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processing in the Drosophila
mushroom body calyx
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Associative memory in the Mushroom Body of the fruit fly brain depends
on the encoding and processing of odorants in the first three stages of the
Early Olfactory System: the Antenna, the Antennal Lobe and the Mushroom
Body Calyx. The Kenyon Cells (KCs) of the Calyx provide the Mushroom Body
compartments the identity of pure and odorant mixtures encoded as a train
of spikes. Characterizing the code underlying the KC spike trains is a major
challenge in neuroscience. To address this challenge we start by explicitly
modeling the space of odorants using constructs of both semantic and syntactic
information. Odorant semantics concerns the identity of odorants while odorant
syntactics pertains to their concentration amplitude. These odorant attributes
are multiplicatively coupled in the process of olfactory transduction. A key
question that early olfactory systems must address is how to disentangle
the odorant semantic information from the odorant syntactic information. To
address the untanglement we devised an Odorant Encoding Machine (OEM)
modeling the first three stages of early olfactory processing in the fruit fly brain.
Each processing stage is modeled by Divisive Normalization Processors (DNPs).
DNPs are spatio-temporal models of canonical computation of brain circuits.
The end-to-endOEM is constructed as cascadedDNPs. By extensivelymodeling
and characterizing the processing of pure and odorant mixtures in the Calyx,
we seek to answer the question of its functional significance. We demonstrate
that the DNP circuits in the OEM combinedly reduce the variability of the
Calyx response to odorant concentration, thereby separating odorant semantic
information from syntactic information. We then advance a code, called first
spike sequence code, that the KCs make available at the output of the Calyx.
We show that the semantics of odorants can be represented by this code in
the spike domain and is ready for easy memory access in the Mushroom Body
compartments.
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Drosophila, olfaction, divisive normalization, calyx, APL, kenyon cell, odorant mixtures,
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1 Introduction

Odor signal processing in the olfactory system of diverse
organisms is the result of millennia of convergent evolution (Ache
and Young, 2005). Unlike other sensory systems such as the visual
system, the odor processing pathways are not embedded within
topographically organized circuits (such as retinotopy in visual
systems (Sanes and Zipursky, 2010)). Instead, olfactory circuits
are organized non-topographically (Mombaerts, 1999; Buck, 2005;
Shepherd, 2004; Cleland and Sethupathy, 2006), and their affinities
to given odorant molecules directly encode the identities of the said
stimuli (Buck and Axel, 1991; Firestein, 2001). This unique sensory
characterization of the olfactory stimulus space also led to a highly
efficient odor signal processing neural circuit.

In Drosophila Melanogaster, more than 40% of the total neural
real estate is dedicated to processing visual signals (Barish and
Volkan, 2015), while about 5% is dedicated to processing olfactory
inputs (Scheffer et al., 2020; Masse et al., 2009; Zheng et al., 2017).
Neverthless, Drosophila have remarkable olfactory-based foraging,
mating, and predator avoidance (Vosshall and Stocker, 2007)
capabilities. Given the rich olfactory-related behavior repertoire of
Drosophila (Benton, 2022), its well-mapped olfactory neural circuit
and powerful genetic tools, its olfactory system serves as the ideal
platform for unraveling the mysteries of olfactory processing.

In the fruit fly, natural odorant scenes (see Figure 1 first column)
are first sensed in the Antenna and Maxillary Palps by the dendrites
of thousands of Olfactory Sensory Neurons (OSNs), each expressing
a single olfactory receptor (OR) type (Vosshall, 2000) (see Figure 1
second column). The second layer of olfactory sensory processing
is the Antennal Lobe (AL, see Figure 1 third column). OSNs
expressing the same OR type typically project their axons into
a single glomerulus, a dense connectivity region in the AL. The
dendritic trees of Projection Neurons (PNs) typically also innervate
a single glomerulus. A large number of Local Neurons (LNs) shape
the I/O of the AL circuit (Lazar et al., 2022). PNs project their
axons to the Mushroom Body Calyx and/or the Lateral Horn (see
Figure 1 third column top and fourth column). In the Calyx, some
50 types of PNs synapse onto 2,000 Kenyon Cells (KCs), a rapid
expansion of the number of neurons (Modi et al., 2020). A key
circuit element in the Calyx is the giant Anterior Paired Lateral
(APL) feedback neuron receiving input from all KCs. The third and
fourth columns in Figure 1 can also be viewed online as interactive
3D visualizations provided by the Fruit Fly Brain Observatory
(Ukani et al., 2019; 2024). The URLs can be found in NeuroNLP
(2024a) and NeuroNLP (2024b).

