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The transient receptor potential ankyrin 1 (TRPA1) channel plays a pivotal role in
the respiratory and gastrointestinal tracts. Within the respiratory system,
TRPA1 exhibits diverse distribution patterns across key cell types, including
epithelial cells, sensory nerves, and immune cells. Its activation serves as a
frontline sensor for inhaled irritants, triggering immediate protective
responses, and influencing airway integrity. Furthermore, TRPA1 has been
implicated in airway tissue injury, inflammation, and the transition of
fibroblasts, thereby posing challenges in conditions, such as severe asthma
and fibrosis. In sensory nerves, TRPA1 contributes to nociception, the cough
reflex, and bronchoconstriction, highlighting its role in both immediate defense
mechanisms and long-term respiratory reflex arcs. In immune cells, TRPA1 may
modulate the release of pro-inflammatory mediators, shaping the overall
inflammatory landscape. In the gastrointestinal tract, the dynamic expression
of TRPA1 in enteric neurons, epithelial cells, and immune cells underscores its
multifaceted involvement. It plays a crucial role in gut motility, visceral pain
perception, and mucosal defense mechanisms. Dysregulation of TRPA1 in both
tracts is associated with various disorders such as asthma, Chronic Obstructive
Pulmonary Disease, Irritable Bowel Syndrome, and Inflammatory Bowel Disease.
This review emphasizes the potential of TRPA1 as a therapeutic target and
discusses the efficacy of TRPA1 antagonists in preclinical studies and their
promise for addressing respiratory and gastrointestinal conditions.
Understanding the intricate interactions and cross-talk of TRPA1 across
different cell types provides insight into its versatile role in maintaining
homeostasis in vital physiological systems, offering a foundation for targeted
therapeutic interventions.
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1 Introduction

Transient receptor potential (TRP) channels are sensory
receptors involved in detecting various stimuli, ranging from
temperature to chemical compounds (Muller et al., 2018; Ujisawa
et al., 2024). Among them, Transient Receptor Potential Ankyrin 1
(TRPA1) holds particular interest owing to its responsiveness to
numerous environmental irritants and involvement in pain
perception and inflammatory processes (Meseguer et al., 2014;
Kadkova et al., 2017). TRPA1 is expressed in the nervous system,
where it contributes to nociception, itching, and neurogenic
inflammation (Nummenmaa et al., 2020; Cerqueira et al., 2023;
De Logu et al., 2023), and in the cardiovascular system, where it
plays a role in vascular tone regulation (Alvarado et al., 2021).
However, the respiratory and gastrointestinal systems are
particularly significant owing to their direct contact with
environmental stimuli and their susceptibility to TRPA1-
mediated responses (Kaji et al., 2012; Kuwaki and Takahashi,
2023) which is comparatively less focused. The intricate
orchestration of physiological responses within the
gastrointestinal and respiratory tracts depends on the dynamic
involvement of the TRPA1 (Yang et al., 2016; Wang M. et al.,
2019; Li C. et al., 2023; Liang et al., 2023).

In the respiratory system, TRPA1 has been identified as a
sentinel molecular orchestrator that is strategically positioned in
the epithelial cells (Wang M. et al., 2019; Luostarinen et al., 2021),
sensory nerves (Geppetti et al., 2010; Grace and Belvisi, 2011), and
immune cells (Li et al., 2020; Muthumalage and Rahman, 2023)
lining the airways. Its pronounced presence in the airway epithelium
positions TRPA1 as a frontline sensor for inhaled irritants,
triggering immediate protective responses and reflexes aimed at
preserving airway integrity (Conklin, 2016). Beyond immediate
defense mechanisms, the involvement of TRPA1 in fibroblast-
myofibroblast transition and mediation of airway tissue injury
underscores its significance in conditions such as severe asthma
and fibrosis (Yang and Li, 2016; Li et al., 2020; Yap et al., 2021; Li
et al., 2022). TRPA1 is involved in sensory nerve fibers and its
activation contributes to nociception, cough reflex, and
bronchoconstriction, highlighting its role in both immediate
defense and long-term regulatory processes (Grace and Belvisi,
2011; Al-Shamlan and El-Hashim, 2019; Jentsch Matias de
Oliveira et al., 2020). Immune cells within the respiratory
microenvironment also express TRPA1, suggesting contribution
to immune responses and inflammatory processes (Luostarinen
et al., 2023; Muthumalage and Rahman, 2023).

When transitioning to the gastrointestinal tract, TRPA1 is
equally dynamic and spans epithelial (Wu et al., 2017; Stanzani
et al., 2020) and immune cells (Benguettat et al., 2018). Its presence
in epithelial cells contributes to the sensing of dietary components,
thereby influencing the mucosal defense mechanisms (Kaji et al.,
2012), nutrient absorption (Arends, 2018), and barrier function
(Maglie et al., 2021).

In this review article, we delve into the nuanced distribution,
localization, and physiological functions of TRPA1 in the respiratory
and gastrointestinal tracts. By revealing the cellular symphony
orchestrated by TRPA1 across different cell types, the review lays
the foundation for understanding its pivotal role in maintaining
homeostasis in crucial physiological systems. The insights provided

herein pave the way for targeted therapeutic interventions in
respiratory and gastrointestinal conditions where
TRPA1 dysregulation plays a central role.

2 General characteristics of TRPA1

2.1 Historical perspective and discovery

TRPA1 was initially identified in 1999 when David Julius’s lab at
the University of California, San Francisco, investigated the
molecular basis of cold and chemical sensitivity in sensory
neurons (Bautista, 2015). They were able to clone and
characterize TRPA1 as a novel member of the TRP channel
family (Meents et al., 2019). This discovery marked a significant
step towards understanding the molecular basis of chemo-sensation
and nociception.

2.2 Discovery of TRPA1 function

TRPA1 is highly sensitive to various chemical irritants,
including mustard oil, garlic, and wasabi (Bautista et al., 2005).
The key role played by TRPA1 in detecting and responding to
noxious chemicals has been identified (Kang et al., 2010; Saito et al.,
2012). Studies involving TRPA1 knockout mice have demonstrated
that TRPA1 channels are critical for the perception of cold and
chemical pain (Reese et al., 2020). TRPA1 expressing sensory
neurons were found to be essential for mediating pain responses
to a wide range of irritants and inflammatory mediators (Koivisto
et al., 2014; Logashina et al., 2019). TRPA1 is also activated by cold
temperatures, particularly in the noxious-cold range. This
temperature sensitivity contributes to its role in thermosensation
(Fajardo et al., 2008; Akashi, 2021). Over the years, studies have
linked TRPA1 to various physiological and pathological processes,
including neurogenic inflammation, respiratory diseases, and
chronic pain conditions (Wei Y. et al., 2022). This has led to
investigations into potential therapeutic targeting of TRPA1 for
pain management and other disorders.

2.3 Domain architecture, including ankyrin
repeats and transmembrane regions
of TRPA1

The domain architecture of TRPA1 includes several functional
domains and motifs, including ankyrin repeats and transmembrane
regions. These domains are crucial for their function as ion channels.
TRPA1 contains a series of 14–18 ankyrin repeats located in the
N-terminal region of the protein (Gaudet, 2008; Hu et al., 2021).
Ankyrin repeats are structural motifs known for their roles in
protein-protein interactions (Nilius et al., 2011). In TRPA1, these
repeats are involved in protein folding and interaction with various
binding partners. The transmembrane regions are responsible for
anchoring TRPA1 in the cell membrane and forming the ion
channel pore (Nassini et al., 2014; Wang Z. et al., 2019).
TRPA1 has six transmembrane segments (S1–S6), intracellular
N- and C- terminals, and a pore loop between S5 and S6
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(Figure 1) (Story et al., 2003; Chernov-Rogan et al., 2019).
TRPA1 possesses a nucleotide-binding domain such as ATP,
which is involved in sensing cellular changes at the nucleotide
level. This domain may play a role in regulating channel activity
(Egbuniwe et al., 2014; Wei Y. et al., 2022; Gawalska et al., 2022).
Coiled-coil domains are regions of TRPA1 that contain coiled-coil
motifs, which are known for their role in protein-protein
interactions and protein oligomerization (formation of
multimeric complexes) (Martinez and Gordon, 2019). These
domains are involved in the assembly and regulation of the
TRPA1 channels. TRPA1 contains multiple calmodulin-binding
sites in its C-terminal region (Hasan et al., 2017). Calmodulin is
a calcium-binding protein that can modulate TRPA1 activity in
response to changes in intracellular calcium levels. AnkTM is a
specialized domain found in the N-terminal region of TRPA1 that
combines both ankyrin repeats and transmembrane segments
(Zayats et al., 2013). It is thought to be involved in the gating
mechanism of the channel, and may play a role in channel
activation. The exact number and arrangement of ankyrin repeats
and transmembrane regions vary between species and
TRPA1 isoforms (Jaquemar et al., 1999; Yao et al., 2023). These
structural elements collectively contribute to the function of
TRPA1 as an ion channel that senses a wide range of chemical
and physical stimuli, including irritants, temperature changes, and
mechanical forces (Nilius et al., 2011; Moccia and Montagna, 2023).
The complex domain architecture of TRPA1 allows it to integrate
multiple sensory inputs and respond to various environmental cues
(Cordero-Morales et al., 2011; Landini et al., 2022).

