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Dopamine and histamine receptors D2R and H3R are G protein-coupled
receptors (GPCRs) which can establish physical receptor–receptor interactions
(RRIs), leading to homo/hetero-complexes in a dynamic equilibrium. Although
D2R and H3R expression has been detected within the carotid body (CB), their
possible heterodimerization has never been demonstrated. The aim of this work
was to verify D2R and H3R colocalization in the CB, thus suggesting a possible
interplay that, in turn, may be responsible of specific D2R–H3R antagonistic
functional implications. The CBs of both Sprague–Dawley rats (n = 5) and
human donors (n = 5) were dissected, and immunolocalization of D2R and
H3R was performed; thereafter, in situ proximity ligation assay (PLA) was
developed. According to experimental evidence (immunohistochemistry and
double immunofluorescence), all the samples displayed positive D2R/H3R
elements; hence, PLA assay followed by confocal microscopy analysis was
positive for D2R–H3R RRIs. Additionally, D2R–H3R heterodimers were mainly
detected in type I cells (βIII-tubulin-positive cells), but type II cells’ involvement
cannot be excluded. RRIs may play a role in functional modulation of CB cells;
investigating RRIs in the CB may guide toward the comprehension of its plastic
changes and fine regulatory role while also unveiling their possible clinical
implications.
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1 Introduction

The carotid body (CB) is a peripheral arterial chemoreceptor at the carotid bifurcation
playing a key role in sensing partial pressures of O2/CO2, pH, and metabolic changes in the
arterial blood. In turn, CB type I cells (glomus cells) release growth factors (for extensive
review see, Stocco et al., 2020), neurotransmitters (e.g., dopamine, acetylcholine,
noradrenaline, adrenaline, serotonin, histamine, adenosine, adenosine 5’ triphosphate,
glutamate, gamma-aminobutyric acid, and substance P), and neuromodulators (e.g.,
enkephalins, neuropeptide Y, calcitonin gene-related peptide, galanin, endothelin,
bombesin, adrenomedullin, kisspeptins, and leptin) that are involved in initiating
compensatory reflex adjustments to maintain homeostasis, thus preserving vital organs’
functions (Porzionato et al., 2008; Atanasova and Lazarov, 2014; Ortega-Sáenz et al., 2015;
Porzionato et al., 2018; Iturriaga et al., 2021; Thakkar et al., 2023). Typically, these molecules
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act in an autocrine/paracrine manner on different receptors,
including ionotropic and metabotropic receptors recognizable on
CB type I cells, CB type II (sustentacular; glial-like) cells, and afferent
nerve fibers (i.e., carotid sinus nerve afferent endings, conveying the
stimulation through the glossopharyngeal nerve and petrosal
ganglion (PG)) (Porzionato et al., 2018; Leonard and Nurse,
2020; Emmi et al., 2021).

Most metabotropic receptors are G protein-coupled receptors
(GPCRs) that are able to establish physical receptor–receptor
interactions (RRIs), leading to homo/hetero-complexes in a
dynamic equilibrium; physical proximity (≤10 nm) and
colocalization are the prerequisites for RRI occurrence (Agnati
et al., 2005). Among the CB metabotropic receptors, the
dopamine D2 receptor (D2R) and the histamine H3 receptor
(H3R) are both present. Their physical/functional interplay was
demonstrated by Ferrada et al. (2008) in striatal membrane
preparations and mammalian transfected cells (HEK-293) by
radioligand binding experiments and bioluminescence resonance
energy transfer (BRET) assay, respectively. In addition, Xu and
Pittenger (2023) confirmed the existence of an H3R–D2R complex,
more recently in the mouse striatum, recurring to biochemical
approaches and the proximity ligation assay. However, the
presence of RRIs was only supposed but never assessed in the CB
(Porzionato et al., 2018).

