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The hypoxic chemoreflex and the arterial baroreflex are implicated in the
ventilatory response to exercise. It is well known that long-term exercise
training increases parasympathetic and decreases sympathetic tone, both
processes influenced by the arterial baroreflex and hypoxic chemoreflex
function. Hypobaric hypoxia (i.e., high altitude [HA]) markedly reduces exercise
capacity associated with autonomic reflexes. Indeed, a reduced exercise capacity
has been found, paralleled by a baroreflex-related parasympathetic withdrawal
and a pronounced chemoreflex potentiation. Additionally, it is well known that
the baroreflex and chemoreflex interact, and during activation by hypoxia, the
chemoreflex is predominant over the baroreflex. Thus, the baroreflex function
impairment may likely facilitate the exercise deterioration through the reduction
of parasympathetic tone following acute HA exposure, secondary to the
chemoreflex activation. Therefore, the main goal of this review is to describe
the main physiological mechanisms controlling baro- and chemoreflex function
and their role in exercise capacity during HA exposure.
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Introduction

High altitude (HA), characterized by reduced barometric and ambient O2 pressure, is
challenging for human physiology (Huey, 2002; Windsor and Rodway, 2007; Mallet et al.,
2021). Therefore, determining short- and long-term physiological adaptations to HA is
fundamental. Chronic adaptations to HA involve maintaining oxygen (O2) supply to several
tissues (Beall, 2007; Subudhi et al., 2014; Murray et al., 2018; Mallet et al., 2023). Altitude-
born residents show physiological adaptations to cope with the hypoxia, such as a rise in
minute ventilation at rest, high total lung capacity, lung diffusion, and better exercise
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performance than low-lander non-native residents (Greksa et al.,
1988; Beall, 2007; Huerta-Sanchez et al., 2014; Simonson et al.,
2015); however, not all high-altitude residents (i.e., Tibetans and
Andeans) display the same adaptations (Beall, 2000; Beall, 2006;
Bigham et al., 2013). Indeed, under similar hypobaric-hypoxic stress,
Tibetans showed a one-half standard deviation higher resting
ventilation and O2 saturation compared to Andeans; however,
Andeans depict a higher hemoglobin concentration than Tibetans
(Beall, 2006). Interestingly, Tibetans enhanced the hypoxic
ventilatory response compared to the Andean population
(Beall, 2000).

For non-residents, short-term acclimatization to HA includes an
increment in arterial blood pressure, heart rate, metabolic demand,
basal ventilation, autonomic alterations characterized by
sympathoexcitation and parasympathetic withdrawal, and
decreased exercise performance (Bartsch and Saltin, 2008; Naeije,
2010; Mallet et al., 2021). Recently, we found that the
parasympathetic arm of the baroreflex (BR) pathway, measured
through the phenylephrine-dependent increase of heart rate (HR),
was reduced following acute exposure to HA (Beltran et al., 2020). In
addition, a hypoxic-dependent potentiation of the chemoreflex was
found, which modulates ventilation and autonomic functions in
normoxia and during a hypoxic insult (Mahamed and Duffin, 2001).
Therefore, it is likely that BR and chemoreflex pathways may
interact at the central nervous system level (Somers et al., 1991;
Katayama et al., 2019) during HA exposure. This idea is supported
by the fact that peripheral carotid body (CB) denervation increases
hypoxic-dependent BR range decrement in rats subjected to chronic
intermittent hypoxia (Del Rio et al., 2015; Del Rio et al., 2016). In
addition, (Kronsbein et al., 2020) also found that the buffering BR
activity decreased during chemoreflex activation in normal human
subjects (Kronsbein et al., 2020). Therefore, it is reasonable that the
decreased BR-dependent parasympathetic activity found during
acute exposure to HA (Beltran et al., 2020) results from a
chemoreflex activation that may affect exercise performance
during HA. (Machhada et al., 2017) found that optogenetic
activation of the parasympathetic tone improved exercise
capacity, producing a mimic of exercise training (Machhada
et al., 2017). Additionally, they found that a decreased vagal
control elicited using chemogenetics impairs exercise
performance in rats (Machhada et al., 2017). It is also well-
established that exposure to hypoxia alters sympathetic activation
at rest (Perini et al., 1996; Sevre et al., 2001), which is related to
decreased endurance performance (Schmitt et al., 2008). Hypoxia
also alters the post-exercise parasympathetic reactivation, impairing
recovery (Al Haddad et al., 2012; Fornasiero et al., 2018).

