methodology for developing, evaluating, and
tuning the model while considering the need to train on a
large amount of data, test its performance, and avoid
overfitting. Table 2 shows the performances of our proposed

method validated by the test dataset. The average classification
accuracy for all four classes is 97.75%. It testifies to the model’s
ability to identify and distinguish each class’s features effectively.
The average classification precision, specificity, recall
(sensitivity), and F1-score for all four classes are 97.75%,
99.25%, 97.75%, and 97.75%, respectively. It is noticeable that
the model showed promising results in these measures for all
classes, which indicates a balance in its ability to classify both
positive and negative examples correctly.

The results obtained were impressive. The model achieved
high classification results on the test samples, which confirms
the effectiveness of the proposed hybrid model with the
combination of CWT. It indicates that CWT could highlight
vital temporal features in the data, and the hybrid model
successfully used these features to make accurate
classifications. Achieving high classification results in this
problem is of great practical importance. Furthermore, an
analysis of the confusion matrix in Figure 4 revealed that the
model made the most errors when classifying Ventricular
fibrillation (VF) and high-rate ventricular tachycardia
(VTHR) classes. However, even in these cases, the model
showed an acceptable ability and accuracy to separate classes.
The confusion matrix of Figure 4 shows that most of the samples
were correctly classified. A small number of incorrectly classified
samples suggests that our model has accurately learned the
features and data patterns. Nevertheless, we note that in two
classes several samples are incorrectly classified, which indicates
that our model is not ideal and may have some restrictions.
Further research will be carried out to determine specific areas
where the model requires improvement. The results show that
our model has potential for several uses, including disease
classification and medical diagnostics. Classifying medical
images according to their content is one of the possible
applications of our methodology.

The receiver operating characteristic (ROC) curve is crucial
for assessing a classifier’s effectiveness. It displays the correlation
between the true positive rate (TPR) and the false positive rate
(FPR) at various thresholds. A random classifier’s area under the
curve (AUC) is 0.5, whereas an ideal classifier’s area under the
curve (AUC) is 1. According to Figure 5, our model shows
excellent AUC results for all four classes, which are close to 1.
The ROC curves are close to the top left corner of the graph,
indicating high TPR and low FPR for all classes. It demonstrates
that our model effectively distinguishes between different classes
and can be used for robust classification in real-world
applications such as the classification of medical imaging, etc.,

TABLE 2 The performance of our proposed method for all classes.

Type of arrhythmias Precision (%) Specificity (%) Recall (%) F-score (%)

C1 100 100 93 96

C2 0.97 99 100 99

C3 99 99.7 98 98

C4 95 98.3 100 98

Average 97.75 99.25 97.75 97.75
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where accurate data classification is critical. These results
confirm the superiority of our model and its efficient
classification ability.

Figures 6, 7 show the accuracy and loss function curves
acquired during the training of the proposed model for

400 epochs, respectively. Upon examining the accuracy curve,
it is evident that after 140 epochs, both training and validation
accuracy settle at above 98%, signifying highly efficient
classification on the considered database. The cross-entropy
function performs well, as evidenced by the loss plots staying
comparatively steady during the training phase and the loss
function remaining steady between 0 and 0.2.

3.2.2 Cross-validation results
Cross-validation is a crucial technique for evaluating

model performance and choosing the best hyperparameters.
Using this technique, we can assess how well our model will
handle fresh data that it has never seen before. We employed five
cross-validations during model training to guarantee its
reliability.

The procedure involved dividing our data into five subsets.
The model was then trained on four, leaving one as a test set. This
process was repeated several times, with each repetition a
different subset serving as the test set. This approach provided
a more reliable assessment of model performance.

We use Cross-validation to ensure our model can generalize
information from the data without overfitting. It is essential to
guarantee that our proposed model can make correct predictions
based on fresh data that it may come across in practical applications.
Table 3 presents the accuracy and loss results of the five cross-
validations. It can be seen from Table 3 that all accuracy values
exceed 96%, which indicates the high efficiency of the developed
model. These high scores indicate the model’s ability to generalize
successfully to new data, which is an essential factor in the context of
its potential application.

FIGURE 4
Confusion matrix on the unseen testing set.

FIGURE 5
The Receiver operating characteristic of the proposed model.
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FIGURE 6
The training and validation accuracy curves.