The first evidence of D2R in the CB was derived from
biochemical and neuropharmacological studies by Mir et al.
(1984) on rabbits; specifically, it was reported to be located pre-
and post-synaptically to type I cells (in situ hybridization and reverse
transcription-polymerase chain reaction) (Czyzyk-Krzeska et al.,
1992; Bairam et al., 1996). Following dopamine release, as a
consequence of hypoxia (Ureña et al., 1994; Montoro et al., 1996;
Bairam et al., 2003), hypercapnia (Iturriaga and Alcayaga, 1998),
and other stimuli, its binding to D2R on the type I cell decreases
intracellular calcium (Benot and Lopez-Barneo, 1990); even though
excitatory effects cannot be excluded (Bairam et al., 1996), dopamine
mainly behaves like an inhibitory neurotransmitter in the CB, as
proven by several physiological pieces of evidence (Zapata, 1975;
Llados and Zapata, 1978; Bisgard et al., 1979; Goldman and
Eyzaguirre, 1984). This role is mediated by D2R (Gauda et al.,
1996). Considering that most physiological data have been obtained
from CB preparations, excitatory (Iturriaga et al., 2009) and
modulatory (Alcayaga et al., 1999) effects mediated by a
dopamine interaction with PG neurons may also take place.

The presence of histamine receptors (H1R, H2R, and H3R) in the
CB was first reported by Koerner et al. (2004), following reverse
transcription polymerase chain reaction (RT-PCR) studies on rats.
Later, several authors confirmed this evidence, further providing
data on H3R localization, resulting in type I cells by
immunohistochemistry (Del Rio et al., 2009; Lazarov et al., 2009;
Thompson et al., 2010). Considering H3R behavior, H3R agonists
(above all, histamine) lead to intracellular Ca2+ signaling inhibition,
following muscarinic receptor activation in type I cells (Thompson
et al., 2010), while the antagonists are responsible for increased
chemosensory activity (Del Rio et al., 2009).

Currently, there is recognition of CB complexity; however, while
much is known about individual neurotransmitters’ actions, there is
scant information about how multiple neurotransmitters may
integrate to shape the output of the CB (Thompson et al., 2010).

Within this scenario, GPCRs and their capability to combine in
homo-/hetero-dimers/complexes may possibly play a fundamental
contributory role in determining CB function and plasticity as a
consequence of development/aging and environmental stimuli (e.g.,
chronic intermittent/sustained hypoxia) (Porzionato et al., 2018).
Existence of a RRI (A2B–D2) was first postulated in rat CB (type I
cells) by Conde et al. (2008) and Conde et al. (2009); recently,
through a proximity ligation assay (PLA)-based study, we also
demonstrated the existence of A2AR–D2R RRI in both rat and
human CB (Stocco et al., 2021). Thus, continuing the study on
possible RRIs here (in accordance with the previous hypothesis
(Porzionato et al., 2018)), the colocalization of D2R–H3R was
analyzed to provide a deeper understanding of the behavior of
this chemosensory organ, elucidating mechanisms that could also
have important implications in clinical practice.

2 Materials and methods

2.1 Rat and human tissue sampling

Animal CB sampling was authorized by the ethical committee of
Padua University, in agreement with the Italian Department of
Health guidelines (Authorization No. 702/2016-PR of 15 July 2016);
specifically, the tissues were isolated from five adult Sprague–Dawley
rats soon after euthanasia.

Human CBs were collected from donated bodies enrolled within
the Body Donation Program of the Section of Human Anatomy of
the Department of Neuroscience of Padua University (Porzionato
et al., 2012). The Section of Human Anatomy is the reference center
for the Veneto region of Italy, and it has also been recognized among
the reference centers at the national level for the conservation and
use of donated bodies (Boscolo-Berto et al., 2023). Excision was
furtherly authorized by the Italian law No. 10 of 10 February 2020,
entitled “Rules regarding the disposition of one’s body and post-
mortem tissues for study, training, and scientific research purposes”
(Boscolo-Berto et al., 2020).

For this study, five adult subjects [three males, two females;
mean age 63 years, standard deviation (SD) ± 2.7] without any
evidence and/or reported history of chronic pulmonary and/or
cardiovascular diseases were included. Eventual therapies in life
with pharmacological molecules that could have altered/influenced
the CB’s plasticity represented exclusion criteria for the enrollment.