2.4 Structural insights from X-ray
crystallography of TRPA1

The size, membrane-spanning regions, and flexibility of this
protein significantly complicate the determination of its structure.

Scientists have made progress in understanding the structure of
TRPA1 by solving its partial structures using other structural biology
techniques. Crystallography and cryo-electron microscopy (cryo-
EM) studies have provided insights into the N-terminal region of
TRPA1, including the ankyrin repeat domain (Zayats et al., 2013;
Paulsen et al., 2015). These studies have shown that the N-terminal
domain forms a spiral-shaped structure and that ankyrin repeats
may be involved in protein-protein interactions and channel gating
(Berrout et al., 2017; Zimova et al., 2018). Determining the
transmembrane domain structure of TRPA1 is challenging. Cryo-
EM studies have helped identify certain transmembrane segments,
providing a general review of the membrane-spanning regions of the
channel (Madej and Ziegler, 2018). These studies suggest the
presence of multiple transmembrane segments arranged in a
manner similar to that of other TRP channels. Certain studies
have explored the binding sites of ligands and activators, such as
chemical irritants (Noroes et al., 2019). Cryo-EM studies have
provided insights into the binding of compounds such as
menthol and cinnamaldehyde to specific sites within the
TRPA1 channel (Fine and Li, 2021). These binding sites are
located in the transmembrane domain, and are important for
channel activation.

3 Activation mechanisms

3.1 TRPA1 activation

TRPA1 channels can be activated by a wide range of stimuli,
including chemical irritants, temperature changes, and mechanical
forces (Wang Z. et al., 2019; Logashina et al., 2019; Naert et al.,
2021). TRPA1 activation is a complex process involving multiple
mechanisms, that play crucial roles in sensory perception and
nociception (pain perception) (Bandell et al., 2004; Yao et al.,
2023). TRPA1 is particularly sensitive to electrophilic chemicals

FIGURE 1
Domain structure of TRPA1 ion channel: The TRPA1 channel has a structural composition comprising six transmembrane domains, with intracellular
N- and C- terminals. The transmembrane S5-S6 forms the pore loop. Ankyrin repeats are present in the terminal regions, and the calcium-binding region
is located within both the N and C-terminals.
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containing electron-deficient atoms or functional groups that can
react with nucleophilic residues within channel proteins. Examples
of electrophilic activators include allyl isothiocyanate (found in
mustard oil), cinnamaldehyde (found in cinnamon), and acrolein
(a component of tobacco smoke) (Bandell et al., 2004; Bautista et al.,
2005) (Figure 2). Certain reactive oxygen species, such as hydrogen
peroxide (H2O2), can activate TRPA1 by oxidizing specific cysteine
residues in the channel (Miyake et al., 2017). Oxidative modification
leads to channel opening and ion influx. Certain lipid signaling
molecules such as 4-hydroxynonenal (4-HNE) activate TRPA1
(Trevisani et al., 2007). Endogenous activators are produced in
response to cellular stress and inflammation. TRPA1 is sensitive
to temperature changes, particularly cold temperatures. When
exposed to temperatures in the noxious cold range (below
approximately 17°C–19 °C), TRPA1 channels can open, allowing
for the influx of calcium ions (Ca2+) and sodium ions (Na+) (Dhaka
et al., 2009; Akashi, 2021). This temperature sensitivity contributes
to the sensation of cold-induced pain (Caspani and Heppenstall,
2009). TRPA1 can interact with other proteins or signaling
molecules, and these interactions can influence its activity. For
example, calmodulin, a calcium-binding protein, can bind to
TRPA1 and modulate its function in response to changes in
intracellular calcium levels (Hasan et al., 2017; Cortes-Montero
et al., 2020). Other cellular signaling pathways and modulators
such as phosphorylation by protein kinases can also influence
TRPA1 activity. The phosphorylation of specific residues within a
channel can either enhance or inhibit its function (Schmidt et al.,
2009). Notably, TRPA1 channels are expressed in sensory neurons

and other cell types throughout the body, allowing them to detect
and respond to various environmental cues and physiological
changes. The activation of TRPA1 can lead to the generation of
electrical signals (action potentials) in sensory neurons, which are
then transmitted to the central nervous system, ultimately resulting
in the perception of pain or other sensory experiences.

3.2 Chemical agonists and physical stimuli
of TRPA1

Allyl Isothiocyanate (AITC), which is found in mustard oil and
wasabi, is one of the most well-known and potent agonists of TRPA1
(Bandell et al., 2004; Sandor et al., 2016). It is responsible for the
pungent and spicy sensations associated with these foods. Hydrogen
sulfide (H2S), which activates TRPA1, is linked to compounds such as
AITC and allicin derivates, which act as H2S donors (Andersson et al.,
2012; Chung et al., 2020; Li J. et al., 2023). Cinnamaldehyde is found in
cinnamon and is known for its sweet and spicy flavor (Bandell et al.,
2004). It can activate TRPA1 and contribute to the sensations of heat
and spiciness. Although capsaicin is primarily known to activate
Transient Receptor Potential Vanilloid 1 channels, it can also
activate TRPA1 (Shintaku et al., 2012). Capsaicin, found in chilled
peppers, produces a burning sensation. 4-HNE is a lipid-derived
aldehyde produced during oxidative stress, which activates TRPA1.
It is also an endogenous TRPA1 agonist (Trevisani et al., 2007).
Formaldehyde is a strong irritant that activates TRPA1. Mice
deficient in TRPA1 show a notable reduction in pain responses

FIGURE 2
Schematic diagram of transient receptor potential ankyrin 1 (TRPA1) channel activators and consequence of pathological disorders.
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elicited by formaldehyde (Macpherson et al., 2007). It is used in various
industrial applications and can be found in household products. The
health consequences of inhaling acrolein, a significant electrophile in
fires, tobacco smoke, and vehicle exhaust, indicate the pivotal role of
TRPA1 (Conklin et al., 2017). Upon interaction with TRPA1, acrolein
induces the release of proinflammatory neuropeptides, such as CGRP
and substance P, from sensory nerve endings in the lungs, trachea, and
larynx (Achanta and Jordt, 2017). Nitro oleic acid, an electrophilic fatty
acid nitroalkene generated from redox reactions, has been shown to
activate TRPA1 and TRPV1 in primary dorsal root ganglion neurons
sourced from adult male rats. It appears to induce desensitization of
their responses to TRPA1 andTRPV1 agonists. This suggests that nitro-
oleic acid could have clinical utility in reducing neurogenic
inflammation and specific types of painful sensations by modulating
TRPA1 expressing nociceptive afferents (Sculptoreanu et al., 2010;
Zhang et al., 2014). ROS and other oxidative compounds activate
TRPA1 by oxidizing specific cysteine residues within the channel.
Inflammatory mediators released during tissue injury or
inflammation can sensitize TRPA1 and reduce its activation
threshold (Takahashi and Ohta, 2013). This sensitization can lead to
increased TRPA1 responsiveness to other agonists.

