
TYPE Original Research
PUBLISHED 12 August 2024
DOI 10.3389/fphys.2024.1424931

OPEN ACCESS

EDITED BY

Bing Yao,
The University of Tennessee, Knoxville,
United States

REVIEWED BY

Juan Guillermo Diaz Ochoa,
PerMediQ GmbH, Germany
Steve McKeever,
Uppsala University, Sweden

*CORRESPONDENCE

Xiang Zhong,
xiang.zhong@ise.ufl.edu

RECEIVED 28 April 2024
ACCEPTED 19 July 2024
PUBLISHED 12 August 2024

CITATION

Trevena W, Zhong X, Lal A, Rovati L, Cubro E,
Dong Y, Schulte P and Gajic O (2024)
Model-driven engineering for digital twins: a
graph model-based patient simulation
application.
Front. Physiol. 15:1424931.
doi: 10.3389/fphys.2024.1424931

COPYRIGHT

© 2024 Trevena, Zhong, Lal, Rovati, Cubro,
Dong, Schulte and Gajic. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Model-driven engineering for
digital twins: a graph
model-based patient simulation
application

William Trevena1, Xiang Zhong1*, Amos Lal2, Lucrezia Rovati2,
Edin Cubro2, Yue Dong2, Phillip Schulte2 and Ognjen Gajic2

1Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, United States,
2Mayo Clinic, Rochester, MN, United States

Introduction:Digital twins of patients are virtual models that can create a digital
patient replica to test clinical interventions in silicowithout exposing real patients
to risk. With the increasing availability of electronic health records and sensor-
derived patient data, digital twins offer significant potential for applications in the
healthcare sector.

Methods: This article presents a scalable full-stack architecture for a patient
simulation application driven by graph-based models. This patient simulation
application enables medical practitioners and trainees to simulate the trajectory
of critically ill patients with sepsis. Directed acyclic graphs are utilized to
model the complex underlying causal pathways that focus on the physiological
interactions and medication effects relevant to the first 6 h of critical illness.
To realize the sepsis patient simulation at scale, we propose an application
architecture with three core components, a cross-platform frontend application
that clinicians and trainees use to run the simulation, a simulation engine hosted
in the cloud on a serverless function that performs all of the computations, and
a graph database that hosts the graph model utilized by the simulation engine
to determine the progression of each simulation.

Results: A short case study is presented to demonstrate the viability of the
proposed simulation architecture.

Discussion: The proposed patient simulation application could help train future
generations of healthcare professionals and could be used to facilitate clinicians’
bedside decision-making.

KEYWORDS

digital twin, virtual patient simulation, graph model, full-stack application architecture,
critical care

1 Introduction

Digital twins are virtual representations of systems that interact with the physical
system bi-directionally (Lal et al., 2020a). With the increasing availability of electronic
health records and sensor-derived patient data, digital twins hold significant potential
in the healthcare sector. In particular, digital twin technology enables the creation of
computerized replicas of patients, allowing simulation of diverse clinical scenarios and
testing of interventions in silico without subjecting real patients to avoidable risk.

Frontiers in Physiology 01 frontiersin.org

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2024.1424931
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2024.1424931&domain=pdf&date_stamp=2024-08-07
mailto:xiang.zhong@ise.ufl.edu
mailto:xiang.zhong@ise.ufl.edu
https://doi.org/10.3389/fphys.2024.1424931
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphys.2024.1424931/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1424931/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1424931/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1424931/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Trevena et al. 10.3389/fphys.2024.1424931

A virtual patient is a digital model able to be identified from
relevant bedside data and provides prediction in response to
modeled inputs. Previous works have demonstrated that virtual
patient simulations can be successfully utilized to train medical
professionals across an array of specialties (Kononowicz et al., 2019;
Lee et al., 2020; Lee and Lee, 2021; Wu et al., 2022). However,
many of the previously introduced virtual patient simulation
models progress only along a limited number of hand-crafted or
predetermined pathways, such as looped, serious branch games,
and linear text-based scenarios (Berger et al., 2018). Other examples
include virtual patient simulations that progress along decision trees
(Hwang et al., 2022), and another recent work (Goldsworthy et al.,
2022) utilized a commercial virtual patient simulation application,
First2Act, which supports only seven simulation scenarios.
Although such simulation architectures have been effectively
utilized to train medical professionals, they are hard to scale as
each new scenario must be crafted by hand.

Recently, computational simulationmodels have been proposed,
which seek to dynamically model the evolution of organ systems
within the human body. One such simulation focused specifically
on modeling how the cardiovascular system evolves based on a set
of time-varying, simultaneous differential equations (Burkhoff and
Dickstein, 2024). Another example is glycemic control, and there
have been multiple metabolic system models based on decades of
research (Chu et al., 2023). Glycemic control protocols have been
optimized using these models. In addition, virtual patient models to
predict lung mechanics evolution with changing ventilator settings
(mechanic ventilator models) are critical to effectively managing
acute respiratory symptoms for critically ill patients, but the scope
of the models is very limited (Zhou et al., 2021). These models
focus primarily on the one organ system and are developed based
on medical, physiological, or biological knowledge, i.e., physics-
based models.

In summary, digital twin applications on virtual patient
modeling have gained success in modeling individual organs
for drug discovery and precision medicine (Venkatesh et al.,
2022; Moingeon et al., 2023), but these models rely on the full
characterization of the biological and physiological functions
at the cell level or the organ level. From bench to bedside,
it is important to understand how the organ systems interact
and orchestrate the patient’s health. For critically ill patients,
the capability of modeling and predicting patient trajectories
under different treatment regimens would greatly support clinical
decision-making, improving patient safety and health outcomes.
However, our current knowledge about the human body does not
allow us to accurately depict all organ system functions using
physical or mechanical models (Rovati et al., 2024). There have
been emerging efforts to develop patient or human digital twins
based on predictive modeling using AI and machine learning
(Vallée, 2023; Katsoulakis et al., 2024; Laubenbacher et al., 2024).
Despite having superior predictive capacity, the interpretability of
these models is typically limited. Meanwhile, graphical models
of the biomarkers of each major organ system would allow us
to encode essential interactions among these biomarkers and
allow for good interpretability for educational purposes and
practical clinical bedside use.

Alternatively, our preliminary work (Trevena et al., 2022)
proposes a virtual patient simulation architecture driven by graph-
basedmodels and focuses on patient-level simulation, i.e., modeling
of the evolution of the virtual patient, determined by directed
acyclic graphs (DAGs) depicting the complex pathophysiological
interactions that occur within the human body. This graph-based
modeling provides a more accurate and transparent presentation
of complex relationships between multiple variables in a complex
adaptive system where the data is often characterized by intricate
interdependence and association. The improved transparency
and interoperability in return ensures that the underlying expert
rules building upon which the DAGs are crafted can be validated
using patient data. It also allows for better visualization of
variable relationships and the reasoning behind the model’s
decision output. The modular and flexible nature of the graph-
based model also provides an opportunity to independently and
iterative refine different organ systems (respiratory, cardiovascular,
neurological, etc.) as discrete models to improve efficiency,
and to create a more streamlined approach to incorporate new
knowledge in a specific organ system without overhauling the
entire model.