After sampling (for human CB, within 30 h (h) after death,
following the Italian Law directives (Porzionato et al., 2005;
Porzionato et al., 2006; Porzionato et al., 2011; Stocco et al.,
2021), the specimens were fixed (10% phosphate-buffered
formalin for 72 h) to maintain the CBs’ morpho-structural
characteristics and processed according to routine laboratory
protocols for subsequent analyses.

2.2 Immunohistochemistry

To detect the presence of specific antigens (D2R and H3R) in CB
tissue samples, immunohistochemistry was preliminarily adopted.

The paraffin-embedded rat and human carotid bifurcations,
including the CB, were cut in longitudinal serial sections of 5-μm
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thickness. Once dewaxed, immunostaining was performed by an
anti-D2R antibody (polyclonal rabbit antibody; ab150532, Abcam)
(dilution: 1:200) and anti-H3R antibody (polyclonal mouse
antibody; sc390140, Santa Cruz) (dilution: 1:50). Moreover,
antigen retrieval occurred before both staining with low-pH
(EnVision™ FLEX, Low pH, K8005) and high-pH (EnVision™
FLEX, High pH, K8012) buffers, respectively. The sections were
incubated with the Dako Autostainer Plus Staining System
(EnVision™ FLEX, High pH). To prove the immunostaining
specificity, sections incubated without primary antibodies were
also included (no immunoreactivity is expected); moreover,
selectivity of the D2R antibody used here was previously
demonstrated in the subthalamic nucleus and striatum (Emmi
et al., 2022).

2.3 Double immunofluorescence

Double immunofluorescence was performed to localize D2R and
H3R contextually.

Fluorescent immunohistochemistry was developed manually,
according to previously established protocols (Emmi et al., 2022;
Emmi et al., 2023). Autofluorescence was quenched with a 50 mM
NH4Cl solution for 10 min. Sections were treated with a
permeabilization and blocking solution (15% vol/vol Goat Serum,
2% wt/vol BSA, 0.25% wt/vol gelatin, and 0.2% wt/vol glycine in
PBS) containing 0.5% Triton X-100 for 90 min before primary
antibody incubation. Primary antibodies were diluted in the
blocking solution and incubated at 4°C overnight. Specifically, the
following antibodies were employed: rabbit anti-D2R primary
antibody (dilution: 1:200) and mouse anti-H3R primary antibody
(dilution: 1:50). Alexa-Fluor plus 488 Goat anti-Mouse secondary
antibody (A32723, Thermo Fisher Scientific) and Alexa-Fluor plus
568 anti-Rabbit secondary antibody (A-11011, Thermo Fisher
Scientific) were diluted 1:200 in the blocking solution, as above,
and incubated for 60 min at room temperature. Hoechst 33258 was
used for nuclear staining (Invitrogen, dilution: 1:10,000 in PBS) for
10 min. Slides were mounted and coverslipped withMowiol solution
(Novabiochem).

Confocal immunofluorescence z-stack images were acquired on
a Zeiss800 confocal microscope equipped with ×63 oil objective.
Images were acquired at a 16-bit intensity resolution over 2,048 ×
2,048 pixels. Z-stack images were converted into digital maximum
intensity z-projections, processed, and analyzed using
ImageJ software.

2.4 Proximity ligation assay

PLA was adopted for detection/visualization of RRIs within the
rat and human CBs. In brief, this approach is based on combinations
of antibodies coupled to complementary oligonucleotides that are
amplified and revealed with a fluorescent probe. When present, each
protein–protein interaction appears as a red fluorescent spot.

In situ PLA was performed following the manufacturer’s
guidelines on rat and human CB slices (5 μm in thickness);
rabbit anti-D2R primary antibody (dilution: 1:200), mouse anti-
H3R primary antibody (dilution: 1:50), Duolink® in situ PLA

detection kit (DUO92014, Sigma-Aldrich, St Louis, MO, USA),
Duolink® anti-rabbit PLUS probe (DUO92002, Sigma-Aldrich),
and Duolink® anti-mouse MINUS probe (DUO82040, Sigma-
Aldrich) were used.