Exposure to HA negatively impacts alveolar pO2 and,
consequently, arterial pO2, which has been linked to a marked
decrease in exercise capacity (Naeije, 2010). The reduction in
maximal O2 uptake (VO2max) is estimated at 6%–7% per
1,000 m increasing altitude (range 4.6%–7.5%) (Wehrlin and
Hallen, 2006). However, an altered chemoreflex and BR function
may contribute to decreased exercise performance, independent of
environmental conditions (Pijacka et al., 2018; Eugenin et al., 2020).
Therefore, considering the dependence of exercise performance on
vagal activity (Machhada et al., 2017), HA-related chemoreflex
activation (Iturriaga and Alcayaga, 2004), and decreased BR-
dependent parasympathetic drive (Beltran et al., 2020), it is

plausible to propose that the interaction between the chemoreflex
and the BR may modulate the cardiorespiratory fitness through
parasympathetic control, secondary to the decrease oxygen pressure
due to HA. Thus, in the present review, we will analyze and discuss
the role played by the chemoreflex and baroreflex and their effects
on physical capacity during HA exposure.

Baroreceptors and the arterial
baroreflex control

The BR is a homeostatic mechanism that maintains the cardiac
output at normal levels through negative feedback in the brainstem,
modulating heart rate and arterial blood pressure by controlling
sympathetic and parasympathetic activities (Thrasher, 2002). Thus,
an increment in arterial blood pressure produces stimulation of the
baroreceptors located in the aortic arch and carotid bifurcation,
increasing parasympathetic cardiac response and attenuating
sympathetic outflow to the heart and peripheral vessels,
triggering a decrease in HR, cardiac contractility, and peripheral
resistance. Conversely, decreased arterial blood pressure reduces the
neural discharges of the baroreceptors, leading to increased
sympathetic drive, vasoconstriction, and hypertension, producing
a positive chronotropic response and increased cardiac contractility.
Mechanistically, the BR is initiated in the baroreceptors, which are
mechanically sensitive nerve endings and found in the aortic arch
and the carotid bifurcation (Persson et al., 1988). The aortic
baroreceptor afferent nerve fibers are conveyed in the aortic
depressor nerve, with their soma located in the nodose
ganglion (NG).

On the other hand, the carotid baroreceptors are found in the
carotid sinus, with the soma lying in the petrosal ganglion (PG)
(Fadel et al., 2003; Kougias et al., 2010; Lau et al., 2016). The arterial
pressure stretches the carotid sinus of the aortic arch, inducing a rise
of cytosolic Ca2+. Nevertheless, the cytosolic Ca2+ was higher in
aortic baroreceptor neurons than in carotid baroreceptor neurons,
suggesting aortic baroreceptors are more sensitive to arterial blood
pressure changes than carotid baroreceptors (Lau et al., 2016).
Indeed, it has been shown that, through baroreceptor nerve
activity in vivo, aortic depressor nerve discharge was increased
compared to the carotid sinus nerve activity (afferent activity), a
similar change in blood pressure in rats (Lau et al., 2016).

Baroreflex-dependent sympathetic and
parasympathetic intracellular mechanisms of heart
rate control

Cardiac sympathetic mechanism. The baroreflex-dependent
sympathetic activation (HR increment) is mediated by
norepinephrine (NE) releases, which bind to the β-adrenergic
receptors activating Na+ channels (Kaupp and Seifert, 2001;
Lakatta and DiFrancesco, 2009). In addition, the β-adrenergic
receptor controls intracellular Ca2+ control (Fadel et al., 2003)
through cyclic adenosine 3′,5′-monophosphate (cAMP)/cAMP-
dependent protein kinase (PKA) signaling (Gray et al., 1998).
PKA phosphorylation is mediated by the A-kinase-anchoring
protein (AKAP-15/18), which interacts with the intracellular
domain of the channel and brings the PKA to its binding site
(Sampson and Kass, 2010). A similar process occurs in the
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sarcoplasmic reticulum, where AKAP-6 interacts with the ryanodine
channels and recruits the PKA site, increasing the release of
intracellular [Ca2+], which contributes to increased HR and
contractility rate (Lakatta and DiFrancesco, 2009). For instance,
in the NE-mediated chronotropic response, there must be a fast
removal of [Ca2+]i, which is performed by mitigating the inhibition
of the Ca2+ATPasa pump by phosphorylation of the phospholamban
protein (Marx et al., 2002).

