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Introduction: Vasodilatation in response to NO is a fundamental response of the
vasculature, and during aging, the vasculature is characterized by an increase in
stiffness and decrease in sensitivity to NOmediated vasodilatation. Vascular tone
is regulated by the activation of smooth muscle and nonmuscle (NM) myosin,
which are regulated by the activities of myosin light chain kinase (MLCK) and MLC
phosphatase. MLC phosphatase is a trimeric enzyme with a catalytic subunit,
myosin targeting subunit (MYPT1) and 20 kDa subunit of unknown function.
Alternative mRNA splicing produces LZ+/LZ- MYPT1 isoforms and the relative
expression of LZ+/LZ- MYPT1 determines the sensitivity to NO mediated
vasodilatation. This study tested the hypothesis that aging is associated with
changes in LZ+MYPT1 and NMmyosin expression, which alter vascular reactivity.

Methods: We determined MYPT1 and NM myosin expression, force and the
sensitivity of both endothelial dependent and endothelial independent relaxation
in tertiary mesenteric arteries of young (6mo) and elderly (24mo) Fischer344 rats.

Results: The data demonstrate that aging is associated with a decrease in both
the expression of NM myosin and force, but LZ+ MYPT expression and the
sensitivity to both endothelial dependent and independent vasodilatation did not
change. Further, smooth muscle cell hypertrophy increases the thickness of the
medial layer of smooth muscle with aging.

Discussion: The reduction of NM myosin may represent an aging associated
compensatory mechanism to normalize the stiffness of resistance vessels in
response to the increase in media thickness observed during aging.
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Introduction

Both cardiac and vascular dysfunction are associated with aging, and during aging, the
vasculature is characterized by an increase in stiffness and decrease in sensitivity to NO
mediated vasodilatation (Lakatta, 1990; 2003; Shinmura et al., 2011; North and Sinclair,
2012). Endothelial dysfunction is thought to produce the decrease in sensitivity to NO
mediated vasodilatation (Vatner et al., 2021). However, data are contradictory with some
studies reporting that aging is associated endothelial dysfunction (Barton et al., 1997;
Lubomirov et al., 2021; Zhong et al., 2021) and other studies not finding aging-related
endothelial dysfunction (Barton et al., 1997; Luttrell et al., 2020). During aging, some have
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suggested that there is endothelial dysfunction in larger conduit
arteries, but not smaller conduit or resistance vessels (Vatner et al.,
2021). However, investigators have demonstrated a decrease in
sensitivity to ACh mediated vasodilatation in both mouse
mesenteric (Zhong et al., 2021) and femoral arteries (Lubomirov
et al., 2021). Further, the response of vascular smooth muscle to
contractile agonists in aging is variable with decreased (Barton et al.,
1997; Nicholson et al., 2022), increased (Barton et al., 1997;
Lubomirov et al., 2016; 2021) and unchanged (Zhong et al.,
2021) sensitivity reported. The disparity is both vessel dependent
(Barton et al., 1997; Lubomirov et al., 2018; Luttrell et al., 2020;
Valovič et al., 2023) and due to regional differences (distal vs.
proximal) within the same vessel (Zhang et al., 2018).

The level of phosphorylation of the 20 kDa regulatory myosin
light chain (MLC20) defines vascular tone (Barsotti et al., 1987),
and MLC20 phosphorylation is regulated by the activities of
myosin light chain kinase (MLCK) and MLC phosphatase
(Hartshorne et al., 1998; Somlyo and Somlyo, 2003; Brozovich
et al., 2016). MLCK is regulated by Ca2+-calmodulin (Ikebe and
Hartshorne, 1985), but the majority of signaling pathway that
regulate vascular tone either inhibit or activate MLC phosphatase
(Trinkle-Mulcahy et al., 1995; Hartshorne et al., 1998; Somlyo
and Somlyo, 2003; Brozovich et al., 2016). MLC phosphatase is a
trimeric enzyme with a catalytic subunit, myosin targeting
subunit (MYPT1) and 20 kDa subunit of unknown function
(Hartshorne et al., 1998). Alternative mRNA splicing produces
several MYPT1 isoforms (Dirksen et al., 2000; Payne et al., 2004;
Zhang and Fisher, 2007; Shukla and Fisher, 2008) and exclusion/
inclusion of exon24 has been demonstrated to produce LZ+/LZ-
MYPT1 isoforms (Payne et al., 2004; Shukla and Fisher, 2008;
Zheng et al., 2015; Reho et al., 2016).