After tissue slice blocking using the Duolink® blocking
solution (37°C/60 min), the samples were incubated with the
primary antibody (anti-D2R and anti-H3R) solutions and set up
in the antibody diluent solution (room temperature (RT)/
60 min); both the steps were performed within a humid
chamber. Thereafter, the primary antibody solution was
tapped off, and the slices were washed with the wash buffer
(RT) before incubation with the anti-mouse and anti-rabbit
secondary antibody-conjugated PLA probes in a pre-heated
humidity chamber (37°C/60 min). After the hybridization,
ligation, and amplification steps, to specifically investigate the
colocalization site of the D2R–H3R heterodimer/heterocomplex
with CB type I cells, the slices were rinsed in the wash buffer and
incubated with anti-β III-tubulin (1:6,000) in the antibody
diluent solution (Dako) (humid chamber, 4°C/overnight).
Hence, after a careful wash in PBS, the sections were exposed
to mouse Alexa Fluor-488 (1:100; 1 h at RT). After rinsing in PBS,
the sections were mounted with the Vectashield mounting
medium for fluorescence with DAPI (Vector Laboratories,
Burlingame, CA, USA). A Zeiss800 confocal microscope
equipped with ×63 oil objective was used for detection and
acquisition of immunofluorescence and PLA signals, which
appear as red dots in case of the heterodimers’ presence; for
each field of view, z-stacks were acquired.

Negative controls were represented by non-conjugated primary
antibodies with the Duolink® Probes. The specificity of double
immunolabeling was verified by replacing the primary
antibodies with PBS.

PLA signals (red dots) were quantified by manual counting
on z-stack images; the cell counter plugin of ImageJ was used. At
least three randomly chosen fields from three slides of each
animal/patient were used to determine the average density of
the positive PLA elements ±SD. The percentage of red dot
colocalization with βIII-tubulin-stained cells was also
considered.

3 Results

3.1 D2R and H3R immunodetection in rat and
human CB

Due to the problematic nature of GPCR antibodies,
immunohistochemistry using primary antibodies is recommended
to prove their quality before proceeding with more complex assays
like PLA (Michel et al., 2009; Trifilieff et al., 2011).

Dopamine D2R and histamine H3R were preliminarily identified
on rat and human CB through immunohistochemistry (Figure 1).
According to the experimental evidence, brown-stained elements
were mainly localized in correspondence of type I cells, which
appeared as roundish elements organized in clusters.
Contextually, immunoreactive elements were also observed in
type II cells, displaying an elongated appearance and a peripheral
position in the lobules.
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Partial immunostaining of D2R in PG nerve terminals also
cannot be excluded (Czyzyk-Krzeska et al., 1992).

3.2 D2R and H3R detection by double
immunofluorescence

Double immunofluorescence staining for D2R (red channel) and
H3R (green channel) confirmed immunohistochemistry-based
evidence, highlighting the presence of both receptors within the
CB. As showed by Hoechst-stained nuclei (blue channel), the
receptors were localized next to them. The merged images
(Hoechst/D2R/H3R) suggested a colocalization of the D2R and
H3R receptors in type I cells, according to the roundish
morphology of the immunopositive elements. A possible
localization in type II cells also cannot be excluded (Figure 2).

Immunofluorescent elements corresponding to D2R may also be
located at the PG nerve terminals (Czyzyk-Krzeska et al., 1992).

3.3 D2R–H3R heterodimer localization
by PLA

According to confocal microscope images, D2R–H3R complexes
were verified in all the samples, thus suggesting the receptors’
closeness (distance of 0–16 nm); specifically, the red dots were

identified in proximity of the DAPI-stained cells’ nuclei. The
calculated mean density (±standard deviation) corresponded to
2.6 ± 0.52 × 10−4 heterodimers/µm2 and 4.90 ± 1.25 × 10−5

heterodimers/µm2 in rat and human samples, respectively. In
parallel, βIII-tubulin immunostaining was also performed to
recognize type I cells. According to the morphometric study, the
percentages of red dots colocalizing with βIII-tubulin-positive
elements in rats and humans corresponded to 54.54% and 60%,
respectively (Figure 3).