FIGURE 7
The training and validation loss curves.
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4 Discussions

4.1 Comparison with other state-of-the-
art models

This section presents a comparative study between our
proposed model and six state-of-the-art (SOTA) deep learning
models for ECG analysis and classification on the same database.
Several factors are compared: accuracy, sensitivity, specificity,
precision, F1 score, model parameters, and training time per
epoch. Table 4 shows the comparison results for the ECG
classification task.

Table 5 proves that our developed model is superior to
other deep models, which demonstrates its efficiency and
reliability. We believe that our model is a promising solution
for the four arrhythmias classification using deep learning.
Figure 8 shows the confusion matrices of the six other
deep models.

Compared between the confusion matrix of our proposed
model shown in Figure 4 with the confusion matrices of SOTA
shown in Figure 8, our model demonstrated outstanding and
accurate classification with only a small number of errors. It
emphasizes its reliability and high level of accuracy in
comparison with the other six models. Figure 9 displays a
visual graph comparison of the performance metrics of our
model and six different SOTA deep learning models on
the same database. By analyzing this graph, we can highlight
key metrics and compare the performance indicators of
each model.

4.2 Ablation experiment results

To verify and compare the performance of our approach, a
comparison is made between the hybrid and individual models. This
comparison is based on a thorough performance analysis, which is
presented in Table 5.

The results in Table 5 clearly show that the hybrid model
works better than a stand-alone approach. The observed
performance gains validate the benefits of hybrid techniques
in optimizing model analysis performance and highlighting
their high potential.

4.3 Generalization ability study

To evaluate the generalization ability of our model on other
databases, we resorted to using the MIT-BIH database (Moody and
Mark, 2001), which is firmly rooted in the field of ECG analysis and
research and provides a wealth of data for our research purposes.
(This database is available on this website: https://physionet.org/
content/mitdb/1.0.0/). From this database, we selected four
balanced classes (Atrial premature beat (A), Left bundle branch
block (L), Normal (N), and Right bundle branch block (R)). The
annotations were used to segment the signals of these classes, so
each segment lasted 0.6 s. After that, all segments were
transformed into scalograms as described in Section 2.2. It is
worth noting that the data of these classes are actual,
i.e., synthesized data was not generated. Impressively, the
results outperformed the database under consideration and
validated our model’s exceptional performance on actual data.
The results of the proposed model on this database are presented
in Table 6.

The outcomes in Table 6 show that our proposed model can
successfully adapt to new data, which is well supported by the results
achieved. It is crucial to emphasize that ourmodel’s adaptability may
be shown in a range of datasets and not just in the database used for
building the model, demonstrating its good generalization ability
and wide range of applications. Figure 10 shows the confusion
matrix of the proposed model for classifying A, L, N, and R classes
from the MIT-BIH database.

As shown in Figure 10, the proposed model could recognize
all four classes and made only eight errors, proving the

TABLE 3 The results of five cross-validation.

Fold No Accuracy Loss

1 0.969 0.155

2 0.969 0.111

3 0.96 0.219

4 0.975 0.131

5 0.961 0.172

Mean 0.967 0.158

TABLE 4 Comparison of the proposed model with SOTA models for the four arrhythmias classification.

Model Accuracy Sensitivity
(recall)

Specificity Precision F1 score Model
parameters

Training time per
epoch

VGG19 0.945 0.945 0.981 0.948 0.946 26.4 million 190 s

Xception 0.945 0.945 0.98 0.945 0.945 46.5 million 80 s

InceptionV3 0.91 0.91 0.97 0.912 0.91 34.9 million 145 s

GoogLeNet 0.935 0.936 0.978 0.935 0.935 4 million 14 min

MobileNETV3 0.923 0.923 0.974 0.924 0.923 3 million 14 s

VGG16 0.967 0.967 0.989 0.967 0.929 21 million 172 s

Our Model 0.9775 0.9775 0.9925 0.9775 0.9775 208 thousand 26 s

Bold values refer to the optimal results.
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performance and generalization of the proposed model on a
different database that contains only actual data.

4.4 Model applicability validation

We utilized the Brain Tumor dataset (Bhuvaji et al., 2020) to
validate the applicability of our proposed model on additional image
datasets. This dataset comprises brain magnetic resonance imaging
(MRI) images categorized into four groups: no tumor, pituitary
tumor, malignant tumor, and benign tumor. To aid researchers in
developing and evaluating machine learning algorithms for

detecting and categorizing brain tumors, the 3,064 image
collection is split into training and testing sets. The data sources
consist of 512 × 512-pixel resolution MRI images gathered from
multiple sources and displayed in PNG format. The Kaggle platform
offers a database for downloading (Bhuvaji et al., 2020). A benign
tumor (PT), malignant tumor (MT), and pituitary tumor (PT) were
the three categories chosen to guarantee class balance.
Normalization and image resizing to match the model’s input
size were among the standard pre-processing operations carried
out on the data. Table 7 presents the results of the classification.

