
TYPE Original Research
PUBLISHED 02 August 2024
DOI 10.3389/fphys.2024.1412985

OPEN ACCESS

EDITED BY

Raimond L. Winslow,
Northeastern University, United States

REVIEWED BY

Zhifan Gao,
Sun Yat-sen University, China
Da Chen,
Qilu University of Technology, China

*CORRESPONDENCE

Ke Liu ,
liuke905@sina.com

RECEIVED 13 May 2024
ACCEPTED 16 July 2024
PUBLISHED 02 August 2024

CITATION

Zhan S, Yuan Q, Lei X, Huang R, Guo L, Liu K
and Chen R (2024), BFNet: a full-encoder skip
connect way for medical image
segmentation.
Front. Physiol. 15:1412985.
doi: 10.3389/fphys.2024.1412985

COPYRIGHT

© 2024 Zhan, Yuan, Lei, Huang, Guo, Liu and
Chen. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

BFNet: a full-encoder skip
connect way for medical image
segmentation

Siyu Zhan1,2, Quan Yuan3, Xin Lei4, Rui Huang5, Lu Guo6,
Ke Liu7* and Rong Chen8

1Institute of intelligent computing, University of Electronic Science and Technology of China,
Chengdu, China, 2Trusted Cloud Computing and Big Data Key Laboratory of Sichuan Province,
Chengdu, China, 3School of Computer Science and Engineering (School of Cybersecurity), University
of Electronic Science and Technology of China, Chengdu, China, 4School of Optoelectronic Science
and Engineering, University of Electronic Science and Technology of China, Chengdu, China,
5Hepatobility and Pancreatic Cen, Sichuan Provincial People’s Hospital, University of Electronic
Science and Technology of China, Chengdu, China, 6Department of Pulmonary and Critical Care
Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of
China, Chengdu, China, 7Department of Cardiac Surgery, Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu, China, 8Department of Delivery
Room, Chengdu Women and Children’s Central Hospital, University of Electronic Science and
Technology of China, Chengdu, China

In recent years, semantic segmentation in deep learning has been widely
applied in medical image segmentation, leading to the development of
numerous models. Convolutional Neural Network (CNNs) have achieved
milestone achievements in medical image analysis. Particularly, deep neural
networks based on U-shaped architectures and skip connections have been
extensively employed in various medical image tasks. U-Net is characterized
by its encoder-decoder architecture and pioneering skip connections, along
with multi-scale features, has served as a fundamental network architecture
for many modifications. But U-Net cannot fully utilize all the information from
the encoder layer in the decoder layer. U-Net++ connects mid parameters of
different dimensions through nested and dense skip connections. However, it
can only alleviate the disadvantage of not being able to fully utilize the encoder
information and will greatly increase the model parameters. In this paper, a
novel BFNet is proposed to utilize all feature maps from the encoder at every
layer of the decoder and reconnects with the current layer of the encoder. This
allows the decoder to better learn the positional information of segmentation
targets and improves learning of boundary information and abstract semantics
in the current layer of the encoder. Our proposed method has a significant
improvement in accuracy with 1.4 percent. Besides enhancing accuracy, our
proposed BFNet also reduces network parameters. All the advantages we
proposed are demonstrated on our dataset. We also discuss how different loss
functions influence this model and some possible improvements.

KEYWORDS

deep learning, U-net, medical image segmentation, pulmonarty embolism, CNN -
convolutional neural network

1 Introduction

Influenced by the advancements in deep learning, computer vision techniques have
been widely applied in the field of medical image analysis. Image segmentation is a critical
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component of medical image analysis, where accurate segmentation
plays a crucial role in computer-aided diagnosis and assists doctors
in lesion identification and treatment decisions. The extensive
utilization of Convolutional Neural Networks (CNNs) (O’Shea and
Nash, 2015) has greatly propelled the development of various
segmentation models, such as FCN (Shelhamer et al., 2014), U-
Net (Ronneberger et al., 2015), DeepLab (Chen et al., 2016), among
others. Particularly U-Net, which stands out for its symmetric
encoder-decoder and skip connections. Since its proposal in 2015,
UNet has been widely adopted in medical image segmentation due
to its lightweight nature and efficiency. Skip connections combine
deep semantic feature maps from the decoder layers with shallow
low-level feature maps from the encoder layers. Skip connections
have been proven highly effective in recovering details of target
objects, enabling the generation of segmentation masks (He et al.,
2017) with intricate details even in complex backgrounds.

