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The brainstem has long been recognized as the major respiratory control center,
but it has become increasingly appreciated that areas upstream of the brainstem
modulate respiration and airway defensive behaviors. This review aims to define
the role of the amygdala, a key temporal brain region essential for limbic function,
in respiration and airway defenses. We summarize literature describing roles for
the amygdala in control of respiration, swallow, cough, airway smooth muscle
contraction, and mucus secretion. We emphasize the need to understand how
the amygdala regulates these functions both at a local scale and network scale
and identify knowledge gaps for current and future investigations. Lastly, we
highlight literature suggesting that amygdala dysfunction may contribute to
respiratory dysfunction.
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Introduction

Respiration is essential for the survival of all mammals. It is a vital motor function that
controls respiratory muscles contributing to pulmonary oxygen uptake and excretion of
carbon dioxides. Airway protective behaviors, such as cough and swallow, are also
important because they prevent the aspiration of pathogen and particles to ensure
patency and health of the airway for optimal gas exchange.

In the central nervous system, the major respiratory control center is in the brainstem,
the distal (caudal) part of the brain. The brainstem respiratory network includes several
brain regions in the medulla oblongata, such as the pre-Bötzinger (pre-BötC), Bötzinger
(BötC), raphé, rostral and caudal subdivisions of the ventral respiratory groups (rVRG and
cVRG, respectively), and the nucleus of the tractus solitarius (NTS); as well as nuclei in the
pons, such as the Kölliker-Fuse (KF) and parabrachial nuclei. Over the last hundred years
(Lumsden, 1923) until more recent days (Smith et al., 1991; Del et al., 2018; St-John and
Paton, 2000; Dhingra et al., 2020; Dhingra et al., 2019), it has been widely demonstrated that
respiration in mammals is generated and regulated within the ponto-medullary respiratory
network. Additionally, the brainstem network drives orofacial motor behaviors, including
airway protective behaviors such as cough and swallowing, that are coordinated with
breathing (Moore et al., 2014). However, it has become increasingly appreciated that areas
upstream of the brainstem modulate not only breathing, but also orofacial motor behaviors.

In the present review article, we highlight the amygdala as a key brain region that
influences respiration and airway protective behaviors (Figure 1). The amygdala is of
increasing interest in the airway biology field as it modulates autonomic responses to fearful
stimuli, in part through activation of the sympathetic nervous system. Moreover, anxiety,
which is in large part associated with exaggerated amygdala activity, is common in airway
disease and exacerbates lung pathology. Here, we provide a summary of literature

OPEN ACCESS

EDITED BY

Irene C. Solomon,
Stony Brook University, United States

REVIEWED BY

Hari H. Subramanian,
Boston Scientific, United States
Kun-Ze Lee,
National Sun Yat-sen University, Taiwan

*CORRESPONDENCE

Leah R. Reznikov,
leahreznikov@ufl.edu

RECEIVED 28 April 2024
ACCEPTED 15 August 2024
PUBLISHED 28 August 2024

CITATION

Trevizan-Baú P, Hayes JA, Bolser DC and
Reznikov LR (2024) Amygdalar involvement in
respiratory dysfunction.
Front. Physiol. 15:1424889.
doi: 10.3389/fphys.2024.1424889

COPYRIGHT

© 2024 Trevizan-Baú, Hayes, Bolser and
Reznikov. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Physiology frontiersin.org01

TYPE Review
PUBLISHED 28 August 2024
DOI 10.3389/fphys.2024.1424889

https://www.frontiersin.org/articles/10.3389/fphys.2024.1424889/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1424889/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2024.1424889&domain=pdf&date_stamp=2024-08-28
mailto:leahreznikov@ufl.edu
mailto:leahreznikov@ufl.edu
https://doi.org/10.3389/fphys.2024.1424889
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2024.1424889


highlighting the amygdala in the control of respiration, cough,
swallowing, airway smooth muscle contraction, and mucus
secretion. Then, we discuss the amygdala in respiratory
dysfunction and how it may be impacted in neurological
diseases. Lastly, we identify knowledge gaps in the field and
propose key questions for current and future investigations.