Table 7 shows that our model attained a specificity of over
96%, indicating that the proposed model can be adapted and

TABLE 5 Assessment of performance indicators for all approaches.

Model type Precision (%) Specificity (%) Recall (%) F-score (%)

2DCNN alone 0.97 0.99 0.97 0.97

GRU alone 0.909 0.9683 0.905 0.905

Our model(2DCNN + GRU) 0.9775 0.9925 0.9775 0.9775

Bold values refer to the optimal results.

FIGURE 8
Confusion matrices of the SOTA deep learning models. (A) VGG 19. (B) Xception. (C) InceptionV3. (D) GoogLeNet. (E) MobileNETV3. (F) VGG16.
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applied to other image datasets. Figure 11 shows the confusion
matrix of classification results. As can be seen in Figure 11, the
proposed model successfully recognized the majority of
representatives of each class and made only 17 errors,
confirming this model’s effectiveness and applicability to other
image data sets.

4.5 Comparison with related works

To further verify the cruciality of the results achieved, Table 8
compares the results of our proposed model with previous studies in
the main performance indexes for classification. It is worth noting
that the results achieved exceed those of the best similar studies. It
further confirms the effectiveness of the original proposal of the
model architecture and approach to solving the classification
problem for identifying VFL (C1), VF(C2), VTTdP(C3),
and VTHR (C4).

4.6 Model hyperparameters tuning

Optimizing parameters such as the learning rate and batch size is
an essential stage in the training procedure of neural networks.
Correctly selecting model hyperparameters is crucial for both the
quality and efficiency of model training. The batch size defines the
balance between the frequency of gradient updates and the
algorithm convergence rate. Hence, it is imperative to strike a
perfect balance between precision and efficiency to train neural
networks, guaranteeing optimal outcomes effectively. Table 9
displays various values employed for model tuning and the
highest accuracy attained.

It can be seen from Table 9 that the best performance
was achieved using the Adam optimizer with a learning rate
of 0.01, 1e-6 decay, and a batch size of 16, 128, and 256,
respectively. This parameter choice highlights the importance
of adequately tuning hyperparameters to achieve maximum
model performance.

FIGURE 9
Graph comparison of models’ performance for the four arrhythmias classification.

TABLE 6 The performance of our proposed method on the MIT-BIH database.

Type of arrhythmias Precision (%) Specificity (%) Recall (%) F-score (%)

A 95 98.3 97 96

L 100 100 100 100

N 98 99.3 95 96

R 99 99.7 100 100

Average 98 99.33 98 98
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4.7 Analysis of the model performance on
imbalanced original data

To further validate the performance of ourmodel, we experimented
it on the actual imbalanced data without oversampling using the
SMOTE method. The total number of actual samples without using
the SMOTE method is 587. From the analysis of the data presented in
Table 1, it is evident that the classes exhibit a significant imbalance,
which prevents practical training of the model. This experiment was
based on the imbalanced original data to validate the model efficiency.
The evaluation metrics of this experiment are presented in

Supplementary Table S2, while the confusion matrix is shown in
Supplementary Figure S1. Despite the big class imbalance, the model
achieved a precision of 82.75%, a specificity of 94.58%, a recall of 82%,
and an F1-score of 82%. These high average values further confirm the
model’s high efficiency.

4.8 Explanation of model predictions

This section presents the results of using the LIME (Local
Interpretable Model-agnostic Explanations) method to explain

FIGURE 10
The confusion matrix for the four classes from the MIT-BIH database.

TABLE 7 The performance of our proposed method on the brain tumor database.

Type of arrhythmias Precision (%) Specificity (%) Recall (%) F-score (%)

GT 96 98.4 87 91

MT 88 93 95 91

PT 98 98.9 100 99

Average 94 96.76 94 93.66
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the model’s predictions (Tulio Ribeiro et al., 2016). The LIME
method was applied to identify the most significant regions in
the input data contributing to the model’s decision-making.