The goal of this research is to develop a new highly scalable full-
stack architecture for a cross-platformpatient simulation application
driven by graph-based models, and to present a proof-of-concept
of the proposed architecture to illustrate its viability. To realize
the graph-based virtual patient simulation at scale, we prioritize
a highly reliable, fault-tolerant, and maintainable architecture. As
we aim to develop the application as a bedside decision-support
tool for clinicians in actual clinical settings, the application needs
to adapt swiftly and efficiently to fluctuating user demand, and
to accommodate a wide range of user devices including laptops,
tablets, and smartphones with diverse operating systems (iOS,
Android, etc.). Our proposed architectural approach addresses
these needs in an integrated manner, contributing a sustainable
and practical solution to the field. Specifically, the architecture
comprises three core components: a cross-platform front-end
application that clinicians and trainees use to run the simulation,
a cloud-hosted simulation engine that performs all the necessary
computations for each user’s simulation, and a graph database
that hosts the graph model used by the simulation engine to
drive each simulation. By integrating these elements, we present a
highly-scalable full-stack simulation application architecture, which
effectively addresses the identified challenges and paves the way for a
new paradigm in patient simulation and dynamic system simulation
based on graph models. Although the application focus of this
paper is on modeling a virtual patient, the architecture presented
in this paper could be adapted to support other dynamic systems
such as mechanical, physical, and physiological systems that are
graph-based, e.g., Sanchez-Gonzalez et al. (2018); Tu et al. (2019);
Yang et al. (2021).

In the following sections of this paper, we elaborate on how the
components of our proposed architecture synergize to overcome
practical challenges. We present a proof-of-concept case study
demonstrating the architecture and graph model, discuss the
overarching benefits of the architecture, and outline future research
directions.

Frontiers in Physiology 02 frontiersin.org

https://doi.org/10.3389/fphys.2024.1424931
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Trevena et al. 10.3389/fphys.2024.1424931

FIGURE 1
A high-level illustration of the proposed application architecture. The virtual patient simulations on the left-hand side of the diagram represent the
front-end application. The cloud on the right-hand side of the diagram represents the cloud services serving as the “back-end” of the application.
These services are hosted on Amazon Web Services (AWS) in the demo application/proof-of-concept presented in this article.

2 Materials and methods

The proposed application architecture draws upon the utility
of both autoscaling serverless functions and a microservice
architecture. Serverless functions are a feature offered by cloud
platforms where developers write code that is executed in response
to events (like a user interaction), and are automatically scaled
up and down by the cloud provider. They are serverless in
the sense that developers do not have to worry about server
management, and their pay-as-you-go nature makes them cost-
efficient for users. Microservice architecture, on the other hand, is
a design pattern where an application is structured as a collection
of loosely coupled services, which can be developed, deployed, and
scaled independently. Anticipating usage patterns of this patient
simulation application may be sporadic and synchronized, such
as classroom usage leading to surges in demand, the proposed
architecture is capable of scaling up and down effectively to
meet these needs.

In addition, our proposed architecture considers the challenge
of device heterogeneity and limited processing power, especially
in the medical education setting. A cross-platform programming
language is preferred, which allows developers to write a single
codebase that can run on multiple platforms (like Android, iOS,
and web), eliminating the need to write different versions of the
application for each platform. In this case, React-Native (Masiello
and Friedmann, 2017), a popular cross-platform programming
language, has been employed.

For the overall architecture, the cross-platform front-end
(written in React-Native) is separated from the back-end simulation
engine (running on a serverless function in the cloud) and the
graph database (running on a dedicated server in the cloud).
This separation, characteristic of microservice-based architectures,

has been shown to improve scalability, reliability, and fault
tolerance while also facilitating maintenance and debugging tasks
(Villamizar et al., 2015). Additionally, serverless functions, due to
their autoscaling and developer-friendly nature, enable developers
to focus on application logic, leaving resource provisioning
and infrastructure management to cloud service providers
(Chadha et al., 2022). An illustration of the proposed application
architecture is shown in Figure 1. Below we present the details
regarding the cross-platform front-end application, the graph
database construction, and the simulation engine that drives the
patient pathway simulation, respectively.

2.1 Front-end application

The cross-platform front-end application serves as the user
interface for trainees and clinicians to interact with the virtual
patient simulation by: (a) allowing users to set the initial state of
the patient; (b) storing and showing the state of the patient over
the course of a simulation; (c) allowing users to select interventions
at each step of the simulation as desired; (d) sending the history
of patient states to the cloud-hosted simulation engine to obtain
the next state of the patient for the next step of the simulation (see
Section 2.3 formore details); (e) tracking the relationships, i.e., edges
in the graph-model that caused a change in the virtual patient’s
state at each step of the simulation; (f) allowing users to connect
to the graph database to visualize the relationships defined in the
graphmodel, which influence the trajectory of the state of the virtual
patient (see Figure 2 for a sample DAG).

The microservice architecture plays a crucial role here as it does
not require embedding complex simulation logic into the front-end
application as would be required in a monolithic application design.

Frontiers in Physiology 03 frontiersin.org

https://doi.org/10.3389/fphys.2024.1424931
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Trevena et al. 10.3389/fphys.2024.1424931

FIGURE 2
An example of a directed acyclic graph (DAG) depicting a subset of the interactions associated with respiratory acidosis. The boxes with a yellow
background are medical concepts, and the boxes with a white background correspond to measurable patient vitals or clinical markers. PaCO2 = partial
pressure of carbon dioxide in arterial blood, GCS = Glasgow Coma Scale, HCO3− = Bicarbonate.

This division of responsibilities keeps the front-end lightweight
and modular, facilitating independent development, better error
isolation, and improved overall development speed.

2.2 Graph database development

A graph database uses graph structures for semantic queries,
with nodes, edges, and properties to represent and store data. This
stands in contrast to a traditional SQLor noSQLdatabasewhichmay
not natively support relationships between entities. In our study, the
graphdatabase is the heart of our simulation application, performing
crucial functions like storing the graphmodel, enabling fast queries,
providing visualization tools, and allowing developers to manage
the graph model. These graph-database-powered capabilities can
assist in maintaining the robustness, flexibility, and scalability of the
simulation model.

For this application, the graph models are constructed based
on expert rules. Our definition of expert rules takes into account
the effects of clinical markers on each other and the causes (like
interventions and interactions) that lead to certain effects on organ
systems. Using a graph database, the expert rules (defined by
clinicians and loaded into Neo4j via CSV files) that drive our
simulation can be efficiently queried and updated. A very simple
example DAG describing a subset of the interactions of organ
systems and biomarkers associated with respiratory acidosis is
shown in Figure 2. This DAG is constructed using rules presented
in Table 1 (to be elaborated in this section).

Note that the simple DAG depicted in Figure 2 could be a part of
a much larger DAG with many more medical concepts, measurable
patient vitals, organ systems, and relationships (Lal et al., 2020b).
Representing the causal pathways within the human body in an
intuitive way is particularly important in a clinical setting as
information overload has been correlated with an increase in
medical errors (Pickering et al., 2010). Accordingly, DAGs have
been utilized by clinicians in recent work to model the complex

underlying causal pathways that drive the trajectory of a patient in
an intuitive and visualizable way (Lal et al., 2020a). In particular,
DAGs can be used to effectively model complex causal pathways
within the human body as they provide a natural way tomodel high-
dimensional directed relationships. From a simulation development
perspective, instead of needing to define each new simulation
scenario by hand, utilizing a graph-based simulation engine allows
the number of supported scenarios to grow naturally over time
as new patient vitals, clinical markers, interventions, and their
associated interactions (edges) are added to the graph over the
course of the iterative expert rule refinement and validation process.