TRPA1 is triggered by physical stimuli such as extremely cold
temperatures below 17°C, heat stress, mechanical stretch, osmolarity,
ultraviolet ray, and photosensitizing agent (Hill and Schaefer, 2009;
Raisinghani et al., 2011; Moparthi et al., 2016). TRPA1 activation can
occur in response to cell swelling induced by hypotonic conditions,
where cells experience lower osmotic pressure (Fujita et al., 2018;
Stinson et al., 2023). TRPA1 channel in the skin is involved in both
prolonged and painful mechanical stimulus-induced postoperative
pain, while the spinal TRPA1 channel primarily contributes to
postoperative pain caused by non-painful mechanical stimuli (Wei
et al., 2012). TRPA1 is sensitive to cold temperatures. It can be activated
by temperatures in the noxious cold range, typically below
approximately 17°C–19 °C (Story et al., 2003; Dhaka et al., 2009;
Akashi, 2021). TRPA1 is the primary mediator of cold-evoked
responses in vagal visceral neurons, underscoring its critical role in
visceral thermosensation (Fajardo et al., 2008). Mechanical stimuli such
as pressure ormembrane stretching can activate TRPA1. This activation
mechanism is thought to be involved in the sensation of mechanical
pain or hypersensitivity (Wei H. et al., 2022). Alterations in the
membrane voltage modulate TRPA1 activity. Voltage-dependent
gating can influence TRPA1 channel function (Shen et al., 2020).
Changes in pH, particularly under acidic conditions, can affect
TRPA1 activity (Dhaka et al., 2009). Low pH sensitizes TRPA1 to
other activators. The sensitivity of TRPA1 to these stimuli allows it to
function as a multimodal receptor that detects various noxious or
irritating conditions in the body. Activation of TRPA1 can lead to the
perception of pain, tingling, burning, and other sensory experiences,
making it an important player in sensory physiology and nociception
(Morgan et al., 2009; Maglie et al., 2021).

4 TRPA1 in the respiratory system

4.1 Localization and function

The respiratory tract, a dynamic interface between the external
environment and internal milieu, harbors TRPA1, a molecular

orchestrator with diverse distribution and localization patterns
across key cell types. In this exploration, we delve into the spatial
dynamics of TRPA1 within the respiratory tract, focusing on its
presence in epithelial cells (Wang M. et al., 2019), sensory nerves
(Geppetti et al., 2010; Grace and Belvisi, 2011; Luostarinen et al.,
2021), and immune cells (Li et al., 2020; Muthumalage and Rahman,
2023). TRPA1 is highly expressed in epithelial cells lining the
respiratory airways.

Inhaled irritants and environmental challenges trigger TRPA1
(Buch et al., 2013; Kunkler et al., 2014; Rapp et al., 2023). Activation
of TRPA1 in epithelial cells triggers immediate protective responses,
initiating reflexes aimed at preserving airway integrity
(Mukhopadhyay et al., 2011).

TRPA1 is expressed in the airway epithelium, including the
lining of the upper and lower respiratory tracts (Mukhopadhyay
et al., 2011; Buch et al., 2013). TRPA1 is implicated in the mediation
of airway tissue injury and inflammation (Wang M. et al., 2019; Sun
et al., 2021).

Additionally, it facilitates fibroblast-myofibroblast transition
(FMT), a process that contributes to airway remodeling, posing a
significant challenge in conditions such as severe asthma and fibrosis
(Wang M. et al., 2019). TRPA1 channels are activated in both
primary sensory neurons and heterologous cells when exposed to
oxidants such as hypochlorite and H2O2 (Bessac et al., 2008). These
oxidants, which pose a potential threat to airway function and
integrity, trigger TRPA1 channels, leading to oxidant-induced
respiratory depression, nasal obstruction, sneezing, coughing, and
pain (Bessac et al., 2008). Abundant expression of
TRPA1 characterizes the sensory nerve fibers innervating the
respiratory tract, aligning this molecular entity with an intricate
network of respiratory reflexes (Hjerling-Leffler et al., 2007; Kim
et al., 2010).

Activation of TRPA1 in sensory nerves contributes to
nociception and the perception of pain, and amplifies
sensitivity to respiratory irritants (Belvisi et al., 2011). The
consequences of TRPA1 activation in sensory nerves are
manifested in reflexive responses, such as coughing and
bronchoconstriction, revealing its significance in both
immediate defense mechanisms and the regulation of long-
term respiratory reflex arcs (Deering-Rice et al., 2015). Beyond
its role in the epithelial and sensory components, TRPA1 is
involved in immune cells residing within the respiratory
microenvironment. The expression of TRPA1 in immune cells,
including macrophages, and mast cells (Prasad et al., 2008),
suggests that it is involved in immune responses and
inflammatory processes (Naert et al., 2021). The activation of
TRPA1 in these immune cells could potentially modulate mast
cell degranulation and the release of proinflammatory mediators,
such as histamine, serotonin, and some cytokines (TNF-α),
contributing to the regulation of immune responses and the
overall inflammatory milieu within the respiratory system.
Understanding the spatial nuances of TRPA1 across different
cell types reveals its significance in respiratory homeostasis and
lays the foundation for targeted therapeutic interventions for
respiratory conditions in which TRPA1 dysregulation plays a
pivotal role. A summary of TRPA1 agonists and antagonists,
along with their involvement, roles, and mechanisms in the
respiratory system, is presented in Table 1.
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4.2 Physiological functions

The TRPA1 channel has been identified as a pivotal molecular
orchestrator of the respiratory system, deftly mediating responses to
a spectrum of environmental irritants and endogenous signals (Zhao
et al., 2020). This comprehensive exploration sheds light on the
multifaceted role of TRPA1 in orchestrating cough reflex (Grace and
Belvisi, 2011; Al-Shamlan and El-Hashim, 2019),
bronchoconstriction (Jentsch Matias de Oliveira et al., 2020; van
den Berg et al., 2021), and airway inflammation (Li et al., 2022) in the
context of external and internal stimuli. Various irritants capable of
activating TRPA1 receptors in airway sensory neurons have been
identified, leading to neurogenic inflammation and heightened
respiratory sensitivity (Balestrini et al., 2021). The recognition of
TRPA1 activation by harmful substances present in cigarette smoke
and polluted air, including crotonaldehyde, acrolein, and oxidizing
agents such as hydrogen peroxide, represents a significant discovery
(Simon and Liedtke, 2008). The activation of TRPA1 has been
identified in four distinct phenotypes associated with cough
hypersensitivity. This discovery underscores the presence of
heterogeneity in cough pathways, offering a novel avenue for
personalized management of chronic refractory cough (Long
et al., 2019). Consequently, it stands out as one of the most
promising targets currently recognized for the development of
antitussive drugs (Birrell et al., 2009).

The significance of TRPA1 extends beyond environmental
irritants to endogenous signaling molecules, particularly
inflammatory mediators (Yang et al., 2023). TRPA1 activation
contributes to the modulation of sensory nerve activity (Wang
et al., 2008). This activation enhances the sensitivity to irritants
and propagates signals leading to a cough reflex, thereby amplifying
the responsiveness of the respiratory system to both external and
internal triggers. When activated by irritants, the TRPA1 channels
initiate reflex responses that protect the respiratory system

(Mukhopadhyay et al., 2016). TRPA1 activation in the airway
sensory nerves can lead to the initiation of the cough reflex
(Grace and Belvisi, 2011; Kanezaki et al., 2012), which helps
expel irritants and foreign particles from the airways, preventing
them from entering the lungs (Geppetti et al., 2010). Changes in
TRPA1 expression and function in the sensory neurons may
contribute to neuropathic pain in patients with diabetes.
TRPA1 has been implicated in joint pain and inflammation
associated with rheumatoid arthritis TRPA1 (Luostarinen et al.,
2023). Excessive TRPA1 activation or sensitization can lead to
increased pain sensitivity and contribute to chronic pain
syndromes (De Logu et al., 2020).

TRPA1 activation stimulates mucus production in the airways
(Manneck et al., 2021; Kumar et al., 2022). It is another protective
mechanism aimed at trapping and removing irritants and pathogens
from the respiratory system. A previous study explored the
activation of TRPV1 and TRPA1 in response to fine particulate
matter (PM2.5) exposure (Xu et al., 2019). These channels
contribute to airway neurogenic inflammation, triggering the
release of inflammatory neuropeptides (including neurokinin A,
substance P) and pro-inflammatory cytokines (TNF-α, and IL-1β).
This activation has the potential to initiate early airway
inflammation and contraction of airway smooth muscles (Xu
et al., 2019). The exact mechanism behind smoke-induced
bronchoconstriction is not fully understood; inhaled cigarette
smoke directly stimulates sensory nerve endings in the
respiratory tract, specifically targeting C fiber endings and rapidly
adapting receptors in the airways and lungs (Kou and Lee, 1990; Lee
et al., 2018). The mechanism of TRPA1 activation is linked to
bronchoconstriction, as the activation of sensory nerve terminals
expressing TRPA1 channels can lead to respiratory symptoms such
as bronchoconstriction and mucus secretion. When
TRPA1 channels, positioned at these nerve terminals, are
activated, they contribute to these respiratory symptoms by

TABLE 1 Roles played by TRPA1 in the respiratory system, detailing its cellular involvement and implications for related disorders.