Many encoder-decoder network architectures use a series
of convolutional layers and consecutive downsampling layers in
the encoder to extract deep features with large receptive fields.
High-resolution features from different scales of the encoder are
connected via skip connections to alleviate spatial information loss
caused by downsampling. Subsequently, the decoder upsamples
the extracted deep features to the input resolution for pixel-level
semantic prediction. Due to its simple structure and excellent
performance, U-Net has achieved great success in various medical
imaging applications. Following this technological path, many
algorithms such as 3D U-Net (Çiçek et al., 2016), Res-UNet
(Diakogiannis et al., 2019), U-Net++ (Zhou et al., 2018), and U-
Net3+ (Huang et al., 2020) have emerged as image segmentation
methods for various medical imaging modalities.

From the research in many segmentation papers, it is evident
that feature maps at different scales contain distinct information:
low-level detailed feature maps capture rich spatial information,
highlighting organ boundaries, while high-level semantic feature
maps contain positional information, pinpointing the location
of organs. However, during upsampling and downsampling, a
significant amount of information is inevitably lost, especially
information related to organ boundaries.

While U-Net has made progress in providing effective feature
connections, it still has some limitations. It can only access
information from the current layer of the encoder, ignoring
information from other layers. This results in upper-level decoders
lacking access to high-level semantic feature information from
lower-level encoders directly, and lower-level decoders missing low-
level detailed feature information from upper-level encoders. To
make decoder understanding the detailed features contained in
the encoder better, U-Net++ introduces nested and dense skip
connections, further strengthening the connection between the
encoder and decoder. However, even with these improvements, it
still cannot fully access information across all scales simultaneously.
U-Net3+ ensures that each decoder layer is connected to both
its encoder and the encoder of its upper layer. However, through
excessively downsampling feature maps, it may lead to the loss of
too much semantic information.

To address the need for more accurate segmentation in
medical images and effectively reduce false positives in non-
organ regions, we tried to investigate how to apply global context
attention (Cao et al., 2019) to feature maps, which requiring each

pixel to attend to every other pixel can be employed to solve
this issue. We found that applying global context attention simply
to feature maps, positioned after all encoder, mid, and decoder
layers, yields optimal results since this mechanism can make the
model focus more on the lesion areas. The paper which proposed
global context attention also mentions that regardless of where
the focus is initially placed, the model eventually attends to
the corresponding regions that require attention, indicating that
attention is independent of the focus point.

In summary, our main contributions are as follows: 1) We
propose a novel network architecture that combines low-level
detailed information with high-level semantics by introducing
connections between the full-scale feature maps of the encoder and
the corresponding encoder of the current layer before performing
skip connections with the decoder. 2) We propose a novel
connection method by fully connecting the feature maps of the
encoder, enabling the decoder to learn features from allWe also
noted that both upsampling and downsampling can potentially
disrupt the original semantics through unnecessary generation or
reduction of parameters. In the network we proposed, we havemade
efforts to minimize this by making minimal parameter changes
to achieve the best possible results. 3) We considered a variety
of models that optimize U-Net based on different objectives and
combined their advantages.Then compared with the effects of using
them separately, the results show that our model has achieved
better results among all compared models. 4) We conduct extensive
experiments on our ownpulmonary embolismdataset, where BFNet
consistently outperformed several baseline methods.

2 Related work

CNN: Early medical image segmentationmethods mainly relied
on traditional machine learning algorithms. The reasons for using
these methods were partly due to insufficient computational power
and partly due to the lack of advanced datasets and algorithms.
With the development of deep CNNs, the method proposed by
Ronneberger et al., in 2015 for medical image segmentation has
become a standard approach in many medical image analysis
tasks. Due to the simplicity and excellent performance of the U-
shaped structure, various methods similar to U-Net have emerged
continuously, such as nn-UNet (Isensee et al., 2018; Isensee et al.,
2022), Res-UNet, Dense-Unet (Guan et al., 2018), Double U-Net
(Jha et al., 2020), and U-Net3+. U-Net++ designs a series of nested
and dense skip paths to reduce semantic gaps, Attention U-
Net (Oktay et al., 2018) proposes a novel attention gate mechanism
that allows themodel to focus on targets of different shapes and sizes,
UNet 3+ utilizes deep supervision and full-size skip connections,
Dense-UNet leverages the advantages of U-Net’s dense and skip
connections, Res-UNet adds a weighted attention mechanism.
Currently, CNN-based methods have achieved tremendous success
in the field of medical image segmentation, thanks to their excellent
generalization ability and simple yet elegant structure.