The graph database utilized in this work is Neo4j (Neo4j Graph
Data Platform, 2021), which has been shown to be effective at
storing, querying, and analyzing graph data such as knowledge
graphs (Chen, 2022). Other graph databases are also available
including Amazon Neptune (Amazon Web Services, 2024) and
TigerGraph (TigerGraph, 2023), among others. When developing
rules for the graph model stored in the Neo4j graph database, we
first define independent expert rules that have been agreed upon
by the experts in the field through a formal consensus process
(Gary et al., 2022). Table 1 contains sample rules expressed in the
spreadsheet format to help illustrate the rule structure that is
compatible with the Neo4j data structure. In the patient simulation,
each rule is activated by a single triggering clinical marker or
intervention (the “Cause/Input” column of the spreadsheet), and
each rule causes a new incremental change or an absolute change in
a single impacted clinical marker (the “Effected_Clinical_Marker”
column of the spreadsheet) when all conditions for the expert rule
are satisfied. Currently, states of the clinical markers are represented
as integer variables (−2,-1,0,1,2) and can be color-coded in the front-
end user interface.The integer valuesmap to different value ranges of
measurable biomarkers. For example, level 2 for PaCO2 corresponds
to values between 71 and 120 mmHg. In the front-end application,
a number randomly drawn within this range will be displayed to
users, providing users with an experience closer to their regular
interactions with electronic health records.

Frontiers in Physiology 04 frontiersin.org

https://doi.org/10.3389/fphys.2024.1424931
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Trevena et al. 10.3389/fphys.2024.1424931

T
A
B
LE

1
T
h
e
se
t
o
f
ex

p
er
t
ru
le
s
w
h
ic
h
d
efi

n
e
th
e
ed

g
es

in
th
e
N
eo

4
jg

ra
p
h
sh

o
w
n
in

Fi
g
u
re
 4
,a

n
d
w
h
ic
h
re
p
re
se
n
t
th
e
re
la
ti
o
n
sh

ip
s
sh

o
w
n
in

th
e
D
A
G
in

Fi
g
u
re
 2
.T

h
es
e
ru
le
s
g
o
ve

rn
th
e
p
ro
g
re
ss
io
n
o
f
th
e
st
at
e

o
f
th
e
vi
rt
u
al

p
at
ie
n
t
d
es
cr
ib
ed

in
th
e
ca

se
st
u
d
y
in

Se
ct
io
n
 3
.

R
u
le

#
C
au

se
/I
n
p
u
t

P
re
vi
o
u
s

_
St
at
e
_

O
f_
C
au

se
/I
n
p
u
t

N
e
w

_
St
at
e
_

O
f_
C
au

se
/I
n
p
u
t

D
u
ra
ti
o
n

E
ff
e
ct
e
d

_
C
lin

ic
al

_
M
ar
ke

r

Im
p
ac

t
P

T
im

e
_
U
n
ti
l

_
E
ff
e
ct

Si
m
p
le
_
C
o
n
d
it
io
n
s

1
Pa
C
O
2

2
2

30
G
C
S

−1
0.
8

0

2
Pa
C
O
2

1
2

30
G
C
S

−1
0.
8

0

3
Pa
C
O
2

0
2

30
G
C
S

−1
0.
8

0

4
Pa
C
O
2

−1
2

30
G
C
S

−1
0.
8

0

5
Pa
C
O
2

−2
2

30
G
C
S

−1
0.
8

0

6
Pa
C
O
2

1
2

0
pH

−1
1

15

7
Pa
C
O
2

0
1

0
pH

−1
1

15

8
Pa
C
O
2

−1
0

0
pH

−1
1

15

9
Pa
C
O
2

−2
−1

0
pH

−1
1

15

10
Pa
C
O
2

1
2

0
H
C
O
3-

1
0.
8

24
0

11
Pa
C
O
2

0
1

0
H
C
O
3-

1
0.
8

24
0

12
Pa
C
O
2

−1
0

0
H
C
O
3-

1
0.
8

24
0

13
Pa
C
O
2

−2
−1

0
H
C
O
3-

1
0.
8

24
0

14
pH

2
1

0
K

1
0.
8

30
[{
G
iv
en
_I
ns
ul
in
:0
,D

ur
at
io
n:

60
}

{G
iv
en
_F

ur
os
em

id
e:
0,
D
ur
at
io
n:

60
}]

15
pH

1
0

0
K

1
0.
8

30
[{
G
iv
en
_I
ns
ul
in
:0
,D

ur
at
io
n:

60
}

{G
iv
en
_F

ur
os
em

id
e:
0,
D
ur
at
io
n:

60
}]

16
pH

0
−1

0
K

1
0.
8

30
[{
G
iv
en
_I
ns
ul
in
:0
,D

ur
at
io
n:

60
}

{G
iv
en
_F

ur
os
em

id
e:
0,
D
ur
at
io
n:

60
}]

17
pH

−1
−2

0
K

1
0.
8

30
[{
G
iv
en
_I
ns
ul
in
:0
,D

ur
at
io
n:

60
}

{G
iv
en
_F

ur
os
em

id
e:
0,
D
ur
at
io
n:

60
}]

Frontiers in Physiology 05 frontiersin.org

https://doi.org/10.3389/fphys.2024.1424931
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Trevena et al. 10.3389/fphys.2024.1424931

Thefirst rule in Table 1 says, when the patient’s PaCO2 level stays
at a high level (2) for a duration of 30 min, thenGCS (GlasgowComa
Scale) decreases by 1 level with a probability of 0.8. In this example,
PaCO2 is the “Cause/Input” of the rule, GCS is the “Effected_
Clinical_Marker”, 0.8 is the “Probability”, −1 is the “Impact”, and 0
is the “Time_Until_Effect” (in minutes). The columns “Previous_
State_Of_Cause/Input” and “New_State_Of_Cause/Input” describe
what needs to happen to the value of the “Cause/Input” for the rule
to be triggered.There are three possible triggers that we can account
for: The “Cause/Input” increases, decreases, or stays at a particular
value over the specified “Duration”. In this example, the “Previous_
State_Of_Cause/Input” and the “New_State_Of_Cause/Input” of
PaCO2 are both high (level 2), and the “Duration” is 30 min meaning
that this rule is triggered after PaCO2 has been at level 2 for 30 min.
By specifying a “Duration”, we can have different rules for changes
that occur acutely/quickly, or which occur slowly over time. We
can also model rules such as “IF PaCO2 is > 70 mmHg (FOR
30 min) THEN GCS decreases” which requires that a particular
“Cause/Input” (PaCO2 in this case) stays at a particular value (in
this case, at a high value) for some duration. Note that, by allowing
for capturing the “Duration”, the simulation is no longermemoryless
and the applicability of a rule is based on the historical patient
trajectory.

The effect of each rule on the impacted clinical marker is
stored in the “Impact” column and is represented by one of the
following integers: (−2,-1,1,2).The negative (positive, resp.) integers
represent a decrease (an increase, resp.) in the value or level of the
impacted clinical marker. In this example (rule #1), the GCS level
will be decreased by 1 level, from its current level, and the time-
lapse it needs to be effective is stored in the “Time_Until_Effect”
column (with zeromeaning being effective immediately in this case).
To handle cases where multiple rules are simultaneously applying
changes to a single clinical marker during one step of the simulation,
we introduce two types of rules, one causes an incremental change,
meaning that its effect is additive to others that are also incremental.
The other type is “absolute”, which will override other rules once
applied. In this simple example, all rules cause incremental changes.