Cardiac parasympathetic mechanism. The HR reduction is
mediated by muscarinic receptors (M2), acetylcholine-dependent
receptors (Kaupp and Seifert, 2001; Thrasher, 2002). Muscarinic
receptors are expressed in the sinoatrial, atrioventricular, and
cardiomyocyte T-tubules system (Kaupp and Seifert, 2001). The
activation of the M2 receptor is mediated by a G protein-coupled
receptor, which rectifies K+ conductance and decreases cAMP,
reducing PKA activation (Swynghedauw, 1999). All these
produce a longer duration of atrial action potentials and
consequently decrease the HR and contractility rate of the heart
(Olshansky et al., 2008). In addition, M2 receptors activate nitric
oxide synthase (NOS) via guanylate cyclase, inhibiting L-type Ca2+

channels (Olshansky et al., 2008) and slowing the entry of Ca2+ into
the intracellular medium, which contributes to decreasing the
contractility rate of the heart (Swynghedauw, 1999; Olshansky
et al., 2008).

Previously, we found a baroreflex-mediated parasympathetic
withdrawal during HA exposure. Indeed, we observed a diminished
bradycardic response to phenylephrine and a decreased power
spectral density at a high-frequency component (parasympathetic
drive) of the time-varying heart rate variability, evidencing a marked
decrease in vagal outflow (Beltran et al., 2020). The autonomic
control of physical performance is of such relevance that decreased
parasympathetic drive triggers performance impairment, while
increased parasympathetic control promotes a mimicry of
exercise training, improving physical performance in rats
(Machhada et al., 2017).

Carotid body chemoreceptor and
chemoreflex function

The carotid body (CB) is the main peripheral oxygen
chemoreceptor, composed of chemoreceptors (glomus or type I
cells) and sustentacular clusters type II cells (Iturriaga and Alcayaga,
2004; Prabhakar, 2006; Iturriaga et al., 2021b). The CB type I cells
respond to a wide variety of stimuli, such as changes in arterial levels
of pO2, carbon dioxide pressure (pCO2), pH, blood flow, glucose,
temperature, osmolarity, and insulin; therefore, they are considered
polymodal receptors (Gonzalez et al., 1994; Ding et al., 2011;
Iturriaga et al., 2021b). In response to low pO2 and high pCO2-
H+, type I cells are activated by inhibiting O2-sensitive K

+ channels.
Further, the hypoxia-dependent production of gasotransmitters
(NO, CO, H2S) also regulates ion channel activity in the CB
(Iturriaga et al., 2021a). The intracellular pathways related to the
neurotransmitter release are AMP-activated protein kinases and
PKC, as well as reactive oxygen species in the CB type I cells,
promoting the release of neurotransmitters such as acetylcholine
(Ach) and adenosine triphosphate (ATP) that interact with
receptors in the nerve terminal of petrosal sensory neurons that

project through the carotid sinus nerve to the nucleus tractus
solitarii (NTS) (Iturriaga and Alcayaga, 2004). In addition, the
type I cells also release several molecules, which serve as
excitatory or inhibitory modulators of CB chemosensory
transduction (i.e., NO, histamine, and Ang II) (Iturriaga and
Alcayaga, 2004; Del Rio et al., 2008).

Briefly, a reduction in pO2 in the arterial blood is detected by
primary O2 sensors, type I carotid body cells, which rapidly
communicate with potassium (K+) channels, leading to the
closure of these channels. In turn, via membrane depolarization
and increases in intracellular [Ca2+] concentration, the release of
neurotransmitters (i.e., Ach and ATP) leads to excitation of the
afferent nerve that runs in the carotid nerve sinus up to the
respiratory centers in the brain stem (Teppema and Dahan, 2010).

Additionally, it has been evidenced that the CBs are related to
exercise capacity in physiological and pathophysiological conditions
(Honda et al., 1979; Honda, 1985; Andrade et al., 2021a). CB
denervation or resection and exposure to 100% O2 (resulting in
decreased CB activity) reduce ventilatory responses in exercise and
markedly diminish exercise capacity in humans and animals.
Indeed, hyperoxic gas applied during ventilatory threshold 2
(VT2) decreases pulmonary ventilation in humans, suggesting
that the CB contributes at least in part to increasing ventilation
at VT2 during incremental exercise (Masuda et al., 1988). Further,
Honda et al. (1979) showed that CB resection in asthma patients
decreases the respiratory response to exercise compared to patients
with intact CBs (Honda et al., 1979). Along with this, we showed that
CB resection promotes a phenotype shift from heart failure tolerant
to physical exercise animals to intolerants (Andrade et al., 2021b).
All this evidence strongly suggests the pivotal role of CB peripheral
chemoreceptors in ventilatory response to physical exercise as well
as training-dependent adaptations.