NO mediated vasodilatation is a fundamental response of the
vasculature (Furchgott, 1999), and protein kinase G (PKG)mediated
activation of MLC phosphatase is dependent on the interaction of
PKG with the LZ+ MYPT isoform (Surks et al., 1999; Surks and
Mendelsohn, 2003; Given et al., 2007). The expression of a LZ+
MYPT1 isoform has been demonstrated to be necessary for NO/
cGMP/PKG mediated activation of the MLC phosphatase (Huang
et al., 2004; Yuen et al., 2014), and the sensitivity to NO mediated
vasodilatation has been demonstrated to be defined by the relative
expression of LZ+/LZ- MYPT1 (Khatri et al., 2001; Huang et al.,
2004; Payne et al., 2006; Yuen et al., 2011; Reho et al., 2016). Further,
in addition to smooth muscle (SM) myosin, nonmuscle (NM)
myosin is expressed in smooth muscle and has been
demonstrated to participate in smooth muscle contraction
(Morano et al., 2000; Löfgren et al., 2003; Rhee et al., 2006; Yuen
et al., 2009; Zhang and Gunst, 2017; Lubomirov et al., 2023); changes
in NM myosin expression and NM myosin activation have been
demonstrated to influence vascular tone (Morano et al., 2000;
Löfgren et al., 2003; Rhee et al., 2006; Yuen et al., 2009;
Lubomirov et al., 2023).

This study was designed to test the hypothesis that aging is
associated with changes in LZ+MYPT1 and NMmyosin expression,
which then alter vascular reactivity. MYPT1 and NM myosin
expression was determined in both tertiary mesenteric arteries
and the aorta of young (6mo) and elderly (24mo)
Fischer344 rats. In addition, in tertiary mesenteric vessels, we
assessed vascular reactivity by determining maximal force and

the sensitivity of both endothelial dependent and endothelial
independent relaxation.

Methods

Animals

The experimental protocol was approved by the Mayo Clinic
Institutional Animal Care and Use Committee and conformed to the
guidelines of the National Institutes of Health. Male Fischer344 rats
were studied at 6mo and 24mo.

Immunoblotting

As previously described (Given et al., 2007; Yuen et al., 2009;
Konik et al., 2013; Degen et al., 2015), immunoblotting was used to
define protein expression. Briefly, samples of aortic and tertiary
mesenteric vessels were homogenized in SDS sample buffer and total
protein extract was resolved by SDS-PAGE, with sample loading
normalized to total protein calculated within each band calculated
from the stain-free prescast gel (Biorad, Cat#64551870), as
previously described (Schaible et al., 2016; Yap et al., 2020; Han
et al., 2021). After SDS-PAGE, proteins were transferred onto an
immunoblot membrane (Biorad Cat#1629177) and anti-MYPT1
(ab32519, Abcam), -LZ+ MYPT1 (Given et al., 2007), -smooth
muscle myosin heavy chain (ab53219, Abcam) and -α smooth
muscle actin (ab5694, Abcam) were used to visualize the
proteins. The resulting immunoblots were scanned and analyzed
using ImageLab software (Han et al., 2021), and protein expression
was normalized for total protein (TP) as previously described
(Schaible et al., 2016; Yap et al., 2020; Han et al., 2021).