For a rule to be activated, relevant conditions defined in the
rule must be satisfied. The simple conditions are one or more
independentconditionsthatallmustbesatisfiedforarule totakeeffect.
Rules 14–16 in Table 1 have two simple conditions, {Given_Insulin:
0, Duration: 60} and {Given_Furosemide: 0, Duration: 60}. These
conditions mean that rules 14–16 will only be applied if the patient
has not been given Insulin or Furosemide during the last 60 min.

Meanwhile, complex conditions are the conditions that are
satisfied if at least one of a possible set of conditions is satisfied. For
example, a complex condition expressed as “[{ Brain_Swelling: 0,
Duration: 0 },{Mannitol: 1, Duration: 30 }]” requires that at least one
of the following must be true: (a) the patient must have no current
brain swelling (b) they must have received Mannitol 30 min ago.

If all of the conditions for a rule are satisfied, we then apply the
rule with the probability listed in the “P” column. The probability
characterizes the chance that a certain change in the human body will
occur to maintain a level of stochasticity in the simulation model.

This precise structure for expressing expert rules allows us to
capture the majority of the common rules using a systematic format
that is interoperablewith graphdatabases, and enables us to customize
each expert rule based on the applicability of each property.

2.3 Cloud-hosted simulation engine

The cloud-hosted simulation engine is responsible for executing
the simulation according to the graph model stored in the database
and the user interactions captured by the front-end application.
The engine runs on a serverless function (on a Function as a
Service platform, like Amazon Web Services Lambda or Google
Cloud Functions), allowing it to scale seamlessly in response to
demand. These serverless computing platforms provide developers
with a high degree of flexibility and scalability, as they only need
to be concerned with application code and can leave infrastructure
management to the service provider.

The engine is designed to take the current state of the patient,
as well as any user actions (like giving a medication or performing
a procedure), and calculate the resulting state of the patient. For
this, it queries the graph database for relevant rules, performs
calculations, and sends the new patient state back to the front-
end application. As a benefit, the engine does not have to store
any state itself, making it inherently scalable and resilient. Also,
being decoupled from the front-end and the database, it can be
independently developed, tested, and deployed, which reduces the
complexity of the overall system.

All current and future rules can be processed in a uniform way
using the same code (the code running in the simulation engine
as shown in Figure 1). This means that rules in the graph database
can be added and updated in the future independently without the
need for the developers to write any new code. Specifically, to obtain
the next patient state at each step in the simulation, the front-end
application sends the complete patient history to the simulation
engine and waits for a response which includes:

1. The next state (described by the states of all clinical markers)
of the patient.

2. The rules that were applied (if any) which impacted the next
state of the patient.

The upper and lower limits for the value of each clinical
marker (currently some appropriate range between “very low”
(−2) and “very high” (2)) and the lower and upper bound for
each intervention (between “no intervention” (0) and “high dose
intervention” (2)) are defined in the simulation engine and enforced
at each step. Similarly, the length between each step in the simulation
is defined (currently “15 min”).

The procedure followed by the simulation engine at each step of
the simulation is outlined in Algorithm 1 and illustrated in Figure 3.
This procedure integrates several functions in a modular approach
to rule application and state updates.

2.3.1 InitializeSimulation function
The InitializeSimulation procedure initializes the parameters

and patient history required for the simulation. It ensures that
all necessary data is correctly set up before the main simulation
steps begin.

2.3.2 ApplyRules function
The ApplyRules function applies the relevant rules from the

expert rules set to update the patient’s state. It checks if the
conditions for each rule are met and, if so, updates the patient state
accordingly.

Frontiers in Physiology 06 frontiersin.org

https://doi.org/10.3389/fphys.2024.1424931
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Trevena et al. 10.3389/fphys.2024.1424931

FIGURE 3
Flowchart of the simulation engine algorithm.

2.3.3 HandleConditions function
The HandleConditions function evaluates whether the

conditions for applying a rule are satisfied based on the patient’s
history and the specifics of the rule. It checks whether the
current rule contains a simple condition or a complex condition
and whether these are satisfied over the most recent steps
to be analyzed prior to moving to the next time instance.
We added simple and complex conditions during the rule
construction process to ensure that the expert rules are capable
of fully capturing the intricate relationships between organ
systems in the human body. For example, the administration

of propofol to a critically ill patient should result in a drop
in GCS as well as a drop in MAP. However, if phenylephrine
was administrated at the same time as propofol, a drop
in MAP would have not occurred. Then, administration of
phenylephrine would be included in the simple condition of
the rules denoted as {Given_Phenylephrine: 0} suggesting that
phenylephrine should not be currently effective for this rule to be
applicable.

The algorithm returns a Boolean variable ConstraintsSatisfied
being “True” if all constraints are satisfied, and “False” otherwise.
The condition check operation shares a similar structure as themain

Frontiers in Physiology 07 frontiersin.org

https://doi.org/10.3389/fphys.2024.1424931
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Trevena et al. 10.3389/fphys.2024.1424931

Require: Time_Between_Steps = 15

Require: t = 0,1,…,T ⊳ The steps of the simulation,

each of which is Time_Between_Steps

minutes apart

Require: Variable_Names = {Name1,Name2,…,Namen}

Require: Lower_Bounds = {l1,l2,…,ln}

Require: Upper_Bounds = {u1,u2,…,un}

Require: Patient_History = {h0,h1,h2,…,ht}

Require: Expert_Rules← {Rule1,Rule2,…,Rulem}

 1: ht+1 = ht
 2: InitializeSimulation (Time_Between_Steps, t,

Variable_Names, Lower_Bounds, Upper_Bounds,

Patient_History, Expert_Rules)

 3: for j = 1to m do

 4:   Current_Rule = Expert_Rules[j]

 5:   ApplyRules (Current_Rule, Patient_History,

ht+1, Time_Between_Steps)

 6: end for

 7: for Varin Variable_Names do

 8:   EnforceBounds (ht+1, Var, Lower_Bounds,

Upper_Bounds)

 9: end for

return ht+1

Algorithm 1. Simulation Engine Overarching Algorithm.

1: procedure INITIALIZESIMULATION (Time_Between_Steps,

t, Variable_Names, Lower_Bounds,

  Upper_Bounds, Patient_History, Expert_Rules)

2:  Initialize parameters and patient history

3: end procedure

Algorithm 2. InitializeSimulation Procedure.

algorithm, e.g., screening the states and managing the time indexes,
and the details are skipped for the interest of space.

2.3.4 UpdatePatientState function
The UpdatePatientState procedure applies the impacts of a rule

to the patient’s state if the conditions for that rule are met.

2.3.5 EnforceBounds function
The EnforceBounds procedure ensures that the values of all

clinical markers and interventions remain within their predefined
bounds (e.g., when incremental rules are applied, check if the values
go beyond −2 or +2). If a value exceeds its bounds, it is set to the
respective limit.

The algorithmic approach modularizes the process into
distinct functions, each responsible for specific aspects of
the simulation, thus enhancing clarity and maintainability.
The overarching algorithm (Algorithm 1) orchestrates the
workflow, ensuring that all necessary steps are performed in
sequence, while the individual functions handle initialization,
rule application, condition checking, patient state updating, and
enforcing bounds.