There has been an extensive amount of work in discerning
the odorant identity and concentration in the olfactory system of
the fruit flies, other insects and vertebrates. It has been shown
that odorants typically retain their perceptual identities over a
range of concentrations (Blazing and Franks, 2020). In Drosophila,
the same odorant may recall the memory associated with the
odorant over more than an order of magnitude of concentration
amplitude values (Masek and Heisenberg, 2008).

Concentration-invariant representation of odorant identity has
been proposed at almost every stage of the olfactory circuit, in
the Antenna (Egea-Weiss et al., 2018), in the Antennal Lobe (or
Olfactory Bulb in vertebrates) (Stopfer et al., 2003; Wilson et al.,
2017; Chong et al., 2020; Lazar et al., 2023) and at the KC level of the

Mushroom Body (or Piriform Cortex in mammals) (Stopfer et al.,
2003; Bolding and Franks, 2018). These studies assumed, however,
that the odorant identity is known. In other words, odorant identity
has been viewed akin to labels used in supervised learning. A
major goal has been to record from the neural activity arising
at different stages of the Early Olfactory System and to examine
when the recorded signal can be used to increase the accuracy
of identifying or classifying odorants (Egea-Weiss et al., 2018;
Jeanne and Wilson, 2015; Stopfer et al., 2003). These approaches
do not reveal, however, the functional logic of the underlying
neural circuits.

In previouswork, we proposed computationalmodels formono-
molecular odorant encoding and processing in both the Antenna
(Lazar and Yeh, 2020) and the Antennal Lobe (Lazar et al., 2023).
We advanced a model of olfactory objects of the odorant space
that explicitly describes both their identity (odorant semantics)
and their concentration amplitude (odorant syntax). Our model of
the Antenna then encodes a multiplicatively-coupled representation
of the semantic and syntactic information streams, resulting in a
confounding representation that is disentangled by the inhibitory
and excitatory Local Neurons of the Antennal Lobe. Both models
of the Antenna and the Antennal Lobe reproduce with a very high
precision the experimentally obtained physiological responses of
the Olfactory Sensory Neurons (output neurons of the Antenna)
and Projection Neurons (output neurons of the Antennal Lobe)
(Kim et al., 2011; 2015). Importantly, by developing a model of the
Antennal Lobe that recovers the odorant identity information from
the confounding representation of the Antenna, we showed that
the functional significance of the Antennal Lobe (in particular its
highly diverse inhibitory Local Neurons) is to separate the odorant
semantics from syntax, thereby undoing themultiplicatively coupled
odorant encoding in the Antenna (see also Figure 2).

To emphasize, the novelty of our approach rests on explicitly
modeling the space of odorants using constructs of both semantic
and syntactic information, a subtle but profound distinction from
the existing literature that solely invokes methods of traditional
syntactic information processing. These prior works focused on
methods of processing odorant concentration, with odorant identity
mentioned in passing and/or lacking computational or theoretical
rigor. However, when it comes to understanding the functional
logic of olfactory circuits, processing odorant concentration alone
turns out to be, as we argue here and elsewhere, a major limitation.
Our present work extends the I/O modeling and characterization
of semantic/syntactic information processing that we obtained for
the Antenna and Antennal Lobe to the MB Calyx circuit. We show
how the Calyx extracts and represents semantic information in the
spike domain.

The first three layers of the Early Olfactory System depicted
in Figure 1 are modeled as the Odorant Encoding Machine
(OEM) shown in Figure 2 (Lazar et al., 2020a). The architecture
of the OEM consists of three cascaded Divisive Normalization
Processors (DNPs), a spatio-temporal extension of the static divisive
normalization model previously analyzed by (Olsen and Wilson,
2008; Carandini and Heeger, 2012; Lazar et al., 2020b; Lazar and
Zhou, 2023). Note that in vision, it has been recently shown that the
motion detection pathway of the early visual system of the fruit fly
can also be modeled as a cascade of DNPs (Lazar et al., 2020b; Lazar
and Zhou, 2023), suggesting that DNPs as building blocks of
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FIGURE 1
Odorant mixture processing pathways of the Early Olfactory System of the fruit fly. A natural odorant scene (left) may consist of many odorant
mixtures, including ripe and unripe tomatoes, and peppermints that repel flies. Odorant mixtures are sensed by the Olfaction Sensory Neurons (OSNs)
whose dendrites are located on the Antenna and Maxillary Pulps (second to left, adapted from Fabian and Sachse (2023), under Creative Commons
Attribution License (CC-BY)). OSNs project their axons into the Antennal Lobe (AL) (white ellipse in third to left). AL is innervated by a large number of
Local Neurons (LNs, white transparent). Projection Neurons (PNs) (colored neurons), the outputs of the AL, send their axons to the Calyx (green ellipse
in third to left) and the Lateral Horn (yellow ellipse in third to left). In Calyx (right most), PNs (colors other than red and white) provide inputs into
Kenyon Cells (KCs) (red). The Calyx is also innervated by the APL neuron (white transparent) that interacts with the KCs. For interactive 3D visualization
of the connectome of the AL and Calyx, see NeuroNLP (2024a) and NeuroNLP (2024b).