Agonists Antagonists Involvement and roles Mechanisms References

Hypochlorite,
hydrogen peroxide

BI01305834 Frontline sensor for inhaled irritants
and environmental challenges

Activation triggers immediate protective
responses, initiating reflexes for airway

integrity

Bessac et al. (2008), Mukhopadhyay
et al. (2011), Buch et al. (2013),

Wang et al. (2019a)

Crotonaldehyde,
Acrolein

GDC-0334 Mediator of airway tissue injury and
inflammation

Facilitates fibroblast
Myofibroblast transition—Involved in

respiratory depression, nasal
obstruction, coughing and pain

Activation in sensory nerves contributes to
nociception and reflexive responses

Hjerling-Leffler et al. (2007), Simon
and Liedtke (2008), Kim et al.
(2010), Long et al. (2019)

Bradykinin - Modulation of sensory nerve activity in
responses to inflammatory mediators

Contribution to cough reflex

TRPA1 activation enhances sensitivity to
irritants and propagates signals leading to

cough reflex

Birrell et al. (2009), Grace and
Belvisi (2011), Kanezaki et al.

(2012), Mukhopadhyay et al. (2016)

Fine Particulate
Matter (PM2.5)

Cannabidiol,
N-acylethanolamine

Contribution to airway neurogenic
inflammation

Release of inflammatory neuropeptides

Channels contribute to airway
inflammation and contraction of airway

smooth muscles

Xu et al. (2019), Balestrini et al.
(2021), van den Berg et al. (2021),

Luostarinen et al. (2023)

- BI01305834 Protection against allergen-induced
bronchoconstriction and airway

hyperresponsiveness

Inhibition of TRPA1 by
BI01305834 prevent AHR, EAR, and LAR
in vivo and reverses bronchoconstriction

van den Berg et al. (2021)

- GDC-0334, HC-
030031

Orchestrator of responses to
environmental irritants and

endogenous signals

Regulates cough reflex,
bronchoconstriction, and airway

inflammation

Lowin et al. (2015), Balestrini et al.
(2021), Landini et al. (2022)
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inducing neurogenic inflammation and exerting direct effects on
airway smooth muscle, leading to bronchoconstriction (Grace et al.,
2014; van den Berg et al., 2021). The newly developed
TRPA1 antagonist BI01305834 effectively prevented ovalbumin-
induced bronchoconstriction in guinea pigs. Sensory nerve fibers
densely packed in the respiratory epithelium, from the nose to the
lower airways, act as a key defense mechanism by detecting irritants
and harmful agents. This initiates coordinated reflex responses,
including bronchoconstriction, mucus, secretion, sneezing, and
coughing (Geppetti et al., 2010). In vivo, BI01305834 effectively
inhibits airway hyperresponsiveness (AHR) and both the early and
late asthmatic reactions (EAR and LAR) (van den Berg et al., 2021).
Moreover, in ex vivo settings, it hinders allergen- and histamine-
induced airway narrowing and reverses allergen-induced
bronchoconstriction independent of inflammation. Histamine, a
central mediator released from mast cells during allergic
reactions, contributes to airway obstruction by inducing smooth
muscle contraction, bronchial secretion, and airway mucosal edema.
Additionally, it affects various cell types involved in immune and
inflammatory responses (Gelfand, 2002; Yamauchi and Ogasawara,
2019). AITC did not induce airway narrowing or histamine release.
Therefore, the protective effect of BI01305834 is unlikely to be
attributed to histamine release inhibition by the highest
concentration antagonist. Consequently, mast cell-mediated
effects, notably allergen-induced histamine release, cannot fully
elucidate the alleviation of asthma symptoms following
TRPA1 antagonism (van den Berg et al., 2021). TRPA1 has
emerged as a versatile conductor in respiratory symphonies that
orchestrates responses to environmental irritants and endogenous
signals. Its involvement in the cough reflex, bronchoconstriction,
and airway inflammation underscores its pivotal role in maintaining
respiratory homeostasis.

4.3 Pathological implications

TRPA1, a prominent “chemosensor,” plays a crucial role in
sensory exogenous irritants and endogenous pro-inflammatory
mediators (Bodkin and Brain, 2011; Mukhopadhyay et al., 2016;
Marsh et al., 2020). Its significance in safeguarding the airway is
evident through its involvement in respiratory disorders, such as
chronic cough, asthma, chronic obstructive pulmonary disease
(COPD), allergic rhinitis, and cystic fibrosis (Mukhopadhyay
et al., 2016). TRPA1 activation can also cause airway constriction
(Lai et al., 2023). This response is part of a protective mechanism
against harmful airborne substances (van den Berg et al., 2021).
However, excessive or chronic TRPA1 activation can contribute to
airway hyperreactivity and respiratory conditions such as asthma
(Jha et al., 2015). In asthma, characterized by recurrent episodes of
wheezing, breathlessness, and coughing, the dysfunction of
TRPA1 is linked to heightened responsiveness of the airways.
Dysregulated TRPA1 signaling may contribute to exaggerated
bronchoconstriction, which is a hallmark of asthma attacks
(Gawalska et al., 2023). Hypersensitivity of TRPA1 in sensory
nerves may amplify the perception of environmental irritants,
leading to heightened cough reflex and exacerbation of asthmatic
symptoms. The effects of Th1- and Th2-type inflammation on
TRPA1 expression and function in A549 human lung epithelial

cells were investigated (Luostarinen et al., 2023). These findings
revealed the upregulation of TRPA1 expression and function in lung
epithelial cells during inflammatory conditions. Specifically, IFN-γ
enhanced TRPA1 expression, whereas IL-4 and IL-13 suppressed it
in a JAK-STAT6 dependent manner, introducing a novel aspect to
the regulation. Additionally, TRPA1 modulates the expression of
genes related to innate immunity and lung disease (Luostarinen
et al., 2023).

In chronic obstructive pulmonary disease characterized by
persistent respiratory symptoms (Landini et al., 2022),
TRPA1 dysfunction may contribute to chronic bronchoconstriction
and obstructive airway changes. Dysregulated TRPA1 signaling in
response to environmental irritants may lead to recurrent
exacerbations, triggering an acute worsening of symptoms and
hastening disease progression. In a study involving 143 patients with
COPD and 104 smokers with post-bronchodilator forced expiratory
volume in one second (FEV1)/forced vital capacity (FVC) > 70%, the
TRPA1 rs4738202 polymorphism was linked to a predisposition to
COPD. These findings suggest that the
TRPA1 rs4738202 polymorphism has the potential to serve as a
biomarker of COPD susceptibility (Naumov et al., 2021). GDC-0334
is a TRPA1 antagonist with high potency, selectivity, and oral
bioavailability. In preclinical studies, its inhibitory effect on
TRPA1 function in both airway smooth muscles and sensory
neurons resulted in reduced edema, dermal blood flow, coughing,
and allergic airway inflammation (van den Berg et al., 2021). These
findings offer a therapeutic basis for considering TRPA1 inhibition as a
potential clinical intervention for asthma (Balestrini et al., 2021). The
regulation of airway inflammation involves TRPA1, and any
malfunction in this process may disturb the complicated balance of
inflammatory responses, contributing to the onset of chronic
obstructive pulmonary disease (COPD) (Landini et al., 2022).
Allergic airway inflammation, often observed in conditions such as
allergic rhinitis and asthma, may exhibit a heightened sensitivity to
TRPA1 dysfunction (Caceres et al., 2009; Balestrini et al., 2021).
Dysregulated TRPA1 activation in sensory nerves and immune cells
may contribute to sensitization and amplify allergen responses (Caceres
et al., 2009; Nassini et al., 2012). This hypersensitivity can manifest as
exacerbated bronchoconstriction, heightened cough reflex, and
increased inflammatory responses upon exposure to allergens.