Amygdala function and connectivity

The amygdala is an almond-shaped structure bilaterally located
in the temporal lobes of the brain and is essential for detecting
threats (Onat and Buchel, 2015; Rajbhandari et al., 2016; Kim et al.,
2016). It receives sensory information from several brain regions,
such as brainstem, cortex, thalamus and hippocampus. These inputs
allow the amygdala to integrate sensory information, including taste,
visceral, vision, audition, somatic sensation, and olfaction
(Price, 2003).

Structurally, the amygdala is divided into multiple subdivisions.
The basolateral amygdala (BLA) subdivision is a key gating center that
receives sensory information from the environment and transmits it
to the central amygdala (CeA) via excitatory glutamatergic pyramidal
projection neurons (Reznikov et al., 2008). The central amygdala, in
turn, sends projections to hypothalamic centers (Keifer et al., 2015)
and periaqueductal grey (PAG) in order tomount the proper response
to threats (Tovote et al., 2016). It is the CeA projections to the
hypothalamic centers and to the NTS and rostral ventrolateral
medulla in the brainstem that are critical for regulating autonomic
and respiratory responses (Farkas et al., 1997; Chiou et al., 2014; Saha
et al., 2005). Remarkably, it has been demonstrated that CeA

projections to the midbrain PAG connect with medullary pre-
motor neuronal targets to control (or integrate) specific
evolutionary conserved defensive behaviors, such as freezing
(Tovote et al., 2016).

It has been postulated that this simplified view of the amygdala
having a main input center (basolateral amygdala, BLA) and output
center (central amygdala, CeA) is relatively consistent across species.
Such neural framework has been mainly elucidated in the mouse;
however, experimental studies performed in other mammalian
species, including primate and non-primates, suggest that the
neuronal organization of amygdalar connections (i.e., afferences
and efferences) may differ across species (McDonald, 1998). This
may be evident by various ways that species display fear and
emotional aspects as well as social behaviors. For instance, it is
known that the neuroanatomical complexity of the amygdala in
humans is greater, with six major subdivisions reported (Zhang
et al., 2023), and the function of these subdivisions is still debated
and based largely on cytoarchitecture. Nevertheless, it has been
accepted that even non-mammalian species, including fish, reptile
and birds, present an amygdalar brain circuit similar to the mammal
amygdala, suggesting that amygdalar neuronal circuit is relatively
conserved throughout evolution in vertebrates (Jarvis et al., 2005;
Lanuza et al., 1998; Johnston, 1924; Ariëns Kappers et al., 1936;
Janak and Tye, 2015).

Although the neuroanatomical connectivity of the amygdala
within the brain as well as their function are still to be fully
discovered, it is plausible to think that the neuroanatomical
framework of the amygdala with widespread and diverse brain
regions makes the amygdala a key subcortical region for
processing contrasting and varied emotional behaviors, such as

FIGURE 1
Schematic outlining the amygdala integratory function and neuronal anatomical connectivity. The schematic, red-colored neurons depict the
sensory information from several brain regions, such as brainstem (i.e., NTS), cortex, thalamus, and hippocampus to the amygdala; and the red arrows
depict sensory information from the environment targeting the amygdalar-neuroanatomical network. Note that the basolateral amygdala subdivision is a
gating center that receives sensory information, which is further transmitted to the central amygdala. Then, the central amygdala sends projection
neurons (blue-colored neurons) to hypothalamic centers, periaqueductal grey, as well as brainstem centers. This amygdalar-neuroanatomical
framework might modulate the ongoing respiratory motor activity for respiration and airway-protective behaviors (e.g., cough, sneeze, laryngeal
adduction, and swallow). Abbreviations: BLA, basolateral amygdala; CeA, central amygdala; Hypo, hypothalamus; PAG, periaqueductal gray; NTS, nucleus
of the tractus solitarius; RG, respiratory groups (in the brainstem). Created with BioRender.com.
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fearful and rewarding environmental stimuli. Overall, it has been
suggested that distinct amygdala circuits may contribute to a wide
array of behaviors (Swanson and Petrovich, 1998). For example, it is
known from human and rodent experimental studies that i) the
amygdala is activated by fear-conditioned stimuli and ii) anxiety-
related behaviors strongly correlates with BLA and CeA neuronal
activity (Janak and Tye, 2015). Not surprisingly, amygdalar-related
behaviors are also correlated with respiration and autonomic
responses. It is still unknown, however, whether this is a
consequence of the amygdalar-related behaviors in autonomic
function that may change respiration or whether the amygdala
projection neurons targeting the brainstem respiratory centers are
regulating respiratory (and/or autonomic) activity itself during
different behaviors. The next section of this review discusses the
functional role of the amygdala in the regulation of breathing.