4 Discussion

G-proteins play a crucial role in CB function both in normal
physiology and pathology, possibly representing an interesting
key target for novel drug discovery or repurposing. Several A
GPCRs have been recognized in the CB type I/II cells (adenosine
receptors (A1 and A2A), purinergic receptors (P2Y1, P2Y2, and
P2Y12), dopamine receptors (D1 and D2), opioid receptors (μOR
and δOR), histamine receptors (H3), serotonin receptors (5-
HT2A), neurotensin receptors (NTS1), melatonin receptors
(MT1 and MT2), galanin receptors (Gal1 and Gal2), endothelin
receptors (ETA and ETB), GABA receptors (GABAB2),
muscarinic receptors (M2), and cannabinoid receptors (CB1)
(for extensive review, see Porzionato et al., 2018)), and many
of them are implicated in CB hyperactivity, thus exerting a role in

FIGURE 1
Dopamine D2R and histamine H3R detection in rat and human CB. Immunoreactive elements were mainly located in correspondence of round cells
organized in clusters and, thus, resembling type I cells (black asterisk). Considering the presence of brown-stained elongated cells (black arrows), D2R and
H3R were also possibly recognizable on type II cells. Scale bar: 50 μm.
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FIGURE 2
Immunofluorescence staining showing D2R (in red) and H3R (in green) distribution within a representative longitudinal section of rat and human CB
(circled in white) (A1, B1, respectively). Cell nuclei were recognizable after Hoechst staining (in blue) (scale bar: 80 μm). The magnified images showed
details in D2R and H3R localization with respect to each other and toward the cells’ nuclei (scale bar: 20 μm).
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conditions including obstructive sleep apnea, heart failure, and
essential/spontaneous hypertension, in which the CB may be
involved in promoting neurogenic hypertension and arrhythmia
(Aldossary et al., 2020).

GPCRs may play a contributory role in CB high plasticity
(Porzionato et al., 2018). Intramembrane receptor interactions
are recognized as a functional property of some GPCR
heteromers. GPCRs heterodimerization modulates the receptor

FIGURE 3
Confocal images of in situ proximity ligation assay showing D2R–H3R heterodimers in rat and human CBs, appearing as red dots. Anti-βIII-tubulin
staining (visualized in green) allowed to detect type I cells. Cells’ nuclei were blue-stained by DAPI, and they are also recognizable in the merged images.
Red dots colocalizing with type I cells were shown by dotted squares; red dots not colocalizing with type I cells were shown by dotted circles. Scale
bar: 20 µm.
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function and the signaling cascade; however, heteromerization of
class C GPCRs (including taste receptors and metabotropic
glutamate receptors, which are obligate dimers) is well-
established, and heteromerization of class A GPCRs still
represents a field of intense research (Xu and Pittenger, 2023).
Receptor homo- or heteromerization is responsible for
intramembrane (or horizontal) interactions. It means that the
pharmacology for agonists and/or antagonists of a given receptor
usually changes whether (a) forming heteromers with another
receptor and/or (b) when the partner receptor in the heteromer
is activated. This descends from conformational changes in the
receptors, which are, in turn, transmitted within the
receptor–receptor interface at the plane of the membrane bilayer,
as well as in the plane of the membrane (Franco et al., 2008).

In response to hypoxia, CB cells release several transmitters, and
both dopamine and histamine are included (Koerner et al., 2004). This
work focuses on identifying evidence supporting D2R–H3R
heterodimer formation in the rat and human CB, thus laying the
basis for subsequent functional studies on this chemoreceptor organ
endowed with a specific plasticity. In parallel, heteromer formation is
associated with different signaling and pharmacological properties, thus
leading to intense research to search for novel drug targets useful for
counteracting a variety of diseases and potentially with fewer side
effects. Through immunodetection, D2R and H3R presence was
confirmed in both rat and human CBs, corroborating previous
evidence showing D2R immunoreactivity in mouse, rat, and human
CB (Lazarov et al., 2009; Fagerlund et al., 2010; Kåhlin et al., 2010;
Wakai et al., 2015) and H3R immunoreactivity in rat and human CB
(Lazarov et al., 2006; Lazarov et al., 2009); certainly, D2R presence in PG
neurons innervating the CB cannot be excluded (Czyzyk-Krzeska et al.,
1992). In addition, for the first time, to the best of our knowledge, D2R
andH3RRRIswere assessed here by PLA.As forD2R–H3Rheterodimer
localization, they were mainly detected in type I cells (βIII-tubulin-
positive cells), but type II cells’ involvement is also possible. Moreover,
for completeness, it must be mentioned that neurons and terminals of
PG express β-III tubulin as well; it follows that we cannot ignore
possible β-III tubulin positivity by them, even though the roundish
morphology suggests that these are CB type I cells.