TRPA1 activation in the airways can contribute to airway
constriction and hyperreactivity. Excessive TRPA1 activation by
environmental irritants may exacerbate asthmatic symptoms and
bronchoconstriction. The inhibition of TRPA1 selectively reduces
pulmonary inflammation and mitigates airway hyperreactivity in
mouse and guinea pig models of asthma (Balestrini et al., 2021). In
mice sensitized to ovalbumin, the inhibition of TRPA1 resulted in a
reduction in inflammation, mucus production, and airway
hyperreactivity, while leaving the immune response triggered by
the allergen unaffected (Facchinetti F, 2010). The inhibition of
TRPA1 by cannabidiol decreased cell viability, proliferation, and
cytokine production, indicating its potential anti-arthritic activity
under inflammatory conditions (Landini et al., 2022). In patients
with rheumatoid arthritis, N-acylethanolamine anandamide (AEA),
a dual inhibitor of fatty acid amide hydrolase/cyclooxygenase-2
(FAAH/COX-2), demonstrated the ability to inhibit MAPK
signaling. Furthermore, AEA desensitizes TRPA1, resulting in
reduced of interleukin (IL) levels and COX-2-dependent MMP-3
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expression (Lowin et al., 2015; Yao et al., 2023). GDC-0334
effectively suppresses TRPA1 function in airway smooth muscle
and sensory neurons, leading to reduced edema, dermal blood flow
(DBF), cough, and allergic airway inflammation in multiple
preclinical species (Balestrini et al., 2021). The potential
contribution of TRPA1 dysfunction to respiratory diseases such
as asthma, Chronic Obstructive Pulmonary Disease, and allergic
airway inflammation is a complex interplay between altered sensory
perception, inflammatory dysregulation, and structural changes in
the airways. TRPA1 dysregulation and respiratory pathophysiology,
offer insights into potential therapeutic interventions for the
management of respiratory disorders (Figure 3).

5 TRPA1 in the gastrointestinal tract

5.1 Expression and localization

The gastrointestinal tract, a complex system that orchestrates
digestion and nutrient absorption, harbors a TRPA1 channel with a
dynamic expression pattern (Ding et al., 2022). This elaborate
exploration revealed a nuanced distribution of TRPA1 in various
segments of the gastrointestinal tract, accentuating its presence in
enteric neurons (Poole et al., 2011; Someya et al., 2015), epithelial
cells (Kono et al., 2013), and immune cells (Benguettat et al., 2018).
TRPA1 is expressed in sensory neurons within the gastrointestinal
tract, including the stomach and intestine (Doihara et al., 2009; Yu
et al., 2016). Their role in the gastrointestinal tract is to detect and
respond to various stimuli and changes in the gut environment. A

recent study has investigated the involvement of TRPA1 in the
regulation of gastrointestinal motility. The activation of
TRPA1 results in the release of serotonin from enterochromaffin
cells, which influences gut reflexes and motility (Nozawa et al.,
2009). Activation of TRPA1 in gut sensory neurons can influence
gut reflexes, including peristalsis (the movement of food through the
digestive tract) and sensitivity to the mechanical and chemical
stimuli (Nozawa et al., 2009; Hassan et al., 2020). Inflammatory
mediators such as aldehydes 4-hydroxy-2-hexenal (HHE) and
malondialdehyde are released during gut inflammation; increased
levels of aldehydes sensitize TRPA1, thereby lowering its activation
threshold (Lennertz et al., 2012; Larsson et al., 2016). This can lead to
an increased responsiveness of TRPA1 in the gut, contributing to
abdominal pain and hypersensitivity in conditions such as irritable
bowel syndrome (IBS). Altered TRPA1 function is associated with
gastrointestinal disorders such as inflammatory bowel disease (IBD)
(Kumar et al., 2022). Dysregulated TRPA1 activity in the gut sensory
neurons may contribute to the symptoms experienced by individuals
with these conditions.

TRPA1 is integral to the sensitization of esophageal sensory
afferents by inflammatory mediators, contributing significantly to
esophageal nociception. Mast cell tryptase, acting through protease-
activated receptor 2 (PAR2)- mediated pathways, sensitizes sensory
nerves and induces hyperalgesia (Yu et al., 2009). TRPA1 activation,
facilitated by a PAR2-dependent mechanism, increases
TRPA1 sensitivity, leading to mechanical hypersensitivity in
esophageal vagal C-fibers (Yu et al., 2009). Immunostaining was
used to examine the expression of TRPA1 in small-to-medium sized
vagal nodoses and jugular neurons labelled with esophageal dil (Yu

FIGURE 3
Physiological and pathological roles of transient receptor potential ankyrin 1 (TRPA1) channel in the respiratory diseases. This figure illustrates the
multifaceted involvement of TRPA1 in respiratory ailments, including normal physiological and pathways of asthma and COPD induction. It delineates the
role played by TRPA1 in exacerbating airway constriction and hypersensitivity, contributing to disease progression. It elucidates TRPA1 modulation by
inflammatory mediators and genetic factors, offering insights into disease susceptibility. It highlights the presence of TRPA1 in epithelial cells,
sensory nerves and immune cells.
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et al., 2016). Enterochromaffin cells exhibit high expression of
TRPA1, and TRPA1 agonists effectively stimulate
enterochromaffin cell functions, including the elevation of
intracellular Ca2+ levels and the release of 5-HT. Furthermore,
AITC induces contraction in isolated guinea pig ileum through
activation of the 5-HT3 receptor (Nozawa et al., 2009).
TRPA1 extends to epithelial cells in the stomach lining
(Camacho et al., 2015). TRPA1 activation may contribute to the
detection of irritants and modulation of protective responses,
influencing gastric mucus secretion and mucosal integrity.
Enteroendocrine cells (EEC) expressing TRPA1 are prevalent in
the duodenum and jejunum, less common in the distal small
intestine, and entirely absent in the stomach and large intestine
(Cho et al., 2014). TRPA1 was observed in EEC co-containing
cholecystokinin (CCK) and 5-hydroxytryptamine (5HT), as well
as in a subset of cells expressing 5HT without CCK. Notably,
TRPA1 is not present in CCK cells lacking 5HT expression or in
EEC containing glucagon-like insulinotropic peptides (Cho et al.,
2014). TRPA1 is present in primary extrinsic afferent nerves that
innervate the esophagus, stomach, intestine, and colon (Yu et al.,
2016). 55% of the gastroesophageal vagal afferents exhibited
TRPA1 localization. The role of TRPA1 in the gut is becoming
clearer; however, the results are still in the preliminary stages
(Blackshaw et al., 2010). Nociceptive dorsal root ganglion (DRG)
neurons commonly exhibit TRPA1 and TRPV1 co-localization.
Activation of TRPA1 agonists induces cross-desensitization in
these neurons in response to capsaicin and vice versa (Kollarik
and Undem, 2004; Blackshaw et al., 2010). Modulation of pacemaker
potentials by menthol involves TRPA1 channels (Kim et al., 2016).
Upregulation of blood flow in the rat small intestine is facilitated by
the epithelial TRPA1-dependent adrenomedullin. In intestinal
epithelial cells (IECs), TRPA1 may play a crucial role in the
regulation of bowel microcirculation through the release of
adrenomedullin (ADM) (Kono et al., 2013). TRPA1 in IECs is
implicated in the ADM-mediated vasodilatory effects of
daikenchuto (TU-100), a traditional Japanese herbal medicine
that increases intestinal blood flow (IBF). TRPA1 antagonists
abolish the vasodilatory effects of TU-100 (Kono et al., 2013).