1: function APPLYRULES (Current_Rule,

Patient_History, ht+1, Time_Between_Steps)

2:  Duration_Steps = Current_Rule[Duration]
Time_Between_Steps

3:  Index_Of_Newest_Measurement_To_Look_At =
Current_Rule[Time_Until_Effect]

Time_Between_Steps

4:  Index_Of_Oldest_Measurement_To_Look_At =

Index_Of_Newest_Measurement_To_Look_At+

    Duration_Steps+1

5:  if Index_Of_Oldest_Measurement_To_Look_At > t

then

6:   return False

7:  end if

8:  Cause = Current_Rule[Cause/Input]

9:  if ht−Index_Of_Oldest_Measurement_To_Look_At[Cause] ≠

Current_Rule[Previous_State_Of_Cause/Input]

   then

10:   return False

11:  end if

12:  end if ht−Index_Of_Newest_Measurement_To_Look_At[Cause] ≠

Current_Rule[New_State_Of_Cause/Input] then

13:   return False

14:  end if

15:  MaxValue =

max(Current_Rule[Previous_State_Of_Cause/Input],

   Current_Rule[New_State_Of_Cause/Input])

16:  MinValue = min(Current_Rule

[Previous_State_Of_Cause/Input],

   Current_Rule[New_State_Of_Cause/Input])

17:  for k =

(t−Index_Of_Oldest_Measurement_To_Look_At+1) to

   (t−Index_Of_Newest_Measurement_To_Look_At−1) do

18:   if hk[Cause] > MaxValueorhk[Cause] < MinValue then

19:    return False

20:   end if

21:  end for

22:  if HandleConditions (h,Current_Rule,

Index_Of_Newest_Measurement_To_Look_At,

   Time_Between_Steps) then

23:   UpdatePatientState (Current_Rule, ht+1)

24:   return True

25:  else

26:   return False

27:  end if

28: end function

Algorithm 3. ApplyRules Function.

To summarize, the simulation engine runs on a serverless
function in the cloud and performs the following functions: (a)
receives the history of a virtual patient from a user’s front-end
application; (b) calculates the next state of the virtual patient for
the next step of the simulation by analyzing the history of past
states of the virtual patient, querying the graph database to obtain

Frontiers in Physiology 08 frontiersin.org

https://doi.org/10.3389/fphys.2024.1424931
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Trevena et al. 10.3389/fphys.2024.1424931

1: function HANDLECONDITIONS

(h,Current_Rule,Index_Of_Newest_Measurement_

To_Look_At, Time_Between_Steps)

2:  Evaluate simple and complex conditions

of the rule

3:  return all conditions are satisfied and also

rand(Unif(0,1)) ≤ Current_Rule[Probability]

4: end function

Algorithm 4. HandleConditions Function.

1: procedure UPDATEPATIENTSTATE (Current_Rule, ht+1)

2:  ht+1[Effected_Clinical_Marker] + =

Current_Rule[Impact]

3: end procedure

Algorithm 5. UpdatePatientState Procedure.

1: procedure ENFORCEBOUNDS (ht+1, Var, Lower_Bounds,

Upper_Bounds)

2:  if ht+1[Var] < Lower_Bounds[Var] then

3:   ht+1[Var] = Lower_Bounds[Var]

4:  else if ht+1[Var] > Upper_Bounds[Var] then

5:   ht+1[Var] = Upper_Bounds[Var]

6:  end if

7: end procedure

Algorithm 6. EnforceBounds Procedure.

the relevant relationships from the graph-model which may cause
a change in the state of the patient, and applying the queried
relationships as appropriate to calculate the next state of the patient;
(c) returns any rules thatwere applied and the next state of the virtual
patient for the next step of the simulation to the user’s front-end
application.

3 Results

To demonstrate the viability of the proposed simulation
architecture, we will walk through a short case study that considers
a virtual patient whose state is defined in terms of the five clinical
markers shown in theDAG in Figure 2 and the corresponding nodes
in the Neo4j graph in Figure 4. The trajectory of the patient will be
determined by the set of edges shown in theNeo4j graph in Figure 4,
each of which corresponds to an expert rule defined in Table 1.
The trajectory of the patient’s state throughout this case study is
summarized in Table 2, and the rules from Table 1 that were applied
at each step of the simulation (each step is 15 min) are described in
the “Applied Rules” column of Table 2.

This case study (respiratory acidosis) is crafted to allow for a
manual prospective validation to assist in a quick understanding
of the simulation mechanism. In the real implementation, the
user will first choose a clinical scenario (e.g., chronic obstructive

pulmonary disease exacerbation, or sepsis), along with the most
relevant clinical markers and the corresponding rules related to
this clinical scenario will be identified. Each clinical scenario is
typically associated with dozens of clinical markers and rules,
e.g., 70 rules for a demonstration version for validation in a
related study (Rovati et al., 2024).

3.1 Initializing the simulation

To initialize the simulation, we first need to set the
lower and upper bounds for each vital/clinical marker that
we have. In this case study, the simulation engine was
configured to use the upper and lower bounds: Lower_Bounds =
{PaCO2:− 2,pH:− 2,HCO3−:− 2,GCS:− 2,K:− 2},Upper_Bounds =
{PaCO2:2,pH:2,HCO3−:2,GCS:0,K:2}.

Also, we need to define an initial Patient_History = {h0,h1} for
the patient. Let us assume that at the first step of the simulation,
step t = 0 (row 1 of Table 2), the patient had a slightly elevated
level of PaCO2 (denoted by a value of “1”) and a normal level
of all the other clinical markers (denoted by a value of “0”).
Then, 15 min later at step t = 1 (row 2 of Table 2), the patient
had a very elevated PaCO2 level (denoted by a value of “2”),
but still had a normal level (level “0”) for all the other clinical
markers. In this case, the Patient_History described in Algorithm 1
is initialized as h0 = {PaCO2:1,pH:0,HCO3−:0,GCS:0,K:0} and h1 =
{PaCO2:2,pH:0,HCO3−:0,GCS:0,K:0}.

3.2 The patient’s state trajectory during the
simulation

As shown in Table 2, the first rule applied is Rule # 6 at time
t = 30 minutes. This is expected as Rule # 6 is triggered by an
increase in PaCO2 from a slightly elevated level (a value of “1”)
to a very elevated level (a value of “2”). Since the duration is
0 min for this rule, this rule is triggered as soon as the value of
PaCO2 changes from “1” to “2”. However, this rule has a delayed
“Time_Until_Effect” of 15 min which means that the “Impact” of
the rule is applied 15 min after the rule is triggered. Therefore,
since the rule was applied at time t = 30 minutes, the rule was
triggered 15 min earlier, at time t = 15 minutes. Once the rule
was triggered it was guaranteed to be applied since the rule’s
probability, P, is 100%.

Next, at time t = 60 Rule #16 was applied. Rule #16 is triggered
by a decrease in pH from a normal level (level “0”) to a slightly low
level (level “-1”). After the decrease occurs, this rule is delayed by
a “Time_Until_Effect” of 30 min. Therefore, the change in pH must
have occurred 40 min earlier, which we can see occurred in Table 2
as pH decreased from normal (level “0”) at time t = 15 to slightly
low (level “-1”) at time t = 30. It is therefore in alignment with our
expectations that Rule #16 is applied 30 min later at time t = 60
minutes due to the rule’s “Time_Until_Effect” of 30 min.