Functional evidence for amygdalar
regulation of respiration

The amygdala has long been recognized to influence
cardiovascular and respiratory responses (Kreibig, 2010; Masaoka
and Homma, 2001). Thus, it is not surprising that the interest in the
amygdala as modulator of respiratory function dates back several
decades. In 1972, work in anesthetized cats described two major
outcomes on respiration that were amygdala subdivision-
dependent: respiratory depression and respiratory activation
(Bonvallet and Bobo, 1972). The authors speculated that the
increase in respiration that was accompanied by cardio
acceleration was due to increases in sympathetic tone.
Conversely, they speculated that the decrease in respiration that
was associated with cardio deceleration was due to decreased
sympathetic tone and enhanced parasympathetic tone. In 1983,
another study demonstrated that low level stimulation of the
CeA in awake rabbits induced bradycardia accompanied by an
increase in respiration (Applegate et al., 1983). In the following
year, another study demonstrated that high frequency stimulation
(100 Hz) of the CeA in cats induced a large and sustained inspiratory
effort (Harper et al., 1984). A few years later, another study in cats
demonstrated that 22% of the CeA neurons discharged phasically
with the respiratory cycle during at least one wake or sleep cycle
(Zhang et al., 1986). Additional studies in experimental models of
either awake or anesthetized rodents and rabbits supported
amygdala subregion-dependent influence on respiration,
suggesting an association between amygdala-related emotional
responses and breathing (Nie and Liu, 1992; Sugita et al., 2015;
Adamyan and Akopyan, 2006).

In humans, there have also been reports of increased or
decreased respiratory effects due to activation or engagement of
the amygdala. For example, i) electric stimulation of the amygdala
increased respiratory rate in epileptic patients (Masaoka and
Homma, 2004); and ii) lesions of the amygdala resulted in a
reduction of respiratory rate during anticipatory anxiety
(Masaoka et al., 2003). Other laboratories reported breathing
dysfunction or apnea when seizures spread to the amygdala, as
well as upon amygdala electrical stimulation (Dlouhy et al., 2015;
Nobis et al., 2018; Nobis et al., 2019). These divergent effects of
amygdalar regulation on respiration (either direct through

stimulation or presumed through anxiety or fear-evoking events)
have been further studied and reported in humans (Inman et al.,
2020; Gomez et al., 2004; Boiten, 1998; Rhone et al., 2020).
Additionally, psychological and clinical reports point toward the
notion of a clear association between amygdala-related behaviors,
such as panic attack, and hyperventilation (Thyer et al., 1984; Nardi
et al., 2009). For example, Thyer and colleagues (1984) documented
that acute hyperventilation can result in experienced levels of
anxiety and tachycardia, suggesting that hyperventilation can lead
to pathologic anxiety (Thyer et al., 1984). Taken together, functional
data not only suggest that respiration is influenced by amygdala
neuronal activity, but respiratory activity may also influence
amygdala-related responses.