Within the colonic tissue, TRPA1 is primarily expressed in
mesenchymal cells of the lamina propria, which is distinctly
different from its distribution in the small intestine. These cells
co-expressed COX1 and microsomal prostaglandin E synthase-1.
Colonic contraction induced by intracolonic administration of
TRPA1 agonists was inhibited by a prostaglandin E2 (PGE2)
receptor 1 antagonist. TRPA1 activation in cultured human
fibroblasts leads to calcium influx and PGE2 release. In animals
treated with dextran sulfate sodium, both TRPA1 and its
endogenous agonist were markedly increased in the colonic
lamina propria, contributing to abnormal colorectal contractions.
Pharmacological and genetic inhibition of TRPA1 significantly
prevents abnormal colorectal contractions (Yang et al., 2019).
TRPA1 extends beyond the neuronal and epithelial domains to
immune cells residing in the gastrointestinal tract (Naert et al.,
2021). Immune cells such as macrophages and mast cells express
TRPA1, suggesting a contribution to local immune responses and
inflammatory processes (Chen et al., 2020). TRPA1 plays a dual role
in immunity by functioning as a detector of cellular stress, tissue
injury, and external noxious stimuli, leading to defensive responses

(Naert et al., 2021). However, aberrant regulation contributes to
escalation of inflammatory conditions. Future investigations should
focus on elucidating the functional properties of TRPA1 in immune
cells, which is a crucial step in understanding its involvement in
inflammation and exploring its potential as a therapeutic target
(Naert et al., 2021). TRPA1 orchestrates a symphony of responses
across different segments of the gastrointestinal tract.

5.2 Physiological functions

The TRPA1 channel is at the forefront of chemical sensing in the
gastrointestinal tract, orchestrating a symphony of responses to a
myriad stimuli ranging from dietary components (Fothergill et al.,
2016) to inflammatory signals (Cseko et al., 2019). This extensive
exploration has delved into the multifaceted physiological functions
of TRPA1, accentuating its profound involvement in gut motility
(Legrand et al., 2020), visceral pain perception (Pereira et al., 2013;
Chen et al., 2019), and the complex defense mechanisms that
safeguard mucosal integrity (Ohashi et al., 2023). TRPA1,
positioned strategically in epithelial cells throughout the
gastrointestinal tract, plays a pivotal role in sensory transduction
of dietary components. Its responsiveness to a diverse array of
chemicals, including those found in spicy foods (e.g.,
isothiocyanates) (Wu et al., 2017; Radhakrishnan et al., 2023)
and pungent substances (e.g., allicin in garlic) (Sodhi et al.,
2021), underscores its significance in translating the chemical
landscape of ingested nutrients into cellular signals. Considering
its physiological function in the gastrointestinal tract,
TRPA1 agonists, such as allicin and AITC, might exert a
regulatory influence on gastrointestinal motility (Tsuchiya and
Kawamata, 2019). The stimulation of TRPA1 receptors in the
intestine by dietary compounds such as AITC, cinnamaldehyde,
and linalool (Fothergill et al., 2016; Kashiwadani et al., 2021) triggers
mucosal defense mechanisms (Table 2). When food components
activate TRPA1 on enterocytes, they enhance transmucosal ion
currents, which in turn facilitate nutrient absorption (Fothergill
et al., 2016). TRPA1 activation in response to dietary compounds
initiates mucosal defense mechanisms. These include the
modulation of epithelial barrier function, mucus secretion, and
antimicrobial peptide release (Geppetti et al., 2010; Majhi et al.,
2021; van den Berg et al., 2021).

The involvement of TRPA1 in these processes highlights its dual
role as a sensor and effector, contributing to the preservation of
mucosal integrity in the face of dietary challenges. In the presence of
inflammatory signals, such as those released by immune cells or
tissue damage, TRPA1 has emerged as a key player in the integration
of inflammatory pathways within the gastrointestinal environment.
Its expression in immune cells such as macrophages positions
TRPA1 as a modulator of immune responses and influences the
release of pro-inflammatory mediators. The role of TRPA1 in
modulating the anti-inflammatory effect of Hsp90 inhibition via
17-(allylamino)-17-demethoxygeldanamycin (17-AAG) during
lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate
(PMA) stimulation was investigated in RAW 264.7, a mouse
macrophage cell line, and PMA-differentiated THP-1 cells, a
human monocytic cell line resembling macrophages
(Radhakrishnan et al., 2023). Activation of TRPA1 with AITC
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demonstrated an anti-inflammatory effect by enhancing
Hsp90 inhibition-mediated responses to LPS or PMA stimulation
in macrophages. Conversely, antagonizing TRPA1 with 1,2,3,6-
Tetrahydro-1,3-dimethyl-N-[4-(1-methylethyl) phenyl]-2,6-dioxo-
7 H-purine-7-acetamide,2-(1,3-Dimethyl-2,6-dioxo-1,2,3,6-
tetrahydro-7 H-purin-7-yl)-N-(4-isopropylphenyl) acetamide
(HC-030031) downregulated these effects (Radhakrishnan et al.,
2023). Macrophage activation induced by LPS or PMA is regulated
by TRPA1. Additionally, TRPA1 has been identified as a significant
contributor to intracellular calcium levels during Hsp90 inhibition
in LPS- or PMA-stimulated macrophages (Radhakrishnan
et al., 2023).

The involvement of TRPA1 extends to the perception of visceral
pain during inflammation (Lapointe and Altier, 2011). Sensitization
of TRPA1 in sensory nerve fibers enhances pain perception,
contributing to the visceral hypersensitivity observed in
inflammatory conditions. This nociceptive role underscores the
participation of TRPA1 in the complex interplay between
inflammation and pain perception in the gastrointestinal tract
(Lapointe and Altier, 2011). Notably, in the colon, mechanical
hypersensitivity induced by TRPA1 agonists increased in
afferents of mice with chemically induced colitis. This implies a
potential role of TRPA1 in mechanosensory function and
sensitization under inflammatory conditions (Brierley et al.,

2009). TRPA1 contributes to pancreatic pain, and TRPA1 also
mediates pancreatic inflammation (Schwartz et al., 2011).
TRPA1 is expressed in visceral afferent neurons and participates
in inflammatory responses and the establishment of hypersensitivity
(Ceppa et al., 2010). Within an intricate network of enteric neurons,
TRPA1 exerts a significant effect on gut motility (Ye et al., 2021). Its
activation in enteric neurons contributes to the regulation of
peristalsis and the overall gastrointestinal transit. TRPA1-
mediated signals play a crucial role in coordinating smooth
muscle contractions and ensuring the propulsive movements
necessary for effective digestion and nutrient absorption (Cho
et al., 2014). TRPA1 is present in enterochromaffin (EC) cells
within the enteric mucosa, displaying a graded expression profile
along the length of the gut and is notably absent from the colon (Cho
et al., 2014; Hassan et al., 2020).

TRPA1 activation influences the balance between muscle
contraction and relaxation. Dysregulation of TRPA1 signaling
may contribute to motility disorders, affecting the overall
efficiency of the gastrointestinal propulsion process (Linan-Rico
et al., 2016; Yang et al., 2019). Agonists and antagonists targeting
TRPA1 have demonstrated effectiveness in treating
neuropsychiatric disorders and appetite regulation, establishing a
vital connection between the two. TRPA1 channels play a role in
regulating appetite, lipid metabolism, glucose and insulin

TABLE 2 Roles played by TRPA1 in the gastrointestinal system, detailing its cellular involvement and implications for related disorders.

Agonists Antagonists Involvement and roles Mechanisms References

Isothiocyanates, Allicin Capsazepine Plays a pivotal role in sensory
transduction of dietary components
Responds to a diverse array of

chemicals

Activation influences mucosal
defense mechanisms, including

barrier function and mucus secretion

Wu et al. (2017), Tsuchiya and
Kawamata (2019),

Radhakrishnan et al. (2023)

Allyl Isothiocyanate,
Cinnamaldehyde, Linalool

- Modulates epithelial barrier
function, mucus secretion, and
antimicrobial peptide release
Influences nutrient absorption

Agonists induce mucosal defense
mechanisms, enhancing nutrient

absorption

Geppetti et al. (2010), Majhi et al.
(2021), Luostarinen et al. (2023)

Inflammatory Mediators HC-0300031 Sensitization of TRPA1 by
inflammatory mediators lowers
activation threshold, contributing

to hypersensitivity

TRPA1 sensitization leads to
increased responsiveness and

contributes to abdominal pain in IBS

Nozawa et al. (2009), Cho et al.
(2014), Kumar et al. (2022)

Mast Cell Tryptase, PAR2 - Sensitization of esophageal sensory
afferents by inflammatory

mediators
Contributes to esophageal

nociception

Activation through PAR2-mediated
pathways heightens

TRPA1 sensitivity, inducing
mechanical hypersensitivity

Yu et al. (2009), Yu et al. (2016)

- TU-100 (Adrenomedullin) Regulator of bowel microcirculation
through the release of

adrenomedullin in intestinal
epithelial cells

TRPA1 in IECs plays a role ADM-
mediated vasodilatory effect,

increasing intestinal blood flow

Kono et al. (2013)