Visual Transformer: The transformer (Vaswani et al., 2017)
was first introduced for machine translation tasks. Transformer-
based methods have achieved state-of-the-art performance in
various tasks (Devlin et al., 2019) about natural language processing.
Driven by the success of the Transformer, researchers introduced
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FIGURE 1
Specific architecture of BFNet. Red arrows represent skip connections
between the encoder and decoder; yellow arrows represent
connections synthesizing mid layers; black arrows represent
downsampling; blue arrows represent skip connections between mid
layer and the decoder; cyan arrows represent upsampling. Where XEn

is the encoder and XDe is the encoder. The numbers above En and De
represent the number of layers. We start from the layer closer to the
original feature map.

a novel Visual Transformer (ViT) (Dosovitskiy et al., 2020), which
achieved promising results in image recognition tasks. SETR
(Zheng et al., 2020) regards semantic segmentation as a sequence-
to-sequence prediction task, using Transformer as the encoder.
Subsequently, the Swin-Transformer (Liu et al., 2021), based on the
shiftedwindowmechanism, was proposed. It reduces computational
complexity by introducing shift-based self-attention and has shown
excellent performance in many medical segmentation tasks. Unlike
most previous Transformer-based models, Swin Transformer is
a hierarchical architecture that allows for flexible adjustment of
the number of layers to achieve optimal performance. However,
due to transformer-based models require substantial time and
computational resources for training, CNNs remain active in
medical image segmentation problems.

3 Methods

In this section, we will provide a detailed overview of the
overall structure of BFNet, as illustrated in the figure. We will
start by introducing U-Net, U-Net++, and U-Net3+, followed by
an explanation of the specific details and improvements in our
BFNet design.

3.1 Architecture

In order to solve the problem that the U-Net and U-Net++
decoders cannot efficiently use encoders at different layers, we
connect all the layers of the encoder and call the result the mid layer,
which ensures that each layer of the decoder can obtain all the feature
maps of the encoder. To simplify the image, we only show the core
structure of the model in Figure 1, and we will show the specific
structure in Figure 2.

3.2 Global context attention

Since we apply global context attention modules into each of
our encoder, mid layer, and decoder, we will briefly introduce this
attention mechanism.

3.2.1 Non-local attention network
Instead of Non-local Attention Network (Zhang et al., 2019),

Convolutional Neural Networks (CNNs) only consider pixel
information within local regions when processing images, ignoring
interactions between global information. Basic non-local blocks aim
to strengthen features at query locations by aggregating information
from other positions. Non-local blocks can be seen as global context
modeling modules, aggregating specific global context features for
each query position (weighted average over all positions using a
query-specific attention map). It’s demonstrated that global context
featuresmodeled by non-local blocks are nearly identical at different
query positions, implying that although non-local blocks aim to
compute query-specific global context for each query position, the
trained global context is actually independent of query positions.
Therefore, it’s unnecessary to compute query-specific global context
for each query position, allowing non-local blocks to be simplified
and combined with Squeeze-Excitation Blocks (Hu et al., 2017)
which will bementioned later.We can learn it more in the formula 1:

NLi = xi +Wz

H∗W(∗C)

∑
j=1

f (xi,xj)
N (x)
(Wv × xj) (1)

where i is the index of query positions, and j enumerates all possible
positions. f(xi,xj) denotes the relationship between position i and
j, and has a normalization factor N(x). Wz and Wv denote linear
transform matrices.

3.2.2 Global context network
To construct the model of global context features maps, GENet

(Hu et al., 2018), and PSANet (Zhao et al., 2018) perform rescaling
to different channels to recalibrate the channel dependency with
global context. Global Context Network integrates the advantages of
two networks. It benefits from the simplified non-local (SNL) blocks
for effectively modeling long-range dependencies and also from the
lightweight computation of squeeze-excitation (SE) blocks. Formula
2 is for this network, as follows:

GCAi = xinput + 1× 1Conv× (GlobalAttentionPooling xj) (2)

Therefore, it can be applied at multiple levels to
better capture long-range dependencies with only a slight
increase in computational cost. Its network architecture is
illustrated in Figure 2.

