AUTHOR=Wang Yujie , Chen Cheng-Bang , Imamura Toshihiro , Tapia Ignacio E. , Somers Virend K. , Zee Phyllis C. , Lim Diane C. TITLE=A novel methodology for emotion recognition through 62-lead EEG signals: multilevel heterogeneous recurrence analysis JOURNAL=Frontiers in Physiology VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2024.1425582 DOI=10.3389/fphys.2024.1425582 ISSN=1664-042X ABSTRACT=Objective

Recognizing emotions from electroencephalography (EEG) signals is a challenging task due to the complex, nonlinear, and nonstationary characteristics of brain activity. Traditional methods often fail to capture these subtle dynamics, while deep learning approaches lack explainability. In this research, we introduce a novel three-phase methodology integrating manifold embedding, multilevel heterogeneous recurrence analysis (MHRA), and ensemble learning to address these limitations in EEG-based emotion recognition.

Approach

The proposed methodology was evaluated using the SJTU-SEED IV database. We first applied uniform manifold approximation and projection (UMAP) for manifold embedding of the 62-lead EEG signals into a lower-dimensional space. We then developed MHRA to characterize the complex recurrence dynamics of brain activity across multiple transition levels. Finally, we employed tree-based ensemble learning methods to classify four emotions (neutral, sad, fear, happy) based on the extracted MHRA features.

Main results

Our approach achieved high performance, with an accuracy of 0.7885 and an AUC of 0.7552, outperforming existing methods on the same dataset. Additionally, our methodology provided the most consistent recognition performance across different emotions. Sensitivity analysis revealed specific MHRA metrics that were strongly associated with each emotion, offering valuable insights into the underlying neural dynamics.

Significance

This study presents a novel framework for EEG-based emotion recognition that effectively captures the complex nonlinear and nonstationary dynamics of brain activity while maintaining explainability. The proposed methodology offers significant potential for advancing our understanding of emotional processing and developing more reliable emotion recognition systems with broad applications in healthcare and beyond.