Two-dimensional PAGE

NM and SM myosin expression was determined using 2D SDS-
PAGE as previously described (Yuen et al., 2009; Han and
Brozovich, 2013; Konik et al., 2013). We have demonstrated that
this technique resolves the nonphosphorylated and phosphorylated
SM myosin light chain (SM LC) and NM myosin light chain (NM
LC) as four distinct spots (Yuen et al., 2009; Han and Brozovich,
2013; Konik et al., 2013). Briefly, samples of aortic and tertiary
mesenteric smooth muscle were manually homogenized in 2D gel
extraction buffer (7M urea, 2M thiourea, 4% CHAPS, 1%
3–5.6 immobilized pH gradient (IPG) buffer and EDTA-free
Protease Inhibitor and PhosStop Phosphatase Inhibitor (Roche,
Indianapolis, Ind., USA). The homogenates were cleared of lipids
and extraneous salts using the 2D gel clean up kit (GE Healthcare).
The acidic halves of 13-cm IPG DryStrip gels (pH 3–5.6 NL) were
rehydrated in the presence of suitable amounts of sample in
rehydration buffer solution (7M urea, 2M thiourea, 2% CHAPS,
0.5% pH 3.5–5 IPG buffer, 0.002% bromophenol blue and 12 μM/ml
Destreak Reagent) for at least 10 h in the ‘face-down’ mode on the
Ettan IPG rehydration tray and then resolved by isoelectric focusing
in the ‘face-up’ mode on an Ettan IPGphor III (GE Healthcare).
Following isoelectric focusing, the gel strips were equilibrated in 6M
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urea, 50 mM Tris-HCl, pH 6.4, 30% glycerol, 2% (w/v) SDS and
0.002% bromophenol blue, first containing 130 mMDTT for 15 min
and then containing 135 mM iodoacetamide for 15 min before
undergoing sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) for protein separation by molecular
weight using the Bis-Tris buffering system with 12% gels (29:1).
Subsequently, resolved 2D SDS-PAGE gels were silver stained. Gels
were scanned using a high-resolution digital scanner (EPSON
Perfection V750 Pro), and the spots were quantified using
ImageQuant TL software. The two spots closest to the anode
(spots 1 & 2) represent the phosphorylated and
nonphosphorylated NM LC and the two spots nearest the
cathode (spots 3 & 4) represent the phosphorylated and
nonphosphorylated SM LC. As previously described (Yuen et al.,
2009), the expression of NM myosin is calculated as [(1 + 2)/(1 +
2+3 + 4)]x100%].

Muscle mechanics in tertiary
mesenteric arteries

Mechanical studies were conducted using protocols
previously published protocols (Han and Brozovich, 2013).
Briefly, for force recordings, isolated tertiary mesenteric
preparations (100–200 μm in diameter; ~2 mm in length) with
an intact endothelium were mounted using wires (40 μm in
diameter) on a DMT 4-channel myograph system (Mulvany
and Halpern, 1977; 2018; Mulvany et al., 1982) and stretched
to Lo (the length for maximal force) in the myograph chamber
containing continuously oxygenated physiological saline
solution (PSS in mM: 140 NaCl, 3.7 KCl, 2.5 CaCl2,
0.81 MgSO4, 1.19 KH2PO4, 0.03 EDTA, 5.5 Glucose,
25 HEPES, pH 7.4). Following stretching the preparation to
Lo, the vessels were allowed to equilibrate for 1 h, and then
were stimulated to contract with 80 mM KCl depolarization
(in mM: 64.5 NaCl, 80 KCl, 2.5 CaCl2, 0.81 MgSO4,
1.19 KH2PO4, 0.03 EDTA, 5.5 Glucose, 25 HEPES, pH 7.4).
The initial response to KCl depolarization was maintained for
10–15 min, before the vessel was relaxed with PSS. Then, the
vessels were depolarized with KCl and after the force reached a
steady state, the dose-response relationship of force relaxation
produced by acetylcholine (ACh; 10nM-10 μM) was determined.
The preparation was transferred to PSS, and following another
contraction with 80 mM KCl, the relaxation produced by the cell
permeable cGMP analog, 8Br-cGMP (100 μM), was assessed.
Mesenteric preparations isolated from the same animal were
used for both mechanical and molecular studies.