Ferrada et al. (2008) demonstrated the existence of an
antagonistic intramembrane interaction between H3R and D2R
in striatal tissue, by which, stimulation of H3R significantly
decreases the ability of an agonist, but not an antagonist, to
bind to the D2R. The same could also be supposed for the CB,
following D2R–H3R heterodimer formation. The reciprocal
influences of the two receptor monomers in the D2R/H3R
complex would be particularly intriguing as dopamine and
histamine (together with adenosine triphosphate (ATP) and
acetylcholine (ACh) (Zhang et al., 2000; Iturriaga and Alcayaga,
2004; Leonard et al., 2018)) are among the main inhibitory and
excitatory neurotransmitters in the CB. H3R ligands reduce the
affinity of D2R ligands, favoring an excitatory response. In parallel,
D2R agonists decrease the binding of H3R ligands, increasing the
inhibitory activity of dopamine. This interpretation falls within the
“push–pull mechanism” proposed to describe the role of
excitatory/inhibitory transmitters involved in regulation of CB
activity (Prabhakar, 2006).

Hypoxia also influences D2R expression (as well as D1R) (Bairam
et al., 2003). RT-PCR analysis of short- and long-term hypoxic rats’ CBs

showed a time-dependent increase in the expression of both tyrosine
hydroxylase andD2R genes (Huey and Powell, 2000;Wakai et al., 2010).
D2R mRNA levels decreased after 48 h of hypoxia, but a significant
increase was detected after 7 days (Huey and Powell, 2000). As we
previously discussed in Porzionato et al. (2018), the alteration in D2R
expression may cause a change in dopamine signaling in the CB,
contributing, for instance, to the changes in ventilatory adaptation
observed with long-term hypoxia associated with chronic obstructive
pulmonary disease or heart failure. Moreover, modifications in the
expression of dopamine receptors after hypoxia (D1R and D2R)
suggest the possibility of changes in the amount of heterodimers
involving them (D1R–D2R; D2R–H3R?) stimulated by a hypoxic
environment and favored by the receptors’ proximity. Other
conditions also impact CB D2R expression; for instance,
hypothyroidism induces their increase (as also verified in the
paraventricular hypothalamic nucleus and striatum), in turn affecting
ventilation. D2R stimulation and hypoxia depressed breathing in normal
hamsters and stimulated breathing in hypothyroid hamsters (Schlenker
and Schultz, 2012). Neonatal caffeine treatment enhances D2R mRNA
(as well as adenosine A2A and tyrosine hydroxylase) in male but not in
female rats (Montandon et al., 2008); neonatal maternal separation
enhances D2R (and tyrosine hydroxylase) mRNA expression levels in
the CB of rats (not in a gender-specific manner) (Kinkead et al., 2005).
Contextually, according to our knowledge, no studies have reported on
H3R level modifications in the CB.

Knowledge of the physiological and pathological events
determining the establishment of D2R–H3R heterodimers may be
fundamental to provide personalized treatment of CB-mediated
diseases (e.g., cardiovascular and respiratory). Furthermore,
exploring the role of age on receptors’ expression and, thus, on
RRI establishment may be interesting.

Future perspectives of the workwill focus on othermethods to better
describe D2R–H3RRRIs within the CB tissue, including biophysical (e.g.,
bioluminescence—and fluorescence—resonance energy transfer,
specialized microscopic techniques, and X-ray crystallography) and
biochemical analyses. Additionally, the existence of other possible CB
heterodimersmay be investigated for better knowledge on the structural/
functional modifications of the CB (Porzionato et al., 2018).
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