Figure 1 depicts the neural control of chemoreflex function. During
hypobaric hypoxic environments, chemoreceptor activation promotes
ventilatory acclimatization and sympathoexcitation (Vizek et al., 1987;
Schultz and Sun, 2000). The first central integration of sensory
information from peripheral chemoreceptor and baroreceptor inputs
occurs in the commissural and medial divisions of the nucleus of the
solitary tract (cNTS and mNTS, respectively) (Claps and Torrealba,
1988; Finley and Katz, 1992). The cNTS and mNTS neurons integrate
and project to other autonomic and respiratory regions (i.e., rostral
ventrolateral medulla [RVLM], caudal ventrolateral medulla [CVLM],
and the central pattern generator [CPG]) (Ponikowski et al., 2001; Rosin
et al., 2006; Smith et al., 2010; Diaz et al., 2020). King et al. (2012)
showed that acute-hypoxic stimulus increments the activation of cNTS
catecholaminergic neurons (King et al., 2012). In addition, it has been
found that sustained hypoxia, similar to HA exposure, enhances NTS
glutamatergic synaptic transmission after 1 day and augments
glutamate (Glu) receptor expression after 7 days (Zhang et al., 2009;
Pamenter et al., 2014; Accorsi-Mendonça et al., 2015; Accorsi-
Mendonça et al., 2019). Other regions sensitive to hypoxia are
RVLM and CVLM (King et al., 2013; Boychuk et al., 2012;
D’Agostino et al., 2001); nevertheless, it has been demonstrated that
the activation of RVLM is CB-dependent and not a direct hypoxic effect
(Del Rio et al., 2013). Interestingly, we found BR-dependent autonomic
control impairment during HA exposure (3,290 m) (Beltran et al.,
2020); however, whether it depends on the chemoreflex activation with
their respective neural autonomic nuclei activation has not been
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demonstrated. Additionally, although considering that autonomic
control and chemoreceptors are critically essential to maintaining
cardiorespiratory fitness during exercise, there is no comprehensive
evidence depicting whether, during HA or normobaric hypoxia, the
exercise capacity impairment is related to BR-dependent
parasympathetic withdrawal, secondary to a chemoreflex enhancement.

Effects of hypoxia on the baroreflex (BR)

The cardiovagal baroreflex is challenged in numerous conditions,
such as during altitude exposure (Bourdillon et al., 2018a; Hermand
et al., 2021; Bourdillon et al., 2023). However, understanding the
underlying mechanisms of the effect of HA on BR remains limited
(Olshansky et al., 2008; Beltran et al., 2020). Interestingly, chronic
intermittent hypoxia (Swynghedauw, 1999; Freet et al., 2013), high
altitude (Bourdillon et al., 2017a; Bourdillon et al., 2018a; Beltran et al.,
2020; Bourdillon et al., 2023), and suffocation (Gu et al., 2007) promote
similar physiological responses characterized by modified autonomic
control assessed through heart rate variability (HRV)
(sympathoexcitation and parasympathetic withdrawal) and,
moreover, a marked decrease of BR assessed through sequence
methods. Therefore, it is possible to suggest that the evidence at
high altitude and chronic intermittent hypoxia could be, in part,
comparable. Indeed, of interest is that the influence of barometric
pressure seems negligible since no differences in the decreased
baroreflex sensitivity were found between normobaric hypoxia and

hypobaric hypoxia (Bourdillon et al., 2017b). It has been shown that
after 30 days of chronic intermittent hypoxia exposure, which promotes
hypertension (from the second day of hypoxia), there is a decrease in BR
function and an increase in sympathetic outflow in conscious rats (Lai
et al., 2006; Zoccal et al., 2009; Freet et al., 2013; Del Rio et al., 2016).
However, the evidence is controversial, and no changes in BR-
dependent splanchnic nerve activity after chronic intermittent
hypoxia have been found (Prabhakar et al., 2012). Similarly, rats
exposed to 7 days of intermittent hypoxia do not show any effects
on BR function (Faulhaber et al., 2012). Moreover, the controversy is
such that Zoccal et al. (2009), using heart-brain stem preparation,
reported increased BR function in juvenile rats subjected to chronic
intermittent hypoxia (Zoccal et al., 2009). Independent of the
controversy, it has been proposed that hypoxic-dependent BR
depression could be due to a reduction in the carotid baroreceptor
activity rather than a direct effect on brainstem autonomic nuclei
(Lesske et al., 1997). Nevertheless, rats exposed to chronic
intermittent hypoxia improved BR sensitivity after CB denervation,
even though the animals were still hypoxic, suggesting that the
chemoreflex could be hierarchically superior to the BR (Del Rio
et al., 2016).