3.3 Encoder

For the encoder, similar to the encoder proposed in the original
U-Net, we adopted conventional convolution methods to connect
each layers and learn features from the feature maps. However, our
downsampling approach involves using convolution with increased
stride and output channels to achieve the same downsampling effect,
which is different from traditional downsampling. The purpose of
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FIGURE 2
Architecture of the main blocks. The feature maps are shown as feature dimensions, where ⊗ denotes matrix multiplication, ⊕ denotes broadcast
elementwise addition. The main function of the first block is to capture the global context information of the input data. It extracts global context
features by modeling the global information of the input sequence. The main function of the second block is to transform and enhance the input data,
combine the global context information, and generate more expressive feature representations.

increasing the stride is to reduce the resolution. Besides, simply
selecting the maximum value in the spatial kernel size make
the model unable to get more information from downsampling
step, which may have improvements. Although this step increases
computational overhead, it benefits both the mid layer and the
decoder, making it worthwhile. Before convolution reduces the
resolution and extracts features, we add a global context attention
module at the end of each convolutional layer, so that the feature
information of each layer can pay more attention to the lesion
area that the model needs to pay attention. The encoder formula 3
is as follows:

Xi
EN = A(C(D(Xinput))) (3)

Where i indicates the number of the layer, D realizes the
downsampling operation. C donates two consecutive convolutions,
and A represents the global context attention mechanism.

In each layer of the encoder, we first perform two convolutions
to extract the feature map information passed to the layer. Then
we will use a convolution layer with a kernel size of 3× 3 and a
stride of 2 for downsampling, the purpose of which is to reduce
the resolution while extracting useful key information to pass
to the global context attention module, so that the model can
recognize more important parts. Its channel attention mechanism
has a compression ratio of 8 in the process of feature dimensionality
reduction and dimensionality increase, which has been proven to
achieve almost the best results with a small increase in parameters.

3.4 Mid layer

The mid layer involves upsampling or downsampling in each
layer of the encoder and uses convolutional operations to transform
them into feature maps of the same size but with different channel
numbers. These feature maps are then concatenated and passed
through a convolutional layer to reduce their dimensionality by 1/4
of the previous, which aims to reduce the number of parameters and
also to minimize the influence of noise on the feature maps. Because
excessively large feature dimensions can distort the featuremaps and
lead to learning unnecessary noise, as shown in Figure 3. Once the
feature maps are obtained, they are fed into a self-attention module
to better focus on the areas indicated by the labels.

The mid layer consists of five encoder layers. Initially, we
need to upsample or downsample the encoder layers to make the

size of each layer is unified to 1280× 128× 128, however, directly
connecting them to the decoder would significantly increase the
model’s parameter count. To reduce the number of parameters, we
use 3× 3 convolutions to reduce their channel numbers to one-
fourth of the original. From Table 4, we can find that this has almost
no impact on the model’s performance, while substantially reducing
the parameter count.

We conducted extensive research on the design of parameters in
the mid layer. We applied convolutional operations to reduce a lung
image to 1/2, 1/4, 1/8, and 1/16 of its original size, as shown in the
figure. FromFigure 4, it can be seen that downsampling by a factor of
4 or more leads to significant information loss. Therefore, we aimed
to keep the downsampling scale within 1/4 as much as possible.

Downsampling simply compresses information, with all
information in the feature maps originating from the real image.
In contrast, the information in upsampled feature maps is inferred
and generated based on existing feature maps. In designing the
network, we also aimed to avoid generating featuremap information
through upsampling as much as possible. The more details can be
known in the formulas (4–7):

Xpart1
mid =∑A(RB(C(D(Xi

EN))) i = 1,2 (4)

Xpart2
mid = A(RB(C(X

3
EN))) (5)

Xpart3
mid =∑A(RB(C(U(Xj

EN))) j = 4,5 (6)

Xmid = X
part1
mid +X

part2
mid +X

part3
mid (7)

Where A represents the global context attention mechanism,
while RB corresponds to ReLU and BatchNorm. C indicates
reducing the number of channels in the convolutional layers to one-
fourth of their original size, while D signifies downsampling. U
is used to denote upsampling. Part1 is the first two layers of the
encoder, which need to be downsampled to reduce the resolution
while increasing the feature map dimension to obtain more specific
information. Part2 is the third layer of the encoder, because its
resolution is already the same as the required resolution, it only
needs to expand its dimensional channels. Part3 is the last two layers
of the encoder, because its resolution is less than 256, it can only be
restored by upsampling to reduce the number of channels.