- Prostaglandin E2 Receptor
1 Antagonist

Involved in abnormal colorectal
contractions and inflammation in

the colon

TRPA1 activation in colonic
mesenchymal cells leads to abnormal

colorectal contractions and
inflammation

Yang et al. (2019)

Hsp90 Inhibition Allyl Isothiocyanate
(AITC)

Regulates anti-inflammatory
impact of Hsp90 inhibition in

macrophages during LPS or PMA
stimulation

TRPA1 activation enhances
Hsp90 inhibition-mediated

responses against LPS or PMA
stimulation

Radhakrishnan et al. (2023)

- HC-030031 Contributor to immune modulation
within the GI microenvironment

Dysregulated TRPA1 activation in
immune cells may perpetuate low-

grade inflammation in IBS

Beckers et al. (2021), Naert et al.
(2021)
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homeostasis, and the inflammation associated with neuropsychiatric
and metabolic disorders (Sodhi et al., 2021). Non-electrophilic
TRPA1 activators, including menthol, carvacrol, and clotrimazole,
induce an increase in the permeability of fluorescein isothiocyanate-
conjugated dextran (4 kDa) and a decrease in transepithelial
electrical resistance in epithelial MDCK II monolayers. This
effect is accompanied by Ca2+ influx and cofilin activation
(Mukaiyama et al., 2020). Pretreatment with a TRPA1 antagonist
attenuated these phenotypes, suggesting a TRPA1-mediated
opening of tight junctions. These findings imply that
nonelectrophilic TRPA1 activators, known for their safety, can be
employed to modulate epithelial barriers (Mukaiyama et al., 2020).
The involvement of TRPA1 in visceral pain perception extends
beyond inflammation and includes broader nociceptive pathways.
The role of TRPA1 in the gastrointestinal tract, disorders, cell types,
and functions are detailed in Figure 4.

5.3 Implications in gastrointestinal disorders

The TRPA1 channel, a versatile sensory receptor in the
gastrointestinal (GI) tract, has emerged as a pivotal player in the
pathophysiology of various GI disorders (Brierley et al., 2009). This
extensive exploration delves into the profound and complex links
between TRPA1 dysregulation and gastrointestinal maladies,
including Irritable Bowel Syndrome (IBS) (Choi et al., 2023),
Inflammatory Bowel Disease (IBD) (Cseko et al., 2019), and
Functional Dyspepsia (Balemans et al., 2017), comprehensively
illustrating how aberrant TRPA1 signaling contributes to the
complexity of these disorders. A hallmark feature of IBS is
visceral hypersensitivity, in which the perception of normal GI

stimuli is amplified, leading to abdominal pain and discomfort.
TRPA1, which is abundantly expressed in sensory nerves
throughout the GI tract, plays a pivotal role in transducing
noxious stimuli (Kaji et al., 2012). TRPA1 dysregulation may
contribute to visceral hypersensitivity, heightened pain
perception, and exacerbated IBS symptomatology (Balemans
et al., 2017). Visceral hypersensitivity was less prevalent in elderly
patients with IBS. Healthy elderly individuals show a significant
decrease in the expression of TRPA1, indicating its potential
involvement in the modification of visceroperception (Beckers
et al., 2021). Low-grade inflammation and immune dysregulation
have been observed in a subset of patients with IBS. TRPA1 is
expressed not only in sensory nerves but also in immune cells and
may contribute to immune modulation within the GI
microenvironment (Eissmann et al., 2020; Naert et al., 2021).
Dysregulated TRPA1 activation in immune cells may perpetuate
low-grade inflammation and contribute to chronic IBS symptoms
(Burns et al., 2022).

Inflammatory Bowel Disease (IBD) encompasses Crohn’s
disease and ulcerative colitis and is characterized by chronic
relapsing inflammation of the GI tract (Coates and Binion, 2021).
TRPA1 expression in immune cells places it at the crossroads of
immune-mediated inflammation. Dysregulation of TRPA1 in
immune cells may contribute to the release of pro-inflammatory
mediators, thereby influencing the perpetuation of inflammation
observed in IBD. Despite the inconsistencies in findings over the last
2 decades, preclinical evidence and limited human studies have
indicated the potential therapeutic efficacy of TRPV1 and
TRPA1 antagonists in treating colitis and visceral
hypersensitivity. These channels present a distinct mechanism of
action for drug development in the context of inflammatory bowel

FIGURE 4
Physiological and pathological roles of transient receptor potential ankyrin 1 (TRPA1) channel in the gastrointestinal tract. This figure navigates the
pivotal role played by TRPA1 within the gastrointestinal tract, elucidating its involvement in sensory perception, immune modulation, and
neuropsychiatric regulation. It explores the significance of TRPA1 in conditions such as functional dyspepsia, inflammatory bowel disease and irritable
bowel syndrome. It highlights the presence of TRPA1 in epithelial cells, immune cells and enteric neurons, emphasizing its diverse contribution to
gut motility, mucosal defense, and nociceptive signaling.

Frontiers in Physiology frontiersin.org11

Tekulapally et al. 10.3389/fphys.2024.1413902

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1413902


disease (IBD) (Cseko et al., 2019). Visceral pain experienced by
individuals with IBD is multifactorial, and the role of TRPA1 in pain
perception is crucial. Dysregulated TRPA1 signaling in sensory
nerves may amplify pain responses, contributing to the
heightened visceral pain experienced during IBD flares. This
nociceptive amplification may significantly affect the quality of
life of patients with IBD (Chen et al., 2020).

Mice lacking TRPA1 displayed reduced dermal thickening,
diminished collagen accumulation, and decreased expression of
pro-fibrotic factors. Blocking TRPA1 potentially relieves
conditions such as systemic sclerosis and scleroderma (Maki-
Opas et al., 2023). IBD is often associated with disruption of
mucosal integrity. TRPA1, which is involved in the mucosal
defense mechanisms, may contribute to the delicate balance
between protection and damage. Dysregulation of
TRPA1 signaling might influence mucosal defense mechanisms,
potentially affecting the susceptibility of the GI mucosa to injury and
inflammation. TRPA1 is implicated in abdominal pain and
hypersensitivity in irritable bowel syndrome (IBS) and
Inflammatory Bowel Disease (IBD). One study underscored the
potential influence of capsazepine treatment on pain and mucosal
health via TRPA1/TRPV1 modulation (Kumar et al., 2022).
However, the observed side effects such as mucous layer loss
necessitate cautious consideration of their impact, whether
detrimental or adaptive. Before clinical application, a deeper
understanding of the role of nociceptors in mucin health is
crucial for refining therapeutic approaches (Kumar et al., 2022).
Functional dyspepsia is a gastrointestinal disorder of gastroduodenal
origin within the category of functional GI disorders and is
characterized by symptoms such as postprandial fullness and
early satiety; it often involves disturbances in gastric motility,
including gastric peristalsis, and is a potential contributor to the
dysmotility patterns observed in functional dyspepsia (Sayuk and
Gyawali, 2020). Dysregulated TRPA1 signaling may influence the
rhythmic contractions necessary for effective digestion.

5.4 Cross-cutting themes

Psychological factors play a significant role in causing
gastrointestinal disorders (Wilhelmsen, 2000). Stress and anxiety
can modulate TRPA1 activity, potentially exacerbating symptoms in
individuals with TRPA1 dysregulation and contributing to the
complex interplay between the gut and brain (Hassan et al.,
2020; Giacco et al., 2023; Sullivan et al., 2023). Understanding
the link between TRPA1 dysregulation and GI disorders opens
new avenues for targeted therapeutic interventions. The
modulating of TRPA1 activity, either through pharmacological
agents or lifestyle modifications, presents a potential strategy for
alleviating symptoms and improving the quality of life of individuals
with complex and heterogeneous disorders. The potential links
between TRPA1 dysregulation and GI disorders such as IBS and
IBD unravel a complex web of interactions within the GI milieu
(Chen et al., 2020; Lin et al., 2021). TRPA1 has emerged as a central
player in orchestrating GI homeostasis (Lapointe and Altier, 2011;
Yu et al., 2016; Gong et al., 2023). Unravelling the intricacies of
TRPA1 dysregulation offers a tantalizing glimpse into the molecular
underpinnings of these disorders and presents opportunities for

innovative and targeted therapeutic interventions in the field of
gastroenterology.