Effect of hypoxia on hypoxic chemoreflex

During HA exposure, the human body responds at several levels,
from cellular to whole-body, encompassing early and late responses.

FIGURE 1
Central command is associated with the activation of baroreceptors and chemoreceptors. The first central integration of sensory information from
peripheral chemoreceptor and baroreceptor inputs occurs in the commissural and medial divisions of the nucleus of the solitary tract (NTS). The NTS
neurons integrate and project to other cardiac autonomic and respiratory regions (i.e., rostral ventrolateral medulla [RVLM], caudal ventrolateral medulla
[CVLM], and the paraventricular nucleus (PVN). Baroreceptor stimulation promotes increased synaptic activity from NTS to CVLM, which projects a
gamma-aminobutyric acid (GABA)-mediated activity to RVLM, reducing sympathetic drive. Chemoreceptor activation increases synaptic transmission
from NTS-RVLM-IML, raising sympathetic drive. Besides, NTS-mediated chemoreceptor activation increases their activity to PVN and subsequently to
RVLM and IML, promoting sympathetic activation. Created with BioRender.com.
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Early responses to HA involve ventilatory and circulatory
adjustments, increased basal ventilation, autonomic imbalance
marked by elevated release of epinephrine and norepinephrine,
changes in acid-base balance, decreased glomerular filtration rate,
and impaired pO2 and pCO2 exchange, and as a consequence a
reduced exercise performance (Beall, 2007; Naeije, 2010; Farias et al.,
2013; Huerta-Sanchez et al., 2014; Simonson et al., 2015;Mallet et al.,
2021; Mallet et al., 2023). Late responses are characterized by gene
overexpression, including hypoxic inducible factor [HIF]1α, HIF2α,
vascular endothelial growth factor [VEGF], and VEGF receptor.
Additionally, there is an increase in erythropoietin and hemoglobin,
which are concomitant with an increase in hematocrit, leading to
elevated blood viscosity. Other late responses include the activation
of the renin–angiotensin–aldosterone system and alterations in
intra- and extra-vascular fluid distribution (Beall, 2007; Naeije,
2010; Farias et al., 2013; Huerta-Sanchez et al., 2014; Simonson
et al., 2015). Interestingly, most early responses are CB-mediated
(Iturriaga et al., 2021b; Arce-Álvarez et al., 2022) (Figure 2).
Regarding CB-mediated hypoxic ventilatory response, this
exhibits several phases: i) initial short-term hyperpnea (Eldridge,
1974; Badr et al., 1992); ii) with continued hypoxic stimulus, there is
time-dependent hyperventilation and sympathoexcitation that may
persist for several hours or days (Wang et al., 2008); iii) if
hyperventilation and increased sympathetic drive persist, it is
possible to observe the decline of ventilation and not
sympathoexcitation after several days of hypoxia (Hansen and
Sander, 2003; Dempsey et al., 2014). Although peripheral
chemoreceptor stimulation affects several organs in the body,
most changes over the first hours of permanence in hypoxia
occur at the level of the respiratory and cardiovascular systems
(Bartsch and Gibbs, 2007). Notably, hypoxic-dependent local

vasodilation is inhibited by CB (sympathetic)-mediated
vasoconstriction in more metabolically activated organs
(i.e., skeletal muscles during exercise) (Kumar and Bin-Jaliah,
2007). Vascular hyperactivity promotes two main effects:
increment of arterial blood pressure and redistribution of blood
flow, both relevant phenomena to physical fitness (Heistad and
Abboud, 1980; Kumar and Bin-Jaliah, 2007; Dempsey and Smith,
2014). Accordingly, as was mentioned, chemoreflex activation
promotes several physiological changes, which have been
associated with homeostatic functions to meet metabolic demand.
Then, considering that physical exercise triggers a greater metabolic
requirement, it is possible to propose that CB may partially elicit
cardiorespiratory and vascular responses by altering the BR function
during HA exposure (Figure 2).