Few years later, such functional data in the literature became the
basis for neuroanatomical studies attempting to investigate the
neural connectivity between the amygdala and the key respiratory
nuclei, located in the brainstem. Consistent with this,
comprehensive neuroanatomical tracing experiments have shown
a large number of neuronal projections from the amygdala to key
respiratory control areas in the midbrain, pons and medulla (Yang
et al., 2020; Trevizan-Baú et al., 2021a). As expected, the majority of
the amygdala projections were found to target the midbrain PAG
(Trevizan-Baú et al., 2021a). Similar observation of the amygdala-
PAG neuroanatomical connectivity has been reported by others
(Morrell et al., 1981; Mantyh, 1982; Rizvi et al., 1991). Then, the
midbrain PAG further connects with the key respiratory nuclei in
the ponto-medullary brainstem network (Inman et al., 2020).
Remarkably, the midbrain PAG has been shown to modulate
respiratory motor pattern (Subramanian, 2013; Farmer et al.,
2014; Subramanian et al., 2008; Subramanian and Holstege, 2013;
Hayward et al., 2003), particularly in the context of respiratory-
related activity during defensive behavior (Hayward et al., 2003),
which is also an amygdala-related emotional component. Therefore,
it is possible that the amygdala-PAG connectivity plays crucial roles
in modifying (modulating) the respiratory motor pattern via the
PAG connectivity with the respiratory control areas in the pons and
medulla (Trevizan-Baú et al., 2021b).

However, it is also important to note that amygdala neurons
project to some of the ponto-medullary respiratory nuclei, bypassing
the PAG (Yang et al., 2020; Trevizan-Baú et al., 2021a; Trevizan-Baú
et al., 2024). These amygdalar inputs target some key respiratory
nuclei such as the pontine KF and the medullary pre-BötC, BötC,
and raphé regions. Although the neurochemistry of those
connections is still to be discovered, it has been shown in the
mouse that amygdalar monosynaptic projections to the medulla
target both excitatory and inhibitory pre-BötC neurons (Nobis et al.,
2018). Future studies addressing the neurotransmitter and/or
receptor types of the amygdala connectivity with the respiratory
neurons may shed light onto the neuronal mechanisms by which
amygdala influence breathing. Overall, because respiration engages a
distributed brainstem network (Dhingra et al., 2020; Dhingra et al.,
2019), amygdala functional coupling with respiration might be
explained by amygdalar neuroanatomical connectivity with all the
key respiratory control areas within the brainstem, including in the
midbrain PAG.

It is important to note that the aforementioned neuroanatomical
studies investigated the amygdalar efferent projections to the
brainstem network. As highlighted earlier, though, the amygdala
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also connects with cortical sensory systems, as well as the thalamus
and hypothalamus (Figure 1) (Gouveia et al., 2019; Krohn et al.,
2023), forming a large-scale brain network. Indeed, studies in
humans have shown that breathing can be disrupted through a
large limbic/paralimbic mesial temporal network that includes the
amygdala (Lacuey et al., 2019). In these studies, stimulation of the
hippocampus, amygdala, hippocampal gyrus and antero-mesial
fusiform gyrus caused central apnea.

Consistent with this, experiments in anesthetized mice showed
that ablation of orexin hypothalamic neurons profoundly impacted
amygdala-induced cardiorespiratory responses, supporting that
hypothalamus is also part of the amygdala-respiratory brain
network (Zhang et al., 2009). When provided an auditory
stimulus, rats also exhibit an increase in respiratory rate that was
proportional to the intensity of the auditory stimulus (Bondarenko
et al., 2014). Pharmacologic inhibition of the amygdala blunted the
increase in respiration at the higher intensity auditory stimuli. The
authors speculated that auditory effects on respiration were due to
CeA projections to the dorsomedial hypothalamus (Figure 1)
(Bondarenko et al., 2014). Combined, these findings highlight
that the amygdala is a part of a network that modulates
respiration, and it is the network response that dictates whether
respiration is increased or decreased in response to amygdala
activation or engagement.