6 Interactions and cross-talk

6.1 Integration of respiratory and
gastrointestinal TRPA1 signaling

The TRPA1 channel, a versatile sensory receptor, orchestrates a
symphony of responses in both the respiratory (Jha et al., 2015) and
gastrointestinal (Yang et al., 2019) tracts. Within the respiratory
tract, the strategic positioning of TRPA1 in epithelial cells lining the
airways makes it a frontline sensor of inhaled irritants and
environmental challenges (Omar et al., 2017). Its activation
initiates immediate protective responses, preserving airway
integrity and triggering reflexes such as coughing and
bronchoconstriction (Grace and Belvisi, 2011; Al-Shamlan and
El-Hashim, 2019; Jentsch Matias de Oliveira et al., 2020). The
role of TRPA1 extends beyond the epithelium to sensory nerves
and immune cells, contributing to nociception, immune responses,
and inflammatory processes (Fischer et al., 2008; Luostarinen et al.,
2023; Muthumalage and Rahman, 2023). Dysregulation of
TRPA1 in conditions such as severe asthma and fibrosis
underscores its significance in airway remodeling and respiratory
homeostasis (Yang and Li, 2016; Li et al., 2020; Yap et al., 2021; Li
et al., 2022).

In the cross-talk between the respiratory and gastrointestinal
tracts, the involvement of TRPA1 in immune cells is evident (Billeter
et al., 2014; Naert et al., 2021). In the respiratory microenvironment,
TRPA1 is expressed in macrophages and mast cells and influences
immune responses and inflammatory processes (Naert et al., 2021).
This immune modulation by TRPA1 may extend to the
gastrointestinal tract, where immune cells, including
macrophages, express TRPA1 (Chen et al., 2020). The shared
presence of TRPA1 in immune cells suggests a potential interplay
between the regulation of inflammatory responses in both systems.

In the gastrointestinal tract, TRPA1 exhibits a dynamic
expression pattern in various segments, including enteric neurons
(Cho et al., 2014; Hassan et al., 2020), epithelial cells (Kono et al.,
2013), and immune cells (Naert et al., 2021). Activation of TRPA1 in
gut sensory neurons influences peristalsis and sensitivity to
mechanical and chemical stimuli, and plays a crucial role in
gastrointestinal motility (Tsuchiya and Kawamata, 2019). The
parallel role of TRPA1 in airway reflexes and sensitivity in the
respiratory tract suggests a common mechanism for orchestrating
protective responses and reflex arcs in both systems
(Mukhopadhyay et al., 2016).

Moreover, the participation of TRPA1 in the perception of pain
was evident in both the respiratory and gastrointestinal tracts. In the
respiratory system, TRPA1 activation in sensory nerves leads to a
cough reflex and bronchoconstriction (Grace and Belvisi, 2011;
Jentsch Matias de Oliveira et al., 2020), whereas in the
gastrointestinal tract, TRPA1 sensitization in sensory nerve fibers
contributes to visceral hypersensitivity and abdominal pain (Beckers
et al., 2021; Landini et al., 2022). The interconnection between
TRPA1-mediated pain responses in both the systems is a shared
mechanism in the modulation of sensory perception.

Frontiers in Physiology frontiersin.org12

Tekulapally et al. 10.3389/fphys.2024.1413902

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1413902


The role of TRPA1 in inflammation is another point of
intersection. In the respiratory tract, TRPA1 is implicated in
airway tissue injury and inflammation (Wang M. et al., 2019),
whereas in the gastrointestinal tract, dysregulated TRPA1 activity
in gut sensory neurons may contribute to inflammation observed in
conditions such as irritable bowel syndrome (IBS) (Landini et al.,
2022) and inflammatory bowel disease (IBD) (Kumar et al., 2022).
This shared involvement in inflammatory processes highlights the
potential of TRPA1 as a therapeutic target for conditions involving
immune dysregulation in both systems.

The cross-talk between the respiratory and gastrointestinal
tracts with respect to TRPA1 reveals commonalities in its spatial
dynamics, protective responses, immune modulation, pain
perception, and regulation of inflammation. Understanding the
versatile role of TRPA1 in orchestrating these responses across
different cell types in both systems lays the foundation for
targeted therapeutic interventions in respiratory and
gastrointestinal conditions where TRPA1 dysregulation plays a
pivotal role.

TRPA1 channels in the respiratory and gastrointestinal tract
reveals limitations in understanding the precise role of these
channels in disease pathogenesis. While this review may offer
insights into potential therapeutic targets for respiratory and
gastrointestinal conditions, it is constrained by the complexity of
cellular and molecular interactions within these systems.
Additionally, the findings may not fully capture the dynamic
nature of TRPA1 channel activity in various physiological and
pathological contexts. Moreover, changing these findings into
clinical applications may be complicated by differences in
experimental models and human physiology. Further research is
needed to elucidate the specific mechanisms underlying
TRPA1 channel function and its implications for respiratory and
gastrointestinal health.

7 Conclusion and areas for
future research

The exploration of the TRPA1 in both the respiratory and
gastrointestinal tracts has revealed its multifaceted role as a
pivotal molecular orchestrator. Within the respiratory system,
TRPA1 is present in the epithelial cells, sensory nerves, and
immune cells, thereby serving as a frontline sensor for inhaled
irritants and other environmental challenges. Its activation
initiates immediate protective responses, regulates long-term
physiological processes, and affects immune responses.
Dysregulation of TRPA1 in conditions such as asthma and
chronic obstructive pulmonary disease (COPD) underscores its
significance in respiratory homeostasis and presents opportunities
for targeted therapeutic interventions.

Furthermore, in the gastrointestinal tract, the dynamic
expression pattern of TRPA1 in enteric neurons, epithelial cells,
and immune cells positions it as a central player in orchestrating
responses to a myriad stimuli, ranging from dietary components to
inflammatory signals. TRPA1 influences gut motility, visceral pain
perception, and mucosal defense mechanisms and plays a crucial
role in maintaining gastrointestinal homeostasis. Dysregulation of
TRPA1 been implicated in various gastrointestinal disorders

including irritable bowel syndrome (IBS), inflammatory bowel
disease (IBD), and functional dyspepsia, contributing to visceral
hypersensitivity, inflammation, and disturbances in gastric motility.

The therapeutic implications of targeting TRPA1 in respiratory
and gastrointestinal disorders are promising. The development of
TRPA1 antagonists, such as BI01305834 and GDC-0334, has
demonstrated efficacy in preventing airway hyperresponsiveness,
bronchoconstriction, and abnormal colorectal contractions. These
findings offer hope for the development novel treatment strategies
for asthma, COPD, IBS, and IBD. However, the complex interplay of
TRPA1 in immune modulation and nociceptive pathways requires
further research to unravel its detailed functional properties in
specific cell types and signaling pathways.

This comprehensive review underscores the versatile and crucial
role played by TRPA1 in chemical sensing, sensory transduction,
and immunemodulation in both the respiratory and gastrointestinal
systems. The spatial nuances of TRPA1 across different cell types
revealed a cellular symphony that influences immediate protective
responses, long-term physiological processes, and inflammatory
conditions. Understanding TRPA1 in these contexts lays the
foundation for targeted therapeutic interventions and paves the
way for future research aimed at unravelling the intricacies of its
involvement in health and diseases.

The systemic impact of TRPA1 dysregulation along with how
conditions in one system influence another, particularly in the context
of systemic inflammation, were explored. Additionally, the influence of
psychosomatic factors on TRPA1 activity as well as the impact of stress
and anxiety on physiological responses were further investigated.
Development and exploration of therapeutic interventions targeting
TRPA1 for dual-system applications, considering conditions in which
both the respiratory and gastrointestinal systems are implicated.

TRPA1 is a versatile molecular conductor in both the respiratory
and gastrointestinal tracts that influences sensory perception,
inflammatory responses, and physiological homeostasis. The
shared expression patterns and functional roles highlight the
interconnectedness between these systems. Unravelling the
complex nuances of TRPA1 in both domains not only deepens
our understanding of physiological regulation but also opens
avenues for innovative therapeutic approaches that transcend
traditional organ-specific boundaries. Future research should
explore the systemic impact of TRPA1 dysregulation,
psychosomatic influences, and the potential of dual-system
therapeutics to address conditions in which both systems play a role.
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