Reciprocal effect of physical exercise
and baroreflex

The BR regulates hemodynamics during exercise (Fukuma et al.,
2012; Dipla et al., 2013), which is dependent on age (Grassi et al.,
2004; Fukuma et al., 2012), sex (Fukuma et al., 2012), and body fat
distribution (Laterza et al., 2007). Further, decreased BR sensitivity
has been associated with increased cardiovascular risk, cardiac
electrical instability, and orthostatic intolerance (Fukuma et al.,
2012). Otherwise, a normal BR function would ensure an
appropriate cardiovascular response during exercise, regulating
cardiac output (Fukuma et al., 2012). Conversely, an
inappropriate high dose of exercise was associated with decreased
baroreflex sensitivity, which may be used to diagnose overtraining
(Bourdillon et al., 2018b). In physiological conditions, exercise

FIGURE 2
Effects promoted by chemoreflex and baroreflex activation. During high-altitude exposure, peripheral chemoreceptors are activated due to a
PO2 reduction. Contrarily, during this environmental insult, the parasympathetic-dependent baroreflex control is reduced due to an overall autonomic
control impairment. Notably, there is no evidence of the effect of high-altitude exposure on baroreflex-dependent central command and baroreceptors
or the possible interaction between baroreflex and chemoreflex function. Created with BioRender.com.
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training, similar to hypoxia, can promote resetting the BR function
(Halliwill et al., 2003), shifting the BR to operate at higher blood
pressure. In contrast, exercise training can induce robust effects on
BR control in pathophysiological states, increasing the range, slope,
and gain. However, only 25% of hypertensive subjects under chronic
aerobic training could stabilize blood pressure, which could be
associated with chronic morphological changes and not
necessarily BR sensitivity (Liu et al., 2012). Indeed, it has been
shown that exercise training can reduce sympathetic activity and
increase BR-dependent parasympathetic function, determined
through the sequence method, in an animal model of heart
failure (Liu et al., 2000; Andrade et al., 2017). In addition,
improvement in BR gain after an aerobic training program has
been reported in pre-hypertensive and hypertensive subjects
(Bertagnolli et al., 2008; Fisher et al., 2012; Liu et al., 2012). The
effects of exercise training on BR are limited to cardiovascular
diseases, with no demonstrated impact on metabolic disorders,
such as diabetes mellitus. Indeed, Dipla et al. (2013) showed no
significant association between changes in BR sensitivity in patients
suffering from diabetes mellitus after applying a training program
(Dipla et al., 2013). The evidence is controversial, and no effect of
exercise training on BR has been found. Indeed, carotid BR
sensitivity has remained unchanged after an aerobic training
program compared with control subjects (Goldberg et al., 2012).
Despite the controversy, the prevailing evidence indicates that
exercise training significantly improves BR gain and triggers a
resetting of the BR control. Nevertheless, it remains unclear
whether the deterioration of cardiac BR gain during HA (Beltran
et al., 2020) can be improved or remains unchanged compared to sea
level following an exercise training intervention. Accordingly,
further research is needed to address whether exercise training
could be a feasible strategy to counteract the reduction of HA-
induced BR gain.

Reciprocal relationship between exercise
and hypoxic chemoreflex

CB is essential to maintain eupneic ventilation (Olson et al., 1988).
However, although the evidence suggests that CB could be pivotal in
cardiorespiratory response to exercise, apparently, the exercise did not
modify CB chemoreflex, except in pathophysiological conditions
(Andrade et al., 2018a; Wan et al., 2023). Thus, when CB-dependent
hyperreflexia in autonomic-related diseases (i.e., heart failure,
hypertension, etc.) is observed, exercise training reduces CB-
dependent sympathetic overdrive and hypoxic ventilatory response
(Schultz and Sun, 2000; Schultz et al., 2015). One of the first
observations showing the relevance of CB chemoreceptors during
exercise was made by Weil et al. (1972). They found that the
hypoxic breathing response increased during moderate exercise
compared to a resting condition, suggesting a potential association
with the cardiorespiratory response to physical effort (Weil et al., 1972).
Interestingly, peripheral chemoreceptor activation, similar to physical
exercise, induces sympathoexcitation, promoting vasoconstriction at
several levels, such as skeletalmuscles and renal andmesenteric vascular
beds (Seals et al., 1991; Gonzalez et al., 1994; Buckwalter and Clifford,
1999). Although vasoconstriction itself may limit blood flow to the
muscle during exercise (Joyner et al., 1992), it has been proposed that