The role of the amygdala on airway
protection

The primary and vital role of respiration is gas exchange.
However, the respiratory system consists of fundamental reflex
and non-reflex mechanisms (i.e., airway protective behaviors) to
prevent pathogen and particles from reaching the lungs, which is
essential for optimal gas exchange (for review, see Pitts, 2014) (Pitts,
2014). Airway protection is achieved through the activation of
several potent reflexes mediated primarily by brainstem pathways
(for review, see Bolser et al., 2015) (Bolser et al., 2015). These reflexes
include cough, sneeze, laryngeal adduction and swallow.
Collectively, these airway protective behaviors eject and/or
prevent intrusion of foreign material into the subglottic airways
and, thereby, reduce obstruction and the probability of pulmonary
infection and inflammation. Except for the laryngeal adductor reflex,
a significant amount of information exists regarding the
neurogenesis of these behaviors. However, this body of
knowledge is largely focused on brainstem regulation and circuits
(Moore et al., 2014). The role of amygdala in controlling the
expression of airway protective behaviors is still poorly understood.

Components of swallowing have a role in airway protection.
Laryngeal elevation allows the epiglottis to move over the laryngeal
orifice and protect it from intrusion of ingested food and liquids
(Jean, 2001). Further, strong laryngeal adduction closes the airway
and prevents aspiration of ingested material or saliva during
swallowing (Jean, 2001). Electrical stimulation of the anterior
amygdala and CeA enhanced the frequency of swallowing that
was induced by ipsilateral electrical stimulation of the superior
laryngeal nerve (Weerasuriya et al., 1979; Bieger et al., 1977;
Bieger and Hockman, 1976). Lesioning experiments suggested
that the faciliatory effect on swallowing was mediated via

pathways involving the ansa peduncularis and median forebrain
bundle (Weerasuriya et al., 1979). Microinjections of dopamine into
the region the amygdala also facilitated reflexive swallowing
(Weerasuriya et al., 1979), however the injection volumes were
large (µL range). These results support a modulatory role of the
amygdala in the production of swallowing.

There is no published evidence regarding the role of the
amygdala in the production of the laryngeal adductor reflex
(LAR). The LAR is a brief closure of the vocal folds that is
activated by mechanical or electrical stimulation of laryngeal
sensory afferents (Ludlow, 2005). It has an important role in
preventing aspiration of material that enters the laryngeal
vestibule (Ludlow, 2005). There are descending pathways from
the amygdala to laryngeal adductor motoneurons (Arita et al.,
1995; Simonyan and Jürgens, 2005; Van Daele and Cassell, 2009),
which provide an anatomical substrate for laryngeal adduction.

The amygdala (e.g., CeA) also receives specific afferent input
from tracheal sensory afferents that synapse in the NTS and other
suprapontine brain regions (McGovern et al., 2012a; McGovern
et al., 2012b), suggesting that the amygdala is part of the integrative
brain circuit for sensations arising from the airways. This finding
supports the concept that at least some of this afferent input is likely
related to the production of airway reflexes, such as coughing. For
example, electrical stimulation of the amygdala at low frequencies
(5–10 Hz) will produce intense repetitive behaviors in the
anesthetized cat that resemble coughing which they termed
“spasmotic expiratory responses” (SER). However, based on the
methods that were available the group that reported this finding
(Kito et al., 1977a), it was not clear that these behaviors had all of the
motor components of naturally induced coughing, such as laryngeal
adduction, which is responsible for the compression phase of
this behavior.

The duration of action of intravenous administration of the
cough suppressant drugs, codeine and dextromethorphan, on the
SER was less than on cough induced by electrical stimulation of the
superior laryngeal nerve or mechanical stimulation of the trachea
(Kito et al., 1977a). In other experiments, microinjection of codeine
or dextromethorphan into the NTS had a greater suppressive effect
on mechanically-induced coughs than the SER (Kito et al., 1977b).
These observations suggest that circuits in the amygdala interact
with the brainstem cough circuits in a manner that is less dependent
on antitussive-sensitive elements than for induction of coughing by
lower airway afferents. Coughing induced by mechanical
stimulation of the larynx is less sensitive to antitussives than
cough produced by tracheobronchial afferents (Korpas and
Tomori, 1979). This observation raises the hypothesis that the
SER from the amygdala may actuate brainstem circuits that are
more related to the production of laryngeal than tracheobronchial
coughing. The pathways by which circuits in the amygdala influence
brainstem circuits include the stria terminalis (Kito et al., 1977b).