At time t = 75 one rule was applied, Rule #1. Rule # 1 is triggered
by PaCO2 being at level “2” for 30 min, and looking at the patient’s
state history in Table 2, we can see that at time t = 75 minutes,
the patient had actually already had a PaCO2 level of “2” for
60 min. Since this rule has a “Time_Until_Effect” of 0 min, we know

Frontiers in Physiology 09 frontiersin.org

https://doi.org/10.3389/fphys.2024.1424931
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Trevena et al. 10.3389/fphys.2024.1424931

FIGURE 4
Visualization of sample expert rules stored in the Neo4j graph database. Each node in the graph corresponds to a measurable vital or clinical marker in
Figure 2. Each directed edge corresponds to a specific expert rule in Table 1. The detailed cause-effect will be displayed when the specific “relationship”
edge is clicked in the Neo4j workspace.

TABLE 2 The patient’s state throughout Section 3 case study.

Time
(min)

PaCO2 pH HCO3- GCS K Applied
rules

0 1 0 0 0 0

15 2 0 0 0 0

30 2 −1 0 0 0 6

45 2 −1 0 0 0

60 2 −1 0 0 1 16

75 2 −1 0 −1 1 1

90 2 −1 0 −2 1 1

105 2 −1 0 −2 1

120 2 −1 0 −2 1

that once this rule is triggered, its “Impact” is instantly applied.
Subtracting the rule’s “Duration” of 30 min from the 60 min that the
patient’s PaCO2 level was “2”, we can see that starting at time t =
30 minutes the rule was being triggered. However, as indicated by
column P of Table 1, Rule #1 only has an 80% probability of being
applied each time it is triggered. This means that the rule was only
applied on the third time that it was triggered (the 20% chance that
the rule would not be applied hit the first two times it was triggered,
at t = 45 and t = 60).

At time t = 90, Rule #1 was applied again, further decreasing
GCS to its lower bound of “-2”. As we can see, Rule #1 was not
decreased at time t = 105 or t = 120 even though Rule #1 was still
being triggered since GCS can not decrease below its lower bound
(below a value of “-2”).

In conclusion, we can see that the trajectory of the patient’s
state throughout the case study (Table 2) is in alignment with our
expectations based on our expert rules (Table 1).

4 Discussion

The presented work introduces an application architecture
designed to overcome various challenges inherent in the dynamic
realm of healthcare simulations. Specifically, it is constructed to
seamlessly scale to accommodate a growing user base with sporadic
and correlated usage patterns, making it universally accessible
across a multitude of platforms. It is also built to operate reliably
under various conditions while ensuring fault-tolerance and easy
maintainability.

A key aspect of this architecture is that it does not question
the validity of expert rules, but rather focuses on the execution of
these rules within the simulation. Therefore, during the validation
phase, an unexpected simulation behavior due to an incorrect expert
rule or its faulty implementation can be handled separately. For
instance, if an erroneous simulation result is due to an incorrect
expert rule, the developer only needs to update the graph database
without touching the simulation engine. This will also improve the
handling of the changes in the clinicalmanagement of patients in the
intensive care unit where the scientific premise and the interventions
change according to an evolving body of evidence.

Frontiers in Physiology 10 frontiersin.org

https://doi.org/10.3389/fphys.2024.1424931
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Trevena et al. 10.3389/fphys.2024.1424931

Because of the stochastic nature of the simulation and the
scale of the model, it is infeasible to validate the model based on
specific values of each individual clinical marker realized in each
simulation run. Rather, we focus on the clinical trajectory and
examine whether the trajectory over an initial 6-h span from the
time of admission is concordant with the expectation (e.g., samples
from real patient trajectories or crafted virtual patients with the same
clinical scenario). Our commitment to enhancing the validity and
utility of this simulation application extends beyond the present
study. We understand the importance of rigorous evaluation and
ablation studies and are actively engaged in further research to refine
and validate the expert rules that underpin the simulation. We are
employing rigorous methodologies to calibrate the decision-making
algorithms based on real-world patient data and physician inputs. To
ascertain the application’s effectiveness as an educational tool and
its ability to satisfy user requirements, we have initiated a mixed-
methods study involving first-year Internal Medicine residents
(Gary et al., 2023; Rovati et al., 2024). These user testing sessions
are specifically designed to assess the usability of the application,
the workload it presents to users, the usability of the application,
and the satisfaction of learners. We anticipate that the findings from
these sessions will provide invaluable insights and guide iterative
refinement of the application design to better cater to user needs.

Looking ahead, there are numerous avenues for enhancing
the proposed architecture’s scalability, reliability, efficiency, and
performance. Such improvements are crucial for realizing high-
fidelity graph-based simulation models capable of functioning as
decision support tools for clinicians at the bedside. Our vision is to
use these models as digital twins and interpretable counterparts to
less transparent associative AI models, facilitating patient diagnosis
and optimal treatment prediction in real-time settings (see, for
example, (Komorowski et al., 2018; Chakshu and Nithiarasu, 2022;
Sun et al., 2022)). The interpretability aspect is particularly crucial
in healthcare, given the reluctance among clinicians to adopt “black-
box” AI models (Dang et al., 2021; Lal et al., 2022).

Specifically, to utilize a data-driven approach to further validate
the patient simulation application, it is necessary to extract
meaningful data points from the current plethora of variables
thereby improving the signal-to-noise ratio. This approach would
involve the current electronic health record data being mapped
to experimentally proven physiological concepts (e.g., utilizing
our approach with DAGs and validated expert rules). The future
iterations of this scalable patient simulation application will also
include a “plug-in” feature with the current electronic health
record, which will seamlessly integrate the real-time data and
interoperability of the proposed virtual testing environment with
the current clinical infrastructure for medical education, in silico
research, and clinical decision support.

To realize these visions, an exciting future direction involves
the utilization of graph algorithms like Graph Neural Networks
for link prediction. This would improve the accuracy of the
graph model that drives the virtual patient simulation. Graph
Neural Networks have demonstrated state-of-the-art results in
predicting synthetic lethality and drug-target interaction in
biomedical networks (Long et al., 2022). Therefore, applying these
algorithms to a graph model based on DAGs, illustrating causal
relationships and intricate pathophysiological interactions within
the human body, could potentially yield impressive results.

Another intriguing prospect is to enhance the efficiency of
querying theNeo4j graph database. Currently, the simulation engine
examines all rules upon querying the graph database, even those
that do not meet the application conditions. Future work should
aim to develop more specific queries using Neo4j’s cypher query
language.This could traverse only nodes or edges of a specific type or
with particular properties, increasing query efficiency. However, this
requires careful reconsideration of how the data is structured within
the database, given the unique set of simple and complex conditions
associated with each rule.

Lastly, the incorporation of parallel computing within the cloud-
hosted simulation engine could significantly boost its performance.
Recent research has shown that integrating parallel computing
within serverless functions drastically enhances performance and
reduces costs (Kiener et al., 2021). Future studies could adapt these
findings to elevate the performance of our simulation engine. These
initiatives, when realized, could greatly advance the capabilities of
the proposed architecture, moving us closer to our ultimate goal of
creating a robust and scalable tool for healthcare simulations.