exercise-dependent sympathoexcitation helps to distribute the blood
flow to the active muscles according to their metabolic demand
(Buckwalter and Clifford, 1999; Stickland et al., 2007). Even though
sympathoexcitation during exercise is well-established, no conclusive
evidence defines the principal sensor during exercise. It has been
proposed that metaboreflex, exercise pressor reflex (constitute of
metabo- and mechano-reflex), baroreflex, and chemoreflex are
involved in cardiopulmonary response to exercise (Wan et al., 2023).
Indeed, dopamine-dependent inhibition of chemoreflex decreases α-
adrenoreceptor-mediated vasoconstriction, which augments blood flow
to human active muscles (Stickland et al., 2011). Another mechanism
that could increase ventilation during exercise is the increase in
temperature. Nevertheless, CB is not essential in hyperventilation
associated with exercise-induced hyperthermia (Daniłowicz-
Szymanowicz et al., 2010; Fujii et al., 2019). Fujii et al. (2019)
showed that the decrease in temperature and exposure to 100% O2

does not differentiate the ventilatory response to an incremental
exercise, suggesting that peripheral chemoreceptors are irrelevant to
exercise-induced hyperthermia in humans. The evidence indicates that
the peripheral chemoreflex is involved in the ventilatory response to
exercise. Nevertheless, there is no evidence whether the
cardiorespiratory fitness deterioration during hypobaric hypoxia is
due to altered chemoreflex function and whether it could be
through an interaction with the BR.

Cardiorespiratory and metabolic response
to exercise and during HA exposure:
implication for chemoreflex and
baroreflex control

It is well known that during physical activity, there is an increase
in energy demand and, consequently, in cardiopulmonary and O2

uptake to meet the energy requirements (Hill and Lupton, 1923). In
normoxia, during the initial phase of an incremental exercise, there
is a cardiodynamic response, principally characterized by an
increase in HR and stroke volume, with little contribution from
ventilation to O2 consumption (Housh et al., 1991; McLellan and
Cheung, 1992; Pringle and Jones, 2002; Whipp et al., 2005). It has
been proposed that this cardiodynamic response is “associated” with
the exercise pressor reflex (type III and IV afferent feedback fibers in
muscles) and not with BR and chemoreflex, triggering an increase in
ionotropic and chronotropic heart responses mediated by the
activation of the sympathetic system (McCloskey and Mitchell,
1972; Amann et al., 2010; Tocco et al., 2015). At ventilatory
threshold 1, there is a significant increase in pulmonary
ventilation, which occurs in tandem with an increase in HR and
lactate (Hofmann and Tschakert, 2017). Then, at ventilatory
threshold 2, there is an abrupt increase in pulmonary ventilation
and a significant increment of systemic lactate concentration
(>4 mM) (Hofmann and Tschakert, 2017). It is currently under
discussion whether chemoreceptors can detect lactate; therefore, the
ventilatory response during exercise could be related to CB
activation (Chang et al., 2015; Torres-Torrelo et al., 2021).
Nevertheless, it has been shown that CB chemoreceptor cells do
not respond to lactate in Wistar Kyoto rats (Spiller et al., 2021). In
summary, during an incremental exercise, there is a complex, highly
coordinated physiological mechanism encompassing pulmonary,
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cardiovascular, metabolic, and autonomic responses that enable the
proper delivery of O2 to the active tissues. However, whether these
mechanisms are modified during short-term HA exposure, which
may be associated with chemo-baroreflex interaction, is
not known yet.