Quantification of vessel hypertrophy

The extent of vascular smooth muscle cell hypertrophy was
determined from hematoxylin-eosin (HE) stained sections of
tertiary mesenteric arteries as previously described (Lin et al.,
2020). The vessels were embedded in paraffin and then thin
sections (10 μm) were stained with H&E (Han et al., 2021).
Photomicrographs were obtained, and for each slide, at least six
fields per slide were analyzed. Quantification of the total smooth

muscle cell number, the thickness of the media layer of smooth
muscle cells as well as vessel diameter and cross-sectional area was
performed using ImageJ analysis software (Version 1.49, NIH,
Bethesda, MD).

Statistical analysis

All data are presented as mean ± SEM (n = number of animals).
In designing experiments, a power analysis was performed (power =
80%, α = 0.05) to determine the number of animals per group
(6 animals per group). Differences between groups (6mo vs. 24mo)
were compared using a two-way ANOVA, and if significant
differences were found, a Student’s t-test was used post hoc to
compare values with a p < 0.05 level significance.

Results

The expression of MYPT1 and LZ+ MYPT1 did not change with
aging (6mo (n = 6) vs. 24mo (n = 6)). in either the aorta (Figure 1) or
tertiary mesenteric arteries (Figure 1). In the aorta, MYPT1 expression
normalized to total protein (MYPT1/TP) was 22.6 ± 2.2au vs. 18.5 ±
0.9au (p > 0.05) and LZ+ MYPT1/TP expression was 15.7 ± 3.4au vs.
11.1 ± 1.2au (p > 0.05). In the tertiary mesentery arteries, MYPT1/TP
expressionwas 2.8 ± 0.3au vs. 3.5 ± 0.3au (p> 0.05), whileMYPT1 LZ+/
TP was 13.8 ± 1.9au vs. 14.1 ± 5.0au (p > 0.05).

The expression of NM and SM myosin was assessed using 2-
dimensional PAGE (Yuen et al., 2009; Han and Brozovich, 2013;
Konik et al., 2013; Han et al., 2021). During aging in the aorta
(Figure 2), NM myosin expression was similar at 6mo (31% ± 2%,
n = 6) and 24mo (26% ± 4%, n = 6). However, in the mesenteric
artery, the expression of NM myosin significantly decreased with
aging. Relative to total myosin expression, NM myosin expression
was 22% ± 3% vs. 12% ± 2% (6mo v 24mo, p = 0.025).

The mechanical properties of tertiary mesenteric arteries were
defined by the maximal force in response to 80 mM KCl and the
sensitivity of endothelial dependent (ACh) and endothelial
independent (8Br-cGMP) relaxation. Force for KCl
depolarization was greater at 6mo (n = 6) than 24mo (n = 6);
35 ± 13 mN/mm2 vs. 8 ± 4 mN/mm2 (Figure 3, p = 0.016).
Endothelial dependent relaxation was assessed by determining
the sensitivity to ACh mediated relaxation; the sensitivity of
relaxation to ACh in tertiary mesenteric arteries was similar in
vessels isolated from 6mo to 24mo old rats (Figure 3). We also
defined endothelial independent relaxation using 8Br-cGMP;
100 μM 8Br-cGMP mediated relaxation was no different in
tertiary mesenteric arteries from young and old rats (46% ± 7%
vs. 43% ± 5%, p > 0.05, Figure 3).

The final series of experiments measured the thickness of the
medial smooth muscle layer from stained sections of tertiary
mesenteric arteries (Figure 4). Comparing 6mo (n = 4) and
24mo (n = 4), neither lumen diameter (62 ± 8 μm vs. 76 ± 8 μm,
p > 0.05) nor lumen cross-sectional area (190 ± 20 μm2 vs. 240 ±
20 μm2, p > 0.05) changed. In contrast, the thickness of the medial
layer of smooth muscle increased with aging from 36 ± 3 μm at 6mo
to 51 ± 5 μm at 24mo (p = 0.022, Figure 4). The number of smooth
muscle cells in the medial layer of the cross-section was similar (p >
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0.05); 16 ± 2 (6mo) vs. 17 ± 1 (24mo). Additionally, the expression of
both the smooth muscle myosin heavy chain normalized to total
protein (SM MyHC/TP) at 6mo (14 ± 1au, n = 6) and 24mo (16 ±
1au, n = 6) and α-smooth muscle actin (α-SM actin/TP) at 6mo
(38 ± 2au, n = 6) and 24mo (37 ± 2au, n = 6) was similar
(Figure 5, p > 0.05).