The amygdala itself mediates input from several areas of the
limbic cortex to induce the SER and coughing. The SER was mainly
depressed by electrical stimulation of cingulate, ectosylvian, and
orbital cortical locations (Kasé et al., 1984). Similar but lower
magnitude effects were observed on cough induced by electrical
stimulation of the superior laryngeal nerve. Facilitation of the SER,
mostly in the form of lowered threshold for activation, occurred in
response to electrical stimulation of the piriform and olfactory
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cortices. There were some differential effects on the SER and
peripherally induced coughing. Electrical stimulation of the
suprasylvian cortex had no effect on the SER but enhanced
peripherally induced cough. While electrical stimulation of the
olfactory and piriform cortices enhanced the SER, those areas
had no effect on peripherally-induced cough (Kasé et al., 1984).

Therefore, it is evident that the amygdala plays pivotal roles in
modulating cough. However, it is also obvious that cough is
coordinated by a large-scale brain network that is formed by
neuroanatomical and functional connections between the
amygdala and other brain regions such as the cortex,
hypothalamus and the brainstem. As aforementioned, it is known
that the amygdala projects (via monosynaptic inputs) to the
respiratory control areas in the brainstem (Yang et al., 2020;
Trevizan-Baú et al., 2021a). For instance, the pontine KF nucleus,
which receives strong anatomical inputs from the amygdala, plays
pivotal role in laryngeal adduction during orofacial behaviors,
including swallowing (Bautista and Dutschmann, 2014;
Dutschmann et al., 2014), and, thus, protecting the lower airways
(Medda et al., 2003). Nevertheless, future studies need to address the
functional role of amygdala-related neuroanatomical pathways on
laryngeal adduction during airway protective behaviors.

The role of the amygdala on airway
smooth muscle and mucus production

Airway smooth muscle contraction and mucus secretion are key
airway protective behaviors that facilitate airway patency by keeping
foreign bodies and particles out of the lungs. Our understanding of
the role of the amygdala in modulating these two vital defenses is
limited. Some evidence suggests that amygdala activity in an
experimental rodent model is associated with the regulation of
airway smooth muscle constriction (bronchoconstriction) (Chen
et al., 2020). In that study, lesions of the central amygdala decreased
airway resistance, a proxy of smooth muscle relaxation directly
related to the caliber, in healthy rats (Chen et al., 2020). Human
adults with asthma show marked increases in airway resistance in
response to fear (Smith et al., 1970). Similar findings have been
reported in children with asthma when recalling fear, such that
forced expiratory volume decreases during fear recall (Tal and
Miklich, 1976), suggested increased airway resistance. Though the
studies in humans are indirect evidence of amygdalar control of
airway smooth muscle, a pathway where by the amygdala can
modulate preganglionic motor neurons of the vagus nerve, has
been reported in rodents, in the context of gut-related neurons in
the dorsal vagal complex (Zhang et al., 2003). Because it is well
known that dysregulation of parasympathetic nerves increases
smooth muscle tone (i.e., bronchoconstriction) (Undem and
Kollarik, 2005), future functional studies would be essential to
test the hypothesis that the vagus nerve may also modulate the
airway smooth muscle tone.

Given that the amygdala is a key regulator of the autonomic
nervous system, it is possible that it also modulates airway mucus
secretion from the glands throughout the airway tree. Though there
are no direct studies that have investigated the role of the amygdala
in mucus secretion throughout the airway, it is well documented that
dysregulation of parasympathetic nerves contributes to excessive

mucus production (Undem and Kollarik, 2005). Additionally,
airway-innervating sympathetic neurons innervate blood vessels
and submucosal glands of the bronchi (Oh et al., 2006) and one
of the main triggers of sympathetic neural activity is the amygdala.
Thus, future studies focused on amygdalar control of airway mucus
secretion are warranted.