Data availability statement

The data analyzed in this study is subject to the following
licenses/restrictions:The datasets used for this study are not publicly
available. Requests to access these datasets should be directed to YD,
dong.yue@mayo.edu.

Ethics statement

The studies involving humans were approved by Mayo
Clinic Institutional Review Board. The studies were conducted
in accordance with the local legislation and institutional
requirements. Written informed consent for participation was
not required from the participants or the participants’ legal
guardians/next of kin in accordance with the national legislation and
institutional requirements.

Author contributions

WT: Conceptualization, Formal Analysis, Methodology,
Writing–original draft. XZ: Conceptualization, Funding acquisition,
Methodology, Writing–original draft. AL: Conceptualization,
Methodology, Writing–review and editing. LR: Conceptualization,
Methodology, Writing–review and editing. EC: Methodology,
Software, Writing–review and editing. YD: Conceptualization,
Project administration, Writing–review and editing. PS:
Conceptualization, Funding acquisition, Writing–review and editing.
OG: Conceptualization, Methodology, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by the National Science Foundation IIS-2123848 and
IIS-2123900.

Frontiers in Physiology 11 frontiersin.org

https://doi.org/10.3389/fphys.2024.1424931
mailto:dong.yue@mayo.edu
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Trevena et al. 10.3389/fphys.2024.1424931

Acknowledgments

The authors would like to thank Simon Zec, Nika Zorko
Garbajs, John M. Litell for their contribution to the development of
expert rules.

Conflict of interest

The authors declare that the research was conducted in
the absence of any commercial or financial relationships

that could be construed as a potential conflict
of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Amazon Web Services (2024). AWS Neptune. Available at: https://aws.amazon.
com/neptune/ (Accessed April 28, 2024).

Berger, J., Bawab, N., De Mooij, J., Sutter Widmer, D., Szilas, N., De Vriese, C., et al.
(2018). An open randomized controlled study comparing an online text-based scenario
and a serious game by belgian and swiss pharmacy students.Curr. Pharm. Teach. Learn.
10, 267–276. doi:10.1016/j.cptl.2017.11.002

Burkhoff, D., and Dickstein, M. L. (2024). Harvi academy simulator. Available at:
https://harvi.academy/simulator/ (Accessed April 28, 2024).

Chadha, M., Pacyna, V., Jindal, A., Gu, J., and Gerndt, M. (2022). Migrating from
microservices to serverless: an iot platform case study. New York, NY, USA: Association
for Computing Machinery.

Chakshu, N. K., and Nithiarasu, P. (2022). An ai based digital-twin for prioritising
pneumonia patient treatment. Proc. Institution Mech. Eng. Part H J. Eng. Med. 236,
1662–1674. doi:10.1177/09544119221123431

Chen, X. (2022). “Design and implementation of knowledge graph of listed
companies based on Neo4j,” in International conference on high performance computing
and communication (HPCCE 2021). Editors Y. Wang, and S. Chen (Bellingham,
Washington : International Society for Optics and Photonics), 12162, 1216213.
doi:10.1117/12.2628309

Chu, Y., Li, S., Tang, J., and Wu, H. (2023). The potential of the medical
digital twin in diabetes management: a review. Front. Med. 10, 1178912.
doi:10.3389/fmed.2023.1178912

Dang, J., Lal, A., Flurin, L., James, A., Gajic, O., and Rabinstein, A. A. (2021).
Predictive modeling in neurocritical care using causal artificial intelligence. World J.
Crit. Care Med. 10, 112–119. doi:10.5492/wjccm.v10.i4.112

Gary, P., Rovati, L., Dong, Y., Lal, A., Cubro, E., Wörster, M., et al. (2023). “Use
of a digital twin virtual patient simulator in critical care education: a pilot study,” in
A45. ICU practices, quality improvement, and medical education (American Thoracic
Society), A1681.

Gary, P. J., Lal, A., Simonetto, D., Gajic, O., and De Moraes, A. G. (2022). Results
of a modified delphi approach to expert consensus for a digital twin patient model
in the icu: acute on chronic liver failure. Chest 162, A2702. doi:10.1016/j.chest.
2022.08.2198

Goldsworthy, S., Muir, N., Baron, S., Button, D., Goodhand, K., Hunter, S., et al.
(2022). The impact of virtual simulation on the recognition and response to the rapidly
deteriorating patient among undergraduate nursing students. Nurse Educ. Today 110,
105264. doi:10.1016/j.nedt.2021.105264

Hwang, G.-J., Chang, C.-Y., and Ogata, H. (2022). The effectiveness of the virtual
patient-based social learning approach in undergraduate nursing education: a quasi-
experimental study. Nurse Educ. Today 108, 105164. doi:10.1016/j.nedt.2021.105164

Katsoulakis, E., Wang, Q., Wu, H., Shahriyari, L., Fletcher, R., Liu, J., et al. (2024).
Digital twins for health: a scoping review. NPJ Digit. Med. 7, 77. doi:10.1038/s41746-
024-01073-0

Kiener, M., Chadha, M., and Gerndt, M. (2021). “Towards demystifying intra-
function parallelism in serverless computing,” in Proceedings of the seventh international
workshop on serverless computing (WoSC7) 2021 (New York, NY, USA: Association for
Computing Machinery), 42–49. WoSC ’21. doi:10.1145/3493651.3493672

Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C., and Faisal, A. A. (2018).The
artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive
care. Nat. Med. 24, 1716–1720. doi:10.1038/s41591-018-0213-5

Kononowicz, A. A., Woodham, L. A., Edelbring, S., Stathakarou, N., Davies, D.,
Saxena, N., et al. (2019). Virtual patient simulations in health professions education:
systematic review and meta-analysis by the digital health education collaboration. J.
Med. Internet Res. 21, e14676. doi:10.2196/14676

Lal, A., Dang, J., Nabzdyk, C., Gajic, O., and Herasevich, V. (2022). Regulatory
oversight and ethical concerns surrounding software as medical device (samd) and
digital twin technology in healthcare. Ann. Transl. Med. 10, 950. doi:10.21037/atm-22-
4203

Lal, A., Li, G., Cubro, E., Chalmers, S., Li, H., Herasevich, V., et al. (2020a).
Development and verification of a digital twin patient model to predict specific
treatment response during the first 24 hours of sepsis. Crit. care Explor. 2, e0249.
doi:10.1097/CCE.0000000000000249

Lal, A., Pinevich, Y., Gajic, O., Herasevich, V., and Pickering, B. (2020b). Artificial
intelligence and computer simulation models in critical illness.World J. Crit. Care Med.
9, 13–19. doi:10.5492/wjccm.v9.i2.13

Laubenbacher, R.,Mehrad, B., Shmulevich, I., andTrayanova,N. (2024).Digital twins
in medicine. Nat. Comput. Sci. 4, 184–191. doi:10.1038/s43588-024-00607-6

Lee, C. Y., and Lee, S.W. H. (2021). Review: impact of the educational technology use
in undergraduate pharmacy teaching and learning – a systematic review. Pharm. Educ.
21, 159–168. doi:10.46542/pe.2021.211.159168

Lee, J., Kim, H., Kim, K. H., Jung, D., Jowsey, T., and Webster, C. S. (2020). Effective
virtual patient simulators for medical communication training: a systematic review.
Med. Educ. 54, 786–795. doi:10.1111/medu.14152

Long, Y., Wu, M., Liu, Y., Fang, Y., Kwoh, C. K., Chen, J., et al. (2022). Pre-training
graph neural networks for link prediction in biomedical networks. Bioinformatics 38,
2254–2262. doi:10.1093/bioinformatics/btac100

Masiello, E., and Friedmann, J. (2017).Mastering React native. Birmingham, United
Kingdom: Packt Publishing Ltd.