Through the above operation, we will get a 1280∗256∗256 mid
layer feature map. But if we want to connect it directly to each
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FIGURE 3
The diagram illustrates the generation of the mid layer. Thin blue arrows represent the connection formed by the layers of the encoder to create the
mid layer. Thick blue arrows denote convolution operations, while thick purple arrows signify the incorporation of the global context attention module.
The red dotted arrows indicate that the feature maps of all encoder layers are connected to the resulting mid layer, whose channel dimension is 1280.
The intermediate layer also undergoes two convolutions to learn features. And the number of channels is reduced to 1/4 of the original, which aims to
reduce the parameters.

decoder layer, the featuremap of each decoder layer will be too large.
To avoid this, we use a convolution layer with a convolution kernel
of 3× 3 to reduce its number of channels to 1/4 of the original. We
prove in the following experimental section that it has almost no
effect on the model effect. Finally, we put the feature map into the
global context attention module to obtain better performance.

3.5 Decoder

Thedecoder of this paper adopts a new double-jump connection
method, which aims to make full use of the information exchange
between the encoder and the decoder to improve the performance.
First, the feature map of the mid layer that has passed the global
context attention module is connected with the feature map of
the encoder at the same layer to make full use of the semantic
information extracted from the encoder, and combined with the
local spatial information extracted from the decoder, so that to
obtain a richer and more accurate feature representation. This jump
connection method helps the decoder to better understand the

entire input image and accurately reconstruct the target image
during the decoding process. We need to use different step sizes
because the resolution size to be restored is also different. The
maximum step size of upsampling and downsampling is 4.

Then, the decoder feature map that has been upsampled by the
4× 4 convolution kernel is connected to the previously obtained
feature map as a new feature map. The advantage of this connection
method is that the resolution of the feature map can be restored
through the upsampling operation and fused with the previous
feature map, thus effectively retaining the detailed information of
the image. At the same time, since the 4× 4 convolution kernel
can change the resolution to an even number, it avoids the need to
discard some information or add invalid data by padding when the
feature map resolution is an odd number, ensuring the stability and
reliability of the network.

Finally, a 1× 1 convolution is used to reduce the number of
channels of the concatenated feature map to a quarter of the original
one. Such operations help reduce the number of parameters, reduce
the computational burden of the model. At the same time, by
reducing the number of channels of the feature map, some useless
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FIGURE 4
After the CT images are reduced in resolution at different magnifications, we can see that the image is still relatively clear when the resolution is
reduced to 1/2 and 1/4 of the original, but after being reduced to 1/8 or smaller, obvious pixel blocks appear, indicating that the details have been lost.
The last picture is restored by upsampling the high-dimensional image. It can be seen that the organ boundary and position details have been lost a lot,
which is the reason why we try to avoid upsampling.

information can be effectively removed, and the generalization
ability and performance of the model can be improved while
speeding up the training speed. The formulas (8, 9) for the decoder
are as follow:

Xi
DE = {A(RB(C(X

i+1
DE +Xmid +X

i
EN)))} i = 1,2,3,4 (8)

X5
DE = {A(RB(C(Xmid +X

5
EN)))} (9)

Where A represents the global context attention mechanism,
RB stands for the ReLU function and BatchNorm operation, and
C denotes reducing the channel dimension. i indicates the layer
number where the formula is located. Because the decoder of layer
5 does not receive any information from the decoder, it only needs
to connect the encoder of this layer and the middle layer.

3.6 Images enhancement

Image enhancement is one of the commonly used techniques
in digital image processing. The purpose of image enhancement
technology is to improve the quality of the image to achieve a
pleasing effect. The work usually needs to be done is to remove

the noise in the image, make the edges clear, and highlight certain
properties in the image.

The characteristics of medical images are often complex and
variable. Therefore, the model needs to accurately identify and
analyze images under different conditions. Image enhancement
can help the model adapt better to various image transformations
and perturbations, thus improving its generalization ability. We
performed randomrotation andnormalization on the images, which
enhances data complexity and reducing computational overhead.
Additionally, we prepared for situations where medical images may
vary in size. When detecting images smaller than the specified size,
we resized them using the BICUBIC method to match the specified
size. Conversely, if the image size exceeds the specified size, we
cropped it accordingly. Although such situations did not occur in
our dataset, we incorporated this design to keep the robustness of
the program.