To explain the model’s predictions, we used LIME, which allows
us to identify the most critical superpixels (segments) in the image
that influence the prediction result. Scalograms with the size of 227 ×
227 pixels with three color channels were used as input data. During
the experiments, the LIME method showed high efficiency and
information content. Visualization of the masks obtained using
LIME, as shown in Supplementary Figure S2, allows us to
identify the areas of the scalogram that impact the model’s
prediction the most. The graphs show the original scalograms
and their corresponding masks; the most significant areas are
highlighted in yellow.

Results from the LIME method show that the model focuses on
specific parts of the scalogram that are most relevant for the
classification. These regions coincide with the important features
of the input data of ECG scalograms, confirming that the model’s
predictions are correct and interpretable.

Analysis of masks obtained using LIME allows us to better
understand which parts of the scalogram are most important for the
model. For example, in the presented mask in Supplementary Figure
S2, it can be seen that the model pays special attention to areas
located closer to the bottom and central part of the scalogram. It

indicates that specific data frequency components and time
segments are crucial to the model when making decisions.

Thus, the LIME method used to explain model predictions has
shown promising results. Highlighting significant areas in scalograms
allows us to understand themodel’s decision-making process better and
verify its operation’s correctness. This approach increases confidence in
the model and identifies potential areas for improvement.

4.9 Comparison with traditional ECG
classifiers

To further evaluate the performance of our proposed deep
model, we also conducted a comparative analysis using
traditional ECG classification methods such as k-nearest
neighbours (kNN), support vector machine (SVM), decision trees
(DT), random forests (RF), naive Bayes classifier (NB) and ensemble
SVM method. The results of the comparative analysis with the
related (Al-Shammary et al., 2024; Mondejar-Guerra et al., 2019;
Pandey et al., 2020; Sharma et al., 2019;Wang et al., 2022) studies are
presented in Supplementary Table S3. As we can see from the table,
our deep model demonstrates superiority in all key metrics. Our
model’s precision, recall, accuracy, and F1-score are significantly
higher than traditional methods.

FIGURE 11
The confusion matrix for the Brain Tumor classes.
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These results confirm that deep models have the potential for
more accurate and robust ECG pattern recognition compared to
traditional machine learning methods. The strong performance
of our model is attributed to the deep neural network’s ability to
effectively capture and process complex non-linear
relationships in ECG data, resulting in improved overall
classification accuracy.

4.10 Future work

The classification of the four high-risk arrhythmias is of
sufficient significance because they represent the most

dangerous and common heart rhythm disorders that can lead
to death or disability. However, future research could more
deeply explore the distinctions between low-risk, normal ECGs,
and high-risk arrhythmias. Future research aims to broaden the
application of the suggested approach by examining a more
comprehensive range of arrhythmias encompassing high-risk
and low-risk conditions, including normal ECGs. To maximize
the accuracy and efficiency of the approach, more research is
scheduled to be undertaken simultaneously. It involves thinking
about incorporating other features and algorithms into the
classification procedure.

In addition, to investigate the importance of differentiating
high-risk arrhythmias from normal and low-risk arrhythmias,

TABLE 8 Comparisons with previous related studies in main performance indexes.

Author Approach Length of ECG
segment: (s)

Main performance index

Rajendra Acharya et al.
(2018)

1D-CNN 2 Accuracy:93.18%, Sensitivity:95.32%,
Specificity: 91.04%

Ba Mahel and Kalinichenko,
(2022)

The ECG segments are represented as 100 × 100 images
and 2-dimensional convolutional neural network

(2DCNN) was used for the classification

0.4 Accuracy: 68.6%
Recall (Sensitivity): 85.4%

Precision: 63.9%
F1: 73.1%

Tripathy et al. 2(2016) Random forest Classifier 8 Accuracy: 94.07%
Sensitivity:94.37%
Specificity: 94.73%

Alonso-Atienza et al. (2014) Support vector machine classifier 8 Sensitivity: 92%
Specificity: 97%

Liu et al. (2023) Channel-based attention and bidirectional LSTM 0.9 Precision: 91.1%, F1:90.8%

Yang et al. (2021) Cascaded convolutional neural network 9 to 91 F1 score: 86.5%

Giriprasad Gaddam et al.
(2021)

CWT + CNN 1.4 Accuracy: 95.31%
Sensitivity: 94.21%
Specificity: 93.26%
Precision: 93.12%

Jeong and Lim, (2021) 2D CNN 2 to 3 F1: 78%

Zhang et al. (2022) 3D recurrence plot analysis and deep learning 5 F1: 92.5%

Lee et al. (2021) One-dimensional morphological Features with XGBoost
machine learning algorithm

10 Accuracy:90.46%, Sensitivity:89.2%, Precision:
90%, F1:89.5%

Our proposed method CWT approach and hybrid Deep learning model
2dCNN + GRU

2 Accuracy: 97.75%
Recall (Sensitivity): 97.75%

Specificity: 99.25%
Precision: 97.75%

F1: 97.75%

TABLE 9 The performance of our proposed method using different hyperparameters.