Amygdala dysfunction in airway disease
and respiratory dysfunction

Anxiety is a feeling of worry, fear, or unease that produces both
physical and emotional symptoms. Anxiety is common among
multiple airway diseases and associated with worsened airway
pathology. For example, anxiety is reported in 7%–50% of people
with chronic obstructive pulmonary disease (COPD) (Pumar et al.,
2014) and increases hospitalizations and mortality (Divo et al., 2012;
Tsiligianni et al., 2011). Anxiety often appears together with dyspnea
in patients with COPD (Strang et al., 2014) and has been reported as
a marker of acute exacerbation (Costi et al., 2006).

Similarly, it has been reported that anxiety and depression affect
more than 35% of people with cystic fibrosis (CF) in the
United States (Baiardini et al., 2015a). Globally, anxiety
prevalence in people with CF is estimated to be 25% (Guta et al.,
2021). On average these rates are approximately double what is
observed in the general population (Lord et al., 2023). Anxiety and
depression in people with CF are linked to poorer medical outcomes
(Snell et al., 2014). For example, anxiety was associated with severity
of chest symptoms in people with CF, whereas depression was
associated with low lung function (Yohannes et al., 2012).
Another study found that people with CF and anxiety reported
more respiratory symptoms, such as difficulty in breathing
(Havermans et al., 2008).

Anxiety is found in 25%–40% of asthma patients (McDonald
et al., 2019; Sweeney et al., 2016), can precipitate asthma attacks
(Urrutia et al., 2012), and is associated with greater frequency of
exacerbations, poorer asthma control, and increased use of
healthcare resources (Sastre et al., 2018). Chronic psychiatric
illness, including anxiety, is a known risk factor for death from
asthma (Fuhlbrigge et al., 2012; Sturdy et al., 2002). Similarly,
individuals with severe asthma have a greater incidence of
anxiety and depression compared to those with mild to moderate
asthma (Baiardini et al., 2015b). Finally, some studies suggest that
anxiety is a prodromal sign of an asthma exacerbation (Beer et al.,
1987). The brain-lung mechanisms responsible for increased anxiety
in lung disease are unknown; however, enhanced amygdala activity
is one of the most consistent findings among people with anxiety
and anxiety traits (Stein et al., 2007; Greenberg et al., 2017).

How anxiety worsens airway pathology is not entirely
understood, though several clinical studies have shown that stress
is associated with enhanced airway inflammation in asthmatic
individuals (Wenzel, 2012; Trueba and Ritz, 2013; Rosenkranz
et al., 2016; Rosenkranz et al., 2012; Marin et al., 2009; Loerbroks
et al., 2014). Consistent with this, high levels of chronic stress elevate
risk of asthma exacerbation up to 3 fold (Sandberg et al., 2000).
Individuals with COPD and having high stress also exhibit greater
systemic inflammation at baseline compared to those without high
levels of stress (Gueli et al., 2011). It is well known that stress
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modifies amygdala activity (Reznikov et al., 2008; Reznikov et al.,
2007). Thus, these studies serve as additional support that amygdala
dysfunction may contribute to airway dysfunction. Alternatively,
inflamed airways may also influence higher brain regions via
‘bottom-up’ pathways (from the lungs to the brain).
Experimentally, this is supported by studies showing that allergic
inflammation in the airways may trigger anxiety-like behavior by
inducing structural and functional alteration in the brain, including
the amygdala (Dehdar et al., 2019; Gholami-Mahtaj et al., 2022).

Another growing area of interest is the role of the amygdala in
seizure-induced inhibition of respiration (Rhone et al., 2020). Some
people with epilepsy experience sudden unexpected death in
epilepsy (SUDEP) and cessation of respiration and/or
hypoventilation are thought to contribute to SUDEP (Ryvlin
et al., 2013; Bateman et al., 2010). In pediatric patients with
seizures, apnea coincided with seizure spread to the amygdala
(Rhone et al., 2020). The authors of this study further examined
the role of the amygdala through direct stimulation and observed
apnea in all patients when the amygdala was electrically stimulated.
Electrical stimulation of adjacent brain regions or those that are not
part of the amygdala network failed to elicit apnea. This selectivity of
the amygdala contrasted with work performed by another group,
who demonstrated that limbic/paralimbic network was responsible
for central apnea (Lacuey et al., 2019). These divergent findings
further emphasize the need to understand how and under what
conditions the amygdala at the local and network scale regulate
respiration.