4 Experiments

4.1 Dataset

The model was trained and validated on CT images of
pulmonary embolism of the liver. The dataset comes from patient
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FIGURE 5
Comparison of the performance of Unet, Unet++, Unet3+, AttnUnet, and BFNet on this dataset. Purple area: True positive (TP), where samples correctly
predicted as positive; Yellow area: False negative (FN), where samples actually positive are incorrectly predicted as negative; Green area: False positive
(FP), where samples actually negative are incorrectly predicted as positive. It is easy to find that BFNet perform well with most of color is purple.

data provided by Sichuan Provincial People’s Hospital. It includes
1196 processed abdominal CT scans, of which 1075 and 112 are
used for training and testing respectively. In order to speed up the
training, the label images have been processed in advance, and the
label part is processed to RGB value 1. Dice Loss is the evaluation
standard used in this paper. Its Dice score indicator can not only
be used for model training, but also can be directly used as an
indicator to judge the effect of themodel in this dataset.The formula
of Dice loss is formula 10, as follows:

DiceLoss = 1−
2×∑N

i
pi× ti

∑N
i
p2i +∑

N
i
t2i

(10)

where i denotes the index of pixels, representing the position of each
pixel in the image. pi represents the probability value of the ith pixel
in the predicted segmentation result, while ti represents the label
value of the ith pixel in the ground truth segmentation result. N
represents the total number of pixels in the image.

4.2 Network comparison

In this section, we compare our proposed BFNet with various
network architectures. Under standard network models, BFNet
achieved the best performance, with improvements of 2.1% and
1.4% over U-Net and U-Net++, respectively, on this dataset.
Considering that medical images may contain lesions that are
not accurately labeled, we visualize metrics such as TP and FP.
As shown in Figure 5, we observe that BFNet providesmore accurate
delineation of boundaries and isolated regions, and it performs well
in segmenting extremely small pulmonary embolisms.

4.3 Implementation details

BFNet is implemented using Python 3.11 and PyTorch 2.2.0. For
all training cases, data augmentation techniques such as flipping and

rotation were applied to increase data diversity.The input image size
and patch size were set to 512× 512× 3. Our model was trained on
an Nvidia RTX 4090 GPU with 24 GB of memory. During training,
the batch size was set to 4, the random seed was set to 2024, and the
popular Adam optimizer was used with a cosine annealing strategy.
The momentum was set to 0.9, the initial maximum learning rate
was set to 1e-4, and the minimum learning rate was set to 1e-7.

4.4 Validation set

Our validation set divides all the images used for validation into
groups of ten. The average is calculated for each group, and then
these averages are summed up to obtain the overall average. This
approach helps eliminate occasional results that may be either better
or worse on certain images by chance, thus providing amore reliable
assessment of performance.

4.5 Results

Table 1 compares the parameter count and segmentation
accuracy of U-Net and U-Net++ in the pulmonary embolism
segmentation task. From the table, it can be observed that U-Net++
achieves a slight improvement of 0.1% in accuracy compared to
U-Net in this task, with only a marginal average increase of 0.7%
in IoU. However, U-Net++ exhibits a significantly larger number
of mid parameters compared to U-Net, which we consider not to
signify a significant performance improvement. As for U-Net3+, it
achieves an accuracy improvement of 0.3% over U-Net in this task,
with a 1.1% increase in IoU. Nevertheless, it has a large number
of mid parameters, requiring a higher demand on the training
platform, and it is not the optimal model for our needs. Our
proposed network demonstrates improvements across all metrics
and performs relatively well, and it only increase acceptable size of
model. The performance of modesl are as follows.
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TABLE 1 Performance on the dataset using different network
architectures, with mIOU, Dice, mPA, and mPrecision as metrics. The
best results are highlighted in bold.

Architecture Dice mIOU mPA mPrecision

U-Net w/o DS 0.8817 83.41 90.53 90.44

U-Net++ w/o DS 0.8815 84.16 90.56 90.55

U-Net3+ w/o DS 0.8822 84.53 90.95 90.76

Attention Unet 0.8902 84.17 90.49 90.73

BFNet w/o DS 0.8956 85.53 91.45 91.64

TABLE 2 Performance of BFNet with different numbers of layers, with
the best results highlighted in bold.