Learning rate Decay Batch size Optimizer Accuracy

0.001 1e-6 16 Adam 0.9775

0.001 1e-6 32 Adam 0.972

0.001 1e-6 64 Adam 0.967

0.001 1e-6 128 Adam 0.9775

0.0001 1e-6 128 Adam 0.91

0.001 1e-6 256 Adam 0.9775

Bold values refer to the optimal results.
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future studies will conduct a more in-depth analysis of the
differences between these categories. It may include the use of
additional parameters as well as the use of machine learning and
deep learning techniques for more accurate differentiation. Also,
within future research framework, a significant expansion of the
classification area is planned, including up to 10 additional types of
arrhythmias. This line of research aims to gain a deeper
understanding of the diversity of cardiac arrhythmias and
develop more universal methods for their detection. These
improvements will allow a more detailed study of the
characteristics of each type of arrhythmia, increasing the
accuracy of the diagnosis. In addition, the methods presented in
these studies (Sharma and Ramesh, 2018; Rahul et al., 2021;
Chaitanya and Sharma, 2024) will be considered in future works
further to improve the results and the accuracy of the models.

5 Conclusion

In this article, an approach based on a combination of
continuous wavelet transform (CWT) and a novel hybrid neural
network for solving the problem of four dangerous arrhythmias
classifications was proposed in detail. The experiments and analysis
of the results led to several important conclusions about the
applicability of the proposed approach and its significance in
daily real-time monitoring and clinical diagnosis.

The results demonstrate that combining CWT and the novel
hybrid model leads to high accuracy in identifying dangerous
arrhythmias. CWT allows us to extract critical time-frequency
characteristics from the ECG data in the time domain, and the
proposed model successfully captures these characteristics and
uses them for accurate classification. This interplay between data
analysis and deep learning techniques highlights their
complementary nature. We achieved high accuracy, sensitivity,
specificity, precision, and F1 - score for all four classes
(97.75%,97.75%,99.25%,97.75%, and 97.75%, respectively). The
reported outcomes significantly outperform the best results
obtained by other studies using the same types of ECG data.
However, it should be noted that further research is also of great
importance. The possibilities of optimizing the neural network
architecture, adapting the method to other data types and classes,
and comparing with alternative approaches can expand our
understanding of the domain and improve results.

Overall, this article highlights the importance of integrating data
analysis and deep learning methods to solve complex classification
problems successfully. The presented approach has the potential for
further research and practical application, contributing to improving
the quality of dangerous arrhythmia classification. Thus, the main
advantages of our approach include, but are not limited to:

1) Improved model performance: Using synthetic data generated
by the SMOTE method resulted in significant improvements
in the performance of our deep learning models. It allowed for
more accurate identification and classification of shockable
arrhythmias based on ECG signals.

2) Solving the problem of class imbalance: The SMOTE method
allowed us to effectively deal with the issue of class imbalance,
which is especially important in medical classification problems,

where some classes of arrhythmias may be rare. Balanced data
promotes fairer and more accurate classifications.

3) Increased generalization ability: Using synthetic data helped
models better generalize knowledge from the training set to
new, real-world data. It improves the models’ ability to
recognize arrhythmias in actual clinical situations.

4) Expansion of applicability: Our approach using synthetic SMOTE
data can be successfully applied to other time series and signal-
based classification problems, making it a universal method for
solving problems in medical diagnostics and beyond.

5) Minimize data collection costs: Generating synthetic data
allows us to increase the amount of training data without
the need for costly collection of additional clinical data.

Our method utilizing synthetic SMOTE data offers several
advantages by enhancing the precision and generalizability of
deep learning models in arrhythmia classification tasks using
ECG signals. This novel hybrid model can be successfully
adapted and applied in various fields where accurate data
classification is required, such as classification of medical
imaging, etc. The results achieved can significantly impact
improving the quality of clinical decision-making.
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