Discussion

The results of the present study demonstrate that proteins
regulating vascular reactivity are modulated during aging in a
resistance vessel (tertiary mesenteric vessel), but not in a conduit
vessel (aorta). Vascular tone is regulated by the extent of

FIGURE 1
During aging, MYPT1 and LZ + MYPT1 expression does not change. Western blots of MYPT1 and LZ + MYPT1 expression in the aorta and tertiary
mesenteric artery. MYPT1 and LZ +MYPT1 expression were normalized to total protein (TP) as previously described (Schaible et al., 2016; Yap et al., 2020;
Han et al., 2021). Box blots summarize the data; neither MYPT1/TP nor LZ + MYPT1/TP expression is altered during aging, p > 0.05.

FIGURE 2
During aging, NMmyosin expression decreases in a resistance, but not a conduit vessel. Two-dimensional SDS-PAGE was used to separate the NM
myosin light chain (1) and SM light chain (2). The expression of NM myosin as a percentage of total myosin is the density of (1/(1 + 2))x100% (Yuen et al.,
2009). Box plots summarize NMmyosin expression; during aging, NMmyosin does not change in the aorta (31%± 2% vs. 26%± 4%, p > 0.05), but declines
significantly in the tertiary mesenteric artery (22% ± 3% vs. 12% ± 2%, p = 0.025); *, p < 0.05.
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phosphorylation of MLC20 (Barsotti et al., 1987), which is controlled by
the activities of MLCK and MLC phosphatase (Hartshorne et al., 1998;
Somlyo and Somlyo, 2003; Brozovich et al., 2016). MLCK is regulated
by Ca2+-calmodulin (Ikebe and Hartshorne, 1985). However, the
majority of signaling pathways that regulate vascular tone converge
on MLC phosphatase (Hartshorne et al., 1998; Somlyo and Somlyo,
2003; Brozovich et al., 2016). Inhibition of MLC phosphatase (Trinkle-
Mulcahy et al., 1995) by Rho kinase (Kitazawa et al., 1991b; 1991a;
Swärd et al., 2000; Seko et al., 2003), Zip kinase (MacDonald et al.,
2001), ILK (Deng et al., 2001; 2002; Murányi et al., 2002; Wilson et al.,
2005), CPI-17 (Eto et al., 1995; 1999; Woodsome et al., 2006), PHI-1
(El-Touhky et al., 2005; El-Toukhy et al., 2006; Eto, 2009) and PKC
(Horowitz et al., 1996; Walsh et al., 1996) increases MLC20

phosphorylation and vascular tone, while PKG activates MLC
phosphatase (Furchgott and Zawadzki, 1980; Lincoln, 1989), which
decreases MLC20 phosphorylation and vascular tone. Nitric oxide
mediated vasodilatation is a fundamental property of the vasculature
(Furchgott, 1999), and the sensitivity of NO mediated smooth muscle
relaxation has been demonstrated to be dependent on the
interaction of PKG with LZ+ MYPT1 (Surks et al., 1999;
Given et al., 2007; Sharma et al., 2008). Further, PKG
phosphorylates only LZ+ MYPT1 isoforms at S667 (Yuen
et al., 2011; 2014), which increases MLC phosphatase activity
(Yuen et al., 2014), and consequently, PKG only activates MLC
phosphatase expressing a LZ+ MYPT1. Thus, the sensitivity of
NO mediated smooth muscle relaxation is dependent on the