Moingeon, P., Chenel, M., Rousseau, C., Voisin, E., and Guedj, M. (2023).
Virtual patients, digital twins and causal disease models: paving the ground for
in silico clinical trials. Drug Discov. today 28, 103605. doi:10.1016/j.drudis.2023.
103605

Neo4j Graph Data Platform (2021). Neo4j graph data platform. Available at: https://
neo4j.com/ (Accessed April 28, 2024).

Pickering, B. W., Herasevich, V., Ahmed, A., and Gajic, O. (2010). Novel
representation of clinical information in the ICU: developing user interfaces which
reduce information overload.Appl. Clin. Inf. 1, 116–131. doi:10.4338/ACI-2009-12-CR-
0027

Rovati, L., Gary, P. J., Cubro, E., Dong, Y., Kilickaya, O., Schulte, P. J., et al.
(2024). Development and usability testing of a patient digital twin for critical care
education: a mixed methods study. Front. Med. 10, 1336897. doi:10.3389/fmed.2023.
1336897

Sanchez-Gonzalez, A., Heess, N., Springenberg, J. T., Merel, J., Riedmiller, M.,
Hadsell, R., et al. (2018). “Graph networks as learnable physics engines for
inference and control,” in International Conference on machine learning (PMLR),
4470–4479.

Sun, T., He, X., Song, X., Shu, L., Li, Z., Lan, Q., et al. (2022). Presbyopia-
correcting performance and subjective outcomes of a trifocal intraocular lens in
eyes with different axial lengths: a prospective cohort study. Front. Med. 9, 980110.
doi:10.3389/fmed.2022.980110

TigerGraph (2023). Graph analytics platform: graph database. Available at: https://
www.tigergraph.com/ (Accessed April 28, 2024).

Trevena, W., Lal, A., Zec, S., Cubro, E., Zhong, X., Dong, Y., et al.
(2022). Modeling of critically ill patient pathways to support intensive care
delivery. IEEE Robotics Automation Lett. 7, 7287–7294. doi:10.1109/lra.2022.
3183253

Tu, R., Zhang, K., Bertilson, B., Kjellstrom, H., and Zhang, C.
(2019). “Neuropathic pain diagnosis simulator for causal discovery

Frontiers in Physiology 12 frontiersin.org

https://doi.org/10.3389/fphys.2024.1424931
https://aws.amazon.com/neptune/
https://aws.amazon.com/neptune/
https://doi.org/10.1016/j.cptl.2017.11.002
https://harvi.academy/simulator/
https://harvi.academy/simulator/
https://doi.org/10.1177/09544119221123431
https://doi.org/10.1117/12.2628309
https://doi.org/10.3389/fmed.2023.1178912
https://doi.org/10.5492/wjccm.v10.i4.112
https://doi.org/10.1016/j.chest.2022.08.2198
https://doi.org/10.1016/j.chest.2022.08.2198
https://doi.org/10.1016/j.nedt.2021.105264
https://doi.org/10.1016/j.nedt.2021.105164
https://doi.org/10.1038/s41746-024-01073-0
https://doi.org/10.1038/s41746-024-01073-0
https://doi.org/10.1145/3493651.3493672
https://doi.org/10.1038/s41591-018-0213-5
https://doi.org/10.2196/14676
https://doi.org/10.21037/atm-22-4203
https://doi.org/10.21037/atm-22-4203
https://doi.org/10.1097/CCE.0000000000000249
https://doi.org/10.5492/wjccm.v9.i2.13
https://doi.org/10.1038/s43588-024-00607-6
https://doi.org/10.46542/pe.2021.211.159168
https://doi.org/10.1111/medu.14152
https://doi.org/10.1093/bioinformatics/btac100
https://doi.org/10.1016/j.drudis.2023.103605
https://doi.org/10.1016/j.drudis.2023.103605
https://neo4j.com/
https://neo4j.com/
https://doi.org/10.4338/ACI-2009-12-CR-0027
https://doi.org/10.4338/ACI-2009-12-CR-0027
https://doi.org/10.3389/fmed.2023.1336897
https://doi.org/10.3389/fmed.2023.1336897
https://doi.org/10.3389/fmed.2022.980110
https://www.tigergraph.com/
https://www.tigergraph.com/
https://doi.org/10.1109/lra.2022.3183253
https://doi.org/10.1109/lra.2022.3183253
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Trevena et al. 10.3389/fphys.2024.1424931

algorithm evaluation,” in Advances in neural information processing
systems. Editors H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-
Buc, E. Fox, and R. Garnett (Red Hook, NY, United States: Curran
Associates, Inc.), 32.

Vallée, A. (2023).Digital twin for healthcare systems.Front. DigitalHealth 5, 1253050.
doi:10.3389/fdgth.2023.1253050

Venkatesh, K. P., Raza,M.M., andKvedar, J. C. (2022).Health digital twins as tools for
precision medicine: considerations for computation, implementation, and regulation.
NPJ Digit. Med. 5, 150. doi:10.1038/s41746-022-00694-7

Villamizar, M., Garcés, O., Castro, H., Verano, M., Salamanca, L., Casallas,
R., et al. (2015). “Evaluating the monolithic and the microservice architecture
pattern to deploy web applications in the cloud,” in 2015 10th computing

Colombian conference (10CCC), 583–590. doi:10.1109/ColumbianCC.2015.
7333476

Wu, Q., Wang, Y., Lu, L., Chen, Y., Long, H., and Wang, J. (2022). Virtual simulation
in undergraduate medical education: a scoping review of recent practice. Front. Med. 9,
855403. doi:10.3389/fmed.2022.855403

Yang, C., Gao, W., Wu, D., and Wang, C. (2021). “Learning to simulate unseen
physical systems with graph neural networks,” in NeurIPS 2021 AI for science
workshop.

Zhou, C., Chase, J. G., Knopp, J., Sun, Q., Tawhai, M., Möller, K., et al.
(2021). Virtual patients for mechanical ventilation in the intensive care unit.
Comput. Methods Programs Biomed. 199, 105912. doi:10.1016/j.cmpb.2020.
105912

Frontiers in Physiology 13 frontiersin.org

https://doi.org/10.3389/fphys.2024.1424931
https://doi.org/10.3389/fdgth.2023.1253050
https://doi.org/10.1038/s41746-022-00694-7
https://doi.org/10.1109/ColumbianCC.2015.7333476
https://doi.org/10.1109/ColumbianCC.2015.7333476
https://doi.org/10.3389/fmed.2022.855403
https://doi.org/10.1016/j.cmpb.2020.105912
https://doi.org/10.1016/j.cmpb.2020.105912
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 Front-end application
	2.2 Graph database development
	2.3 Cloud-hosted simulation engine
	2.3.1 InitializeSimulation function
	2.3.2 ApplyRules function
	2.3.3 HandleConditions function
	2.3.4 UpdatePatientState function
	2.3.5 EnforceBounds function

	3 Results
	3.1 Initializing the simulation
	3.2 The patient’s state trajectory during the simulation

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