FIGURE 2
The architecture of the Odorant Encoding Machine (OEM) modeling the early olfactory system of the fruit fly. The OEM consists of a cascade of
spatio-temporal Divisive Normalization Processors (DNPs) each modeling the Antenna, Antennal Lobe and Calyx. All odorants in a mixture are sensed
and encoded by a molecular Odorant Transduction Process (OTP) of each OSN type. Each OSN type then provides input to an AL channel (glomerulus)
with a Projection Neuron (PN) as channel output. Three types of local neurons, Presynaptic Local Neurons (Pre-LNs), Postsynaptic excitatory LNs
(Post-eLNs) and Postsynaptic inhibitory LNs (Post-iLNs) are modeled as 3 types of differential DNPs. The Calyx features an expansion of the PN to KC
connectivity, as well as a DNPs circuit consisting of the KC dendrites, KC biological spike generators and the APL spatio-temporal feedback neuron.

computation can be combined to realize more complex processing
in the fruit fly brain.

In the current work, we seek to answer the question regarding
the functional significance of the Mushroom Body Calyx, the last
building block of the OEM cascade shown in Figure 2. Note that
in the MB Calyx most of biological real estate is devoted for
re-representing odorant identities - with, on average, 40 Kenyon
Cells in the Calyx for each 1 Projection Neuron type in the
Antennal Lobe. While previous studies have explored the Calyx’s
role in associative learning (e.g., Heisenberg, 2003), our focus
shall be on modeling the pre-associative representation of odorant

identity and exploring how semantics of pure and odorant mixtures
are coded for memory access by the Mushroom Body. By (i)
abstracting the structural connectome datasets into executable
circuit diagrams, and by (ii) focusing on the exploration of the
functional logic of the underlying circuits, we follow here the
workflow established in Lazar et al. (2021).

This paper is organized as follows. In Section 2, we present the
architecture of the OEM. We review the model of the space of
odorants and the input/output (I/O) model of the Antenna and
Antennal Lobe.Themodel of the Calyx is detailed next. In Section 3,
we extensively characterize and evaluate the processing of pure and

Frontiers in Physiology 03 frontiersin.org

https://doi.org/10.3389/fphys.2024.1410946
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Lazar et al. 10.3389/fphys.2024.1410946

FIGURE 3
Modeling the space of mono-molecular odorants. Elements of the odorant space are defined by the tensor of odorant-receptor binding rate,
dissociation rate and concentration amplitude (b,d,u(t)). For a given neuron n = 1,2,…,N, the binding rate and dissociation rate values are, respectively,
denoted by [b]ron and [d]ron, for all r = 1,2,…,R, and o = 1,2,…,O. Single and/or odorant mixtures interact with the receptors expressed by the Olfactory
Sensory Neurons in the Antenna (right). Adapted from Lazar et al. (2022), under Creative Commons Attribution License (CC-BY).

odorant mixtures in the Calyx. The KC generated spike train at the
output of the Calyx, called the first spike sequence code, represents
the odorant identitymade available to theMushroomBodymemory
circuit. In Section 4 we conclude with a brief discussion.

2 Odorant Encoding Machine

A schematic diagram of the Odorant Encoding Machine (OEM)
is shown in Figure 2. In what follows we describe the four cascaded
building blocks of the OEM, respectively, modeling the space
of odorants (see section 2.1), the molecular encoding of mono-
molecular odorants and odorant mixtures in the antenna (see
section 2.2), the I/O modeling of the antennal lobe (see section 2.3)
and the I/O modeling of mushroom body calyx (see section 2.4).