Layers Dice mIOU mPA mPrecision

3 0.8914 84.68 90.81 91.11

4 0.8956 85.53 91.45 91.64

5 0.8962 85.23 91.19 91.49

4.6 Ablation study

To investigate the impact of different factors on model
performance, we conducted an ablation study on our model.
Specifically, we examined reducing the number of network layers,
increasing network dimensions, removing self-attention, and
incorporating attention mechanisms into U-Net to demonstrate
the robustness and generalization ability of our approach.

4.6.1 Effect of network Depth
We designed a network with only 3 layers and compared it with

the original 4-layer network.Theywere identical in all aspects except
for the number of network layers. After training, we observed that
the 4-layer network outperformed the 3-layer network.However, the
3-layer network still achieved decent performance with only a slight
sacrifice in performance. It may be particularly effective in video
detection scenarios. A network with a 5-layer encoder-decoder
structurewas also designed to prove that 4 layers is the best structure.
It can be seen that the performance difference between 4 and 5
layers is very small, but the increase in parameters is very significant,
reaching almost 7 times. Specific results are presented in Table 2.

4.6.2 Effect of global context attention
To demonstrate the effectiveness of global context

attention on segmentation, we incorporated the global context
attention mechanism into both U-Net and BFNet. The results
are shown in Table 3. The results confirm the necessity and
effectiveness of global context attention.

4.6.3 Effect of different dimensions
In our proposed model, we reduced the number of channels to

one-fourth in themiddle anddecoder layers to validate our approach

TABLE 3 Performance of Unet and BFNet with and without attention
mechanism, with the best results highlighted in bold.

Architecture Dice mIOU mPA mPrecision

U-Net w/o Attn 0.8914 83.41 90.53 90.44

BFNet w/o Attn 0.8788 84.16 90.16 91.05

U-Net with Attn 0.9051 84.75 90.91 91.11

BFNet with Attn 0.8956 85.53 91.45 91.64

TABLE 4 Performance of high-dimensional BFNet versus
low-dimensional BFNet, with the best results highlighted in bold.

Architecture Dice mIOU mPA mPrecision

BFNet High Dim 0.8932 84.58 91.46 91.56

BFNet Low Dim 0.8856 85.53 91.45 91.64

of reducing parameters. We also trained a model without reducing
parameters for comparison. The results are shown in Table 4. It can
be observed that while the model’s parameter count significantly
decreased, there was almost no difference in performance,
demonstrating that reducing parameters was a correct and
effective approach.

4.7 Discussions

When reviewing the literature in related fields, we noticed that
many networkmodels use deep supervision and new loss calculation
methods, such as U-Net3+’s deep supervision and classification-
guided module (CGM). These methods have been proven to
improve the training effect and performance of the model in their
proposed papers. However, considering the particularity of the
dataset processed by this paper and the control requirements for the
number of model parameters, it was finally decided to temporarily
exclude these methods from this test and adopt a simpler and
more intuitive naive algorithm. This can not only see the purest
comparison of model performance, but also build confidence for
researchers who later use the model proposed in this paper as a
baseline model to add other methods to the model.

In future research, we plan to add new loss calculation methods
and deep supervision mechanisms to the proposed network in
order to improve the training effect of the model. Although this
may lead to an increase in the number of model parameters,
in practice, more sophisticated loss calculation methods and
supervisionmechanisms often lead to better training results, thereby
improving the performance of the model on the task.

After trying multiple loss functions, we found that there are
some difficulties in superimposing multiple loss functions, and it is
difficult to determine the proportional relationship between the loss
functions, and the effect is not satisfactory. Therefore, it was finally
decided to use only a single standard loss function in the model of
this paper. The binary cross-entropy loss function cannot directly
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provide a value that can be used as a model evaluation criterion
like the Dice loss, even though its effect is basically the same as the
Dice loss function and has better performance. Therefore, the loss
function used in all models of this paper is the Dice loss function.

5 Conclusion

In this paper, we propose a novel network architecture called
BFNet, which utilizes full-scale connections between encoder
layers, enabling precise segmentation of pulmonary embolisms.
We use Dice Loss as our evaluation metric, as it is crucial for
assessing model performance and effectively reduces the impact of
false positives. Experimental results on our pulmonary embolism
dataset demonstrate that BFNet outperforms many state-of-the-
art and classical approaches, achieving the goal of highly accurate
segmentation.
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