FIGURE 3
During aging, neither endothelial independent nor endothelial dependent relaxation are altered in a resistance vessel, but force was reduced. (A)
Force trace demonstrating relaxation to ACh of tertiary mesenteric artery. Sensitivity of ACh mediated relaxation is similar (p > 0.05) in mesenteric vessel
from young and old animals. (B) Relaxation stimulated by 100 μM8Br-cGMP is no different in tertiary mesenteric arteries from young and old rats (46% ±
7% vs. 43% ± 5%, p > 0.05). However, the contraction to 80 mM KCl is significantly depressed in mesenteric vessels from old rats (35 ± 13 mN/mm2

vs. 8 ± 4 mN/mm2, p = 0.016). Box plots summarize the data for both maximal force in response to 80 mM KCl and relaxation to 100 μM 8Br-cGMP (*,
p < 0.05).
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relative expression of LZ+/LZ- MYPT1 isoforms (Khatri et al.,
2001; Huang et al., 2004; Reho et al., 2016). Our data demonstrate
that neither MYPT1 nor LZ+ MYPT1 expression changes during
aging in either a conduit or a resistance vessel (Figure 1). These
results would predict that the sensitivity to both endothelial
dependent and endothelial independent vasodilatation would
be similar in young and old animals, which is consistent with
our results demonstrating that the sensitivity of relaxation to
both ACh and 8Br-cGMP is similar in mesenteric vessel of young
and old animals (Figure 3). However, a limitation of this study is

the use of a single concentration of 8Br-cGMP, which produced
similar relaxation of mesenteric vessels from young and old
animals (Figure 3), and more concentrations are necessary to
completely demonstrate similar sensitivity to 8Br-cGMP.
However, our data show no difference in sensitivity to ACh
(Figure 3), which would suggest that the sensitivity of 8Br-
cGMP should also be similar in tertiary mesenteric arteries of
young and old animals.

Endothelial dysfunction is thought to underlie an age-related
decrease in NO mediated vasodilatation (Vatner et al., 2021), but

FIGURE 4
Aging is associated with an increase in media thickness in a resistance vessel. HE stained tertiary mesenteric artery (6mo & 24mo); scale bar, 50 μm
(for both images). Box plot summarize the data of the thickness of the media at 6mo (36 ± 3 μm, n = 4) and 24 mo (51 ± 5 μm, n = 4). Aging is associated
with a significant (p = 0.022) increase in the thickness of the media layer of smooth muscle; *, p < 0.05.