2.1 Modeling the space of odorants

The space of mono-molecular odorants (see also Figure 2,
left) was first formally modeled and biologically validated in
Lazar and Yeh (2020). In this model, the Odorant Transduction
Process (OTP) taking place in the cilia of the Olfactory Sensory
Neurons (OSNs) (see also Section 2.2) encodes odorants as objects
defined by the tensor of binding rates, dissociation rates and
concentration amplitude (b,d,u(t)). Tensors are multidimensional
arrays that generalize the concept of vectors (1-dimensional
arrays) and matrices (2-dimensional arrays). They provide a
complex representation of complex data. Here b and d are
3-dimensional tensors (see Figure 3), with each of the three
dimensions representing O odorants, R receptors and N OSNs
expressing a receptor. Each entry [b]ron, [d]ron describes the
binding/dissociation rates for n-th OSN expressing receptor r
to/from odorant o, n ∈ 1,…,N, r ∈ 1,…,R and o ∈ 1,…,O. The
entry [u]o(t) is the concentration waveform of odorant o, o ∈
1,…,O (see also Figure 3).

With this odorant object model, the semantics of the space of
mono-molecular odorants (Lazar et al., 2023) is defined by the 2-
tuple of binding/dissociation rate tensors (b,d), fully characterizing
the identity of the odorant object given the set of olfactory receptors.
The syntax of the space ofmono-molecular odorants is characterized
by the vector of concentration waveforms [u](t). More details

regarding the encoding of mono-molecular odorants by the OSNs
is given in Lazar and Yeh (2020) and in the next section below.

2.2 Modeling odorant encoding in the
antenna

In order to study pure and odorant mixture processing in the
Mushroom Body, we first extended our model of the Antenna to
account for competitive binding of a mixture of odorant molecules
(Nagel and Wilson, 2011; Olsen et al., 2010).

Odorant molecules are first sensed in either the second-segment
of the Antenna or Maxillary-Palp (see Figure 1 2nd column) that
are both covered with sensory hairs, called sensilla. Cilia (dendrites)
of a few OSNs are housed in each sensillum. Odorants that
enter sensilla through the pores on its surface are subsequently
transported to the Odorant Receptors (ORs) located on the OSN
sensory cilia (Larter et al., 2016). Odorant molecules then bind to
the ORs and induce the OSN to generate action potentials. This
process is modeled here as the Olfactory Transduction Process
(OTP) (see also Figure 4).

We start by briefly reviewing the OTP for a single mono-
molecular odorant. The output of the peri-receptor process, that
models the overall effect of odorant molecules entering the
sensilla before binding to ORs (see also Figure 4), is given by
Equation 1 (Lazar and Yeh, 2020):

[v]ron (t) = Re(∫
ℝ
h (t− s) [u]o (s)ds

+ [γ]ron∫
ℝ
h (t− s)d[u]o (s)) , (1)

where [u]o is the concentration of the odorant o, [v]ron is the
concentration profile of the odorant o at receptor r expressed by the
OSN n. Re above denotes the rectification function and h(t) is the
impulse response of the peri-receptor process.

The bound-receptormodel describes the dynamics of binding of
odorant molecules to the ORs (see also Figure 4) and is given by

d
dt
[x1]ron = [b]ron[v]ron (1− [x1]ron) − [d]ron ⋅ [x1]ron, (2)

where [x1]ron (bounded between 0 and 1) is the ratio of the ligand-
bound receptors bound to the mono-molecular odorant o. The
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FIGURE 4
Schematic diagram of the Olfactory Transduction Process for a set O of odorant mixture components, o ∈O. The OTP has 3 stages. In the first stage,
also known as the active receptor model, each odorant mixture component is processed by a peri-receptor process followed by a feedback controlled
receptor binding process that depends on the receptor binding of the other odorant components. The output of the bounded receptor generator is
then fed into the second stage, the co-receptor channel model that generates the transduction current. Finally, a biophysical spike generator model
converts the transduction current into a spike train. Refer to Table 1 for the mathematical notation.

steady-state response is given by Equation 3:

[x1]ron =
[a]ron[v]ron
[a]ron[v]ron + 1

, (3)

where [a]ron =
[b]ron
[d]ron

denotes the odorant affinity. For more details
regarding the modeling and biological validation of the mono-
molecular OTP, see Lazar and Yeh (2020).

To study odorant mixture representation and processing, we
now extended the OTP model to odorant mixtures. In the odorant
mixture model, we denote the set of mixture components as O and
assume that the odorant components are independent of each other
during the peri-receptor process. Receptor r expressed by neuron
n can be bound by different odorant components in the mixture,
and the ratio of receptors bound by odorant o, denoted as [x1]ron,
is described by

d
dt
[x1]ron = [b]ron[v]ron (1−∑p∈O[x1]rpn)

− [d]ron ⋅ [x1]ron,o ∈O. (4)

Equation 4 models the syntopic interaction between odorants in the
mixture and the receptor (Rospars et al., 2008). Note that if only one
odorant o is present in the mixture, ∑p∈O[x1]rpn simply reduces to
the single term [x1]ron as in Equation 2.