As mentioned before, under resting conditions, HA promotes
an increase in minute ventilation and enhances cardiac output,
ensuring an adequate oxygen supply to the tissues (Klausen et al.,
1966; Naeije et al., 1982; Cremona et al., 2002). It has been shown
that a decrease of 12% in the inspired fraction of O2 can promote
an increase of ~22% in cardiac output, which was explained
mainly by the increase of HR (~18%) in healthy subjects (Naeije
et al., 1982), decreasing the HR reserve. In addition, concomitant
to cardiopulmonary adjustment, there is a marked autonomic
control impairment characterized by a BR-dependent
parasympathetic withdrawal during HA exposure (Naeije
et al., 1982; Beltran et al., 2020). Regarding exercise at HA, it
is well-established that the VO2max, exercise performance, and
functional capacity are markedly reduced during HA exposure
(Dempsey et al., 1972; Maher et al., 1974; Young et al., 1996;
Fulco et al., 1998; Bassett and Howley, 2000; Millet et al., 2010;
Andrade et al., 2018b; Burtscher et al., 2018). Indeed, highly
trained running athletes evidenced a small but significant aerobic
performance deterioration, even at 540 m (Fulco et al., 1998) or
580 m (Gore et al., 1996). Alexander et al. (1983) also found
evidence that the VO2max is affected by HA, observing a decrease
of 25% in maximum aerobic capacity at an altitude of 3,100 m
(Alexander and Grover, 1983). Similarly, we found that aerobic
time-trial performance decreased by ~25% during acute exposure
to 3,350 m in healthy individuals (Andrade et al., 2018b).
Moreover, VO2max is expected to decrease by 0.9% per every
100 m over 1,100 m above sea level (Vogt and Hoppeler, 2010).
All these phenomena have been attributed directly to the decrease
in partial pressure and arterial SpO2 resulting from lower
barometric pressure at HA, affecting the oxygen supply to

active organs (Wagner, 2010). Slight differences have been
reported between normobaric and hypobaric hypoxia (Millet
and Debevec, 2020). However, the resting and exercise
adjustments at HA suggest that autonomic control
(chemoreflex and baroreflex) could play an important role in
exercise performance during short-term HA exposure.
Nevertheless, it is worth mentioning that there is no evidence
indicating a chemo-baro interaction during HA exposure that
could explain the reduction in exercise performance independent
of reduced partial O2 pressure (Figure 3).

Future directions

Chemoreflex and baroreflex responses and interaction are
modified during HA exposure, leading to a marked deterioration
in exercise performance. Additionally, it has been determined
that parasympathetic control is a determinant of exercise
capacity. Therefore, it is reasonable to suggest that further
research should focus on the role of chemoreflex and
baroreflex-dependent vagal deterioration in the impairment
of physical effort during HA exposure. It would be necessary
to determine if the brainstem nuclei interact with the BR and the
chemoreflex pathways, and their physiological consequences on
exercise performance during hypobaric hypoxia. Finally,
considering the critical importance of physical capacity at
HA in several human activities (i.e., tourism, sports, border
security, and mining) and the functional capacity in several
chemoreflex/baroreflex-altered pathophysiological states,
further research should not only elucidate the roles of
chemoreflex and baroreflex separately but also explore
potential pharmacological and non-pharmacological strategies
to modify them as critical nodal points. This research should be
broad in scope, focusing on physical performance and daily
activities at high altitudes.

FIGURE 3
A hypothetical proposal related to the role of chemoreceptor and baroreceptor interaction and their effects on exercise performance at high
altitudes. During high altitude exposure, there is an activation of the carotid body (CB) peripheral chemoreceptors, which at the brainstem level,
specifically in the nucleus of the tractus solitarii (NTS) activate chemoreceptor neurons. At NTS, chemoreceptor neurons inhibit baroreceptor neurons,
reducing their activity to parasympathetic neurons, such as the nucleus ambiguous (NA) and dorsal motor nucleus of the vagus (DMNV),
consequently reducing baroreflex control and parasympathetic drive. Finally, the reduction of the vagal control negatively impacts exercise performance
at high altitudes. Therefore, we propose that chemoreceptor neurons inactivate baroreceptor neurons, reducing parasympathetic drive and contributing
to a decline in exercise performance at high altitudes, secondary to a reduction in barometric pressure. Created with BioRender.com.
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Conclusion

Hypoxic environments, while capable of harboring life, are
inhospitable places where organisms struggle to survive. HA
houses several human activities, such as tourism, sports, border
security, and mining, which justify the research from basic to clinical
science. Chemoreceptors and baroreceptors pathways share some
brainstem neural nuclei, which are activated during hypoxia, making
them susceptible to intervention and improving human whole-body
response to hypoxia. Indeed, the present review focuses on
chemoreflex and baroreflex interaction and their possible role in
exercise capacity during HA exposure. The evidence suggests that an
alteration of the chemoreflex could precede baroreflex-dependent
parasympathetic withdrawal, resulting in a secondary impact on
exercise performance at HA; however, this hypothesis has not yet
been elucidated. Thus, our manuscript summarizes the literature
and proposes new hypotheses that need to be addressed in
the future.
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