FIGURE 5
During aging, smooth muscle myosin and α-smooth muscle actin expression did not change. Western blots of smooth muscle myosin heavy chain
(SM MyHC) and α-smooth muscle actin (α-SM actin) expression in the aorta and tertiary mesenteric artery. SM MyHC and α-SM actin were normalized to
total protein (TP) as previously described (Schaible et al., 2016; Yap et al., 2020; Han et al., 2021). Box blots summarize the data; neither SMMyHC/TP nor
α-SM actin/TP expression are altered during aging, p > 0.05.
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there are differences in endothelial function in different vessels as well as
location within the same vessel (Vatner et al., 2021). Investigators have
demonstrated that the sensitivity of relaxation induced by ACh
(endothelial dependent) and nitroprusside (endothelial independent)
is impaired in rat abdominal aorta, but not the femoral artery, iliac
artery or gastrocnemius muscle artery (Luttrell et al., 2020). However,
Barton et al. (Barton et al., 1997) demonstrated that in rats there was an
age-related decrease in sensitivity to endothelial dependent, but not
endothelial independent relaxation in the aorta, but the response to
ACh and nitroprusside was similar in the femoral artery isolated from
young and old animals. In mesenteric resistance vessels of elderly mice,
compared to young mice, Zhong et al. (Zhong et al., 2021)
demonstrated that during aging maximal force and sensitivity to
ACh mediated relaxation were reduced, but there was no difference
in the sensitivity to nitroprusside. On the other hand, in young mice,
Lubomirov et al. (Lubomirov et al., 2018) showed that due to the higher
LZ + MYPT1 expression, the basilar artery was more sensitive to both
endothelial dependent and endothelial independent relaxation than the
femoral artery. Further, the femoral artery isolated from elderly mice,
compared to young mice, had a decrease in sensitivity of contraction to
thromboxane, and an aging-related decrease in LZ+MYPT1 expression
produced a decrease in sensitivity to ACh (Lubomirov et al., 2021). The
relative expression of LZ+/LZ-MYPT1 has been documented to be
developmentally regulated (Khatri et al., 2001; Payne et al., 2006), tissue
specific (Khatri et al., 2001; Karim et al., 2004; Payne et al., 2004; 2006)
andmodulated in disease (Karim et al., 2004; Chen et al., 2006; Lu et al.,
2008; Ararat and Brozovich, 2009; Han and Brozovich, 2013; Konik
et al., 2013; Reho and Fisher, 2015; Lyle et al., 2020; Han et al., 2021).
The disparities between our results and those reported by others
(Barton et al., 1997; Lubomirov et al., 2016; 2018; 2021; Luttrell
et al., 2020; Zhong et al., 2021) could be due to differences in
species (rat vs. mouse), strain of animal and/or vessel studied. In
addition, MYPT1 has multiple phosphorylation sites which regulate
MLCphosphatase activity (Somlyo and Somlyo, 1994; Hartshorne et al.,
1998; Brozovich et al., 2016), and in murine basilar arteries, others have
demonstrated that MYPT1 phosphorylation at T853 increases during
aging (Lubomirov et al., 2023). We did not measure
MYPT1 phosphorylation, and changes in MYPT1 phosphorylation
could contribute to the disparities among studies. However, our results
demonstrate that LZ+ MYPT1 expression does not change with aging
(Figure 1). Since the sensitivity toNOmediated vasodilatation is defined
by LZ+/LZ- MYPT1 expression (Surks et al., 1999; Huang et al., 2004;
Yuen et al., 2011; 2014; Reho et al., 2016), there should be no change in
sensitivity to either endothelial dependent or independent smooth
muscle relaxation, which agrees with our results (Figure 3). Thus,
similar to Lubomirov (Lubomirov et al., 2016; 2018; 2021), our
results are consistent with the sensitivity of a vessel to NO being
defined by LZ+/LZ- MYPT1 expression; changes in LZ +
MYPT1 expression regulate the sensitivity of the vasculature to NO/
cGMP/PKG-mediated relaxation (Khatri et al., 2001; Huang et al., 2004;
Yuen et al., 2011; 2014; Reho et al., 2016).

In tertiary mesenteric vessels, our data demonstrate that NM
myosin expression is significantly lower in elderly compared to
young rats (Figure 2). In contrast, in the aorta, NM myosin
expression did not change during aging (Figure 2). Similar to SM
myosin, NM myosin is regulated by phosphorylation of its light
chain (Cremo et al., 2001). Further, NM myosin phosphorylation is
regulated during contraction of smooth muscle (Yuen et al., 2009;

Zhang and Gunst, 2017) and NM myosin has been demonstrated to
participate in force maintenance (Morano et al., 2000; Löfgren et al.,
2003; Rhee et al., 2006; Yuen et al., 2009; Zhang and Gunst, 2017;
Lubomirov et al., 2023); both a change in NM myosin expression
(Morano et al., 2000; Löfgren et al., 2003; Yuen et al., 2009) and
inhibition of the NM myosin AMATPase (Rhee and Brozovich,
2003; Lubomirov et al., 2023) have been demonstrated to produce a
reduction in force, which demonstrate that changes in NM myosin
expression will alter force. In tertiary mesenteric vessels, during
aging, our data show NM myosin expression is reduced by ~10%
(Figure 2), while there is no change in NMmyosin expression in the
aorta, a large conduit vessel. The aging associated decrease in NM
myosin expression in tertiary mesenteric vessel would be expected to
reduce force (Morano et al., 2000; Löfgren et al., 2003; Rhee et al.,
2006; Yuen et al., 2009; Zhang and Gunst, 2017), which is consistent
with our results (Figure 3). The mechanism that produces the
decrease in NM myosin expression in the tertiary mesenteric
vessels with aging is unknown but could be a compensatory
mechanism to normalize blood pressure in response to the
increase in vascular stiffness documented to occur during aging
(Qiu et al., 2010; Vatner et al., 2021).