Some clinical reports showed that breathing and associated
autonomic functions (e.g., arousal) are impacted by amygdala
destruction (amygdalotomy). This surgical procedure has been
used over the last decades attempting to reduce severe
(intractable) aggressive behavioral disorders in some patients.
Clinically, it has been observed that amygdalotomy leads to a
decline in the level of autonomic arousal (Lee et al., 1998).
However, it is unknown whether this is a consequence of the
diminished aggressive behavior (i.e., indirect effect on breathing)
or a direct effect of the neuroanatomical destruction on the neural
control of breathing and autonomic function. It is important to note
though that clinical reports of patients that underwent
amygdalotomy are not consistent when comparing different
clinical cases.

Unresolved questions and topics for
future investigation

The role of the amygdala in respiration appears to be more
developed compared to our understanding of the amygdala in
airway defensive behaviors. Therefore, research efforts focused on
the amygdala in airway defense under healthy and diseases
conditions could close this gap. There is no published
information on the role of the amygdala in the production of the
laryngeal adductor reflex, a behavior that minimizes intrusion of
material into the upper trachea. However, the amygdalar pathways
do project to laryngeal motoneurons (Arita et al., 1995; Simonyan
and Jürgens, 2005; Van Daele and Cassell, 2009). Additionally, it is
not clear whether there are amygdala subdivision-dependent effects

on cough or airway smooth muscle contraction or mucus secretion
like that observed in breathing.

Some of our insights into the relationship between the amygdala
and respiration and defensive behaviors originate from studies
associating respiratory (and airway) responses with amygdala-
related behaviors and amygdala-neural activities. It is essential to
note, however, that with recent technological advances, future
experimental studies could take the advantage of using both
optogenetic and pharmacological strategies to understand the
exact role that amygdalar neural circuits play on respiratory
dynamics and airway function. However, to do so, it would be
crucial to uncover the neuronal identity of the amygdalar pathways.
Hence, another promising area of research would be performing
single-neuron RNA sequencing, which is a state-of-the-art
technology employed to unravel the RNA transcripts that are
expressed specifically by individual neurons. Uncovering the
neuronal identities would be a start point aiming to develop
optogenetic and pharmacological approaches to elucidate the
function of the amygdalar neural pathways in the context of
behavioral-respiratory dynamics and airway function.

Moreover, the amygdala is known to play an important role in
pain perception and serves as a target for opioids (Kissiwaa et al.,
2020; Zhou et al., 2021). Opioid withdrawal also disrupts
amygdala circuits (Gregoriou et al., 2023). However, given the
potential for the amygdala to modify respiration, and the well-
known deleterious effect opioids have on breathing, the potential
for opioids to modify respiration through actions on the
amygdala is unknown. Could the amygdala contribute to
opioid-induced respiratory depression? If so, can modifying
the amygdala activity be used to prevent or mitigate opioid-
induced respiratory depression?

Lastly, the higher prevalence of anxiety in several airway diseases
suggests that there may be a vast number of unrealized therapeutics
available to improve airway health. Though the largest class of
anxiolytics, the benzodiazepines, are generally not recommended in
airway diseases like COPD, CF, or asthma, there are several other
drug classes that may prove beneficial. Therefore, pharmacologic
studies focused on the amygdala-lung axis in health and disease
(both experimentally and clinically) are of high value.

Conclusion

Respiration and airway defense are essential to life. The
brainstem regions responsible for respiration and the key
brainstem autonomic centers necessary for airway defense have
been studied extensively for decades. However, given the
observation that emotions such as fear and anxiety influence
respiration and autonomic responses, regions upstream of the
brainstem, such as the amygdala, have been of an area of focus
for several decades as well. Surprisingly though, our understanding
of the role of the amygdala in respiration and airway defense is still
evolving. Given the number of pharmacologic agents and
therapeutics that modulate amygdala activity/function, expanding
our knowledge of the amygdala in airway physiology and respiration
may reveal new airway therapeutics or shed light onto novel means
to improve airway function.
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