Aging of the vasculature is associated with an increase in
vessel stiffness (Moreau et al., 1998; Barros et al., 2021; Vatner
et al., 2021) and histological changes; the ratio of collagen to
elastin increases with age (Zhang et al., 2018; Albu et al., 2021;
Vatner et al., 2021). Additionally, the ratio of collagen to elastin is
higher in the abdominal than the thoracic aorta (Zhang et al.,
2018; Vatner et al., 2021), and the increase in collagen/elastin in
the vessel contributes to the age-related increase in vessel
stiffness (Zhang et al., 2018; Albu et al., 2021; Vatner et al.,
2021). Peripheral arteries are less elastic and more muscular, and
thus are stiffer than central arteries (Yu andMcEniery, 2020), and
with aging, the increase in stiffness in peripheral arteries is less
pronounced than in the aorta (Yu and McEniery, 2020). In
tertiary mesenteric vessels, our data demonstrate neither
lumen diameter nor cross-sectional area change during aging.
However, the medial layer of smooth muscle of the vessel is
significantly thicker in elderly animals (Figure 4), while the cell
number is similar (16 ± 2 vs. 17 ± 1, p > 0.05) suggesting that
smooth muscle cell hypertrophy produces the increase in medial
thickness. These data agree with those reported by other
investigators that have shown that during aging of rat basilar
and mesenteric small arteries, medial thickness increases
(Moreau et al., 1998; Loo et al., 2004). However, in mesenteric
vessels of mice, others have reported that medial thickness does
not change during aging (Zhong et al., 2021). During aging, our
data show an increase in the thickness of the media (Figure 4),
which would be expected to increase force and vessel stiffness.
However, force was lower for KCl stimulated contractions in
mesenteric vessels from elderly compared to young rats
(Figure 3). The data also demonstrate that SM MyHC and α-
SM actin expression does not change with aging (Figure 5),
suggesting that the smooth muscle phenotype does not change
from contractile to synthetic during aging (Rensen et al., 2007).
However, NM myosin has been shown to participate in smooth
muscle contraction (Morano et al., 2000; Löfgren et al., 2003;
Yuen et al., 2009), and both decreasing NM myosin expression
(Yuen et al., 2009) and inhibiting of NM myosin (Rhee et al.,
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2006; Lubomirov et al., 2023) reduce force. Our data
demonstrating a decrease in NM myosin expression in
mesenteric arteries (Figure 2) would decrease contractile force,
which is consistent with our results (Figure 3).

In summary, our results demonstrate differences in age-related
alterations in both the expression of contractile and regulatory
proteins in a resistance vs. a conduit vessel, which is consistent
with the results of others and demonstrates aging related changes are
vessel dependent (Barton et al., 1997; Lubomirov et al., 2018; Luttrell
et al., 2020; Vatner et al., 2021). There are no changes in LZ+
MYPT1 or NMmyosin in a conduit vessel. In a resistance vessel, our
data demonstrate there is no age-related changes in MYPT1 LZ+
expression and consequently, there is no change in the sensitivity to
either endothelial dependent (ACh) or endothelial independent
(8Br-cGMP) mediated vasodilatation. However, in a resistance
vessel, although the thickness of the medial layer of smooth
muscle increases with aging, most likely due to hypertrophy of
the smooth muscle cells, NM myosin expression is significantly
depressed. The decrease in NM myosin expression participates in
the mechanism for the aging-related reduction in force in response
to KCl depolarization, and the reduction of NM myosin may
represent an aging associated compensatory mechanism to
mitigate the increase in stiffness of resistance vessels in response
to the increase in media thickness and stiffness observed
during aging.
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