It is easy to see that by summing up the Equation 4 over all
the odorants present in the mixture, the ratio of the total bound
receptors in steady-state amounts to

∑
o∈O[x1]ron =

∑
o∈O[a]ron[v]ron

∑
o∈O[a]ron[v]ron + 1

, (5)

and the steady-state solution to the set of Equations 4 is

[x1]ron =
[a]ron[v]ron

∑
p∈O[a]rpn[v]rpn + 1

. (6)

If we consider the odorant mixture at a particular component
ratio as a new “pure” odorant, then we can define, up to a scaling

factor, its effective affinity as

[a]rOn =
∑

o∈O[a]ron[v]ron
∑

o∈O[v]ron
(7)

The co-receptor channel that models the dynamics
of the activation of ligand-gated channels in the mixture
model (see also Figure 4) can then be compactly described by

d
dt
[x2]rOn = α

O
2 (∑p∈O[x1]rpn)(1− [x2]rOn)

− βO2 [x2]rOn − κ
O[x2]

2/3
rOn[x3]

2/3
rOn

d
dt
[x3]rOn = α

O
3 [x2]rOn − β

O
3 [x3]rOn,

(8)

where αO2 and βO2 are scalars indicating the rate of activation and
deactivation of the gating variable [x2]rOn, respectively, and the
constant κO models the calcium feedback for themixturemodel. αO3
and βO3 are scalars that indicate the rate of increase and decrease of
the gating variable, again for the mixture model. Note that, by using
the ratio of the total bound receptors ∑p∈O[x1]rpn, the receptors
bound by different odorants in the mixture jointly determine the
dynamics of the gating variable [x2]rOn.

Taken together, the OTP process of an odorant mixture O is
given by the following equations

[v]ron (t) = Re(∫
ℝ
h (t− s) [u]o (s)ds

+ [γ]ron∫
ℝ
h (t− s)d[u]o (s)) ,o ∈O

d
dt
[x1]ron = [b]ron[v]ron (1−∑p∈O[x1]rpn)

− [d]ron ⋅ [x1]ron,o ∈O
d
dt
[x2]rOn = α

O
2 (∑p∈O[x1]rpn)(1− [x2]rOn)

− βO2 [x2]rOn − κ
O[x2]

2/3
rOn[x3]

2/3
rOn

d
dt
[x3]rOn = α

O
3 [x2]rOn − β

O
3 [x3]rOn

d
dt
[I]rOn = [x2]

ρ
rOn (IrOn − [I]rOn) − c

ρ[I]rOn.

(9)
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TABLE 1 Mathematical notation of the Antenna circuit model.

Symbol Description

[v]o Output of the peri-receptor process (see Equation 1)

[x1]o Ratio of receptors bound by odorant o (see Equation 4)

x2 Gating variable of the co-receptor channel (see
Equation 8)

x3 Gating variable of the calcium channel (see Equation 8)

I Transduction current (see Equation 9)

∑kδ(t− t
O
k ) Spike train response of the OSN (see Equation 11)

r = {1,…,R} Index of receptor types expressed by the OSNs of the
Antenna

(b,d,u(t)) Tensor modeling the space of odorants presented to the
early olfactory system

∑k∈ℤδ(t− t
O
kr ) Spike train output of the OSN expressing the r-th receptor

type in response to an odorant mixture with components
in O

{∑k∈ℤδ(t− t
O
kr )}

R
r=1 Multi-dimensional spike train output across all OSNs

expressing the R different types of olfactory receptors

In the last Equation 9, ρ and c are scalars, and IrOn denotes the
maximal amplitude of the current through the co-receptor channel,
whose value is empirically determined through parameter sweeping.
If the current is activated on a much faster time scale than the
activation of the co-receptor, the last equation will operate in steady-
state and

[I]rOn =
[x2]

ρ
rOn

[x2]
ρ
rOn + c

ρ
⋅ IrOn. (10)

Revisiting Equation 9, we note that, similar to the mono-
molecular odorant, the encoding of odorant mixtures exhibits
multiplicative coupling in a confounding representation of odorant
identities and concentration waveforms.

Finally, we note that the spike train generated by the Biophysical
Spike Generator (BSG, see also Figure 4) of the OSN expressing
receptor r = {1,…,R} with noise variance (σO)2 in response to the
odorant mixture with components in O is given by

∑
k∈ℤ

δ(t− tOkr ) ←NoisyConnorStevens([I]rOn;σ
O) , (11)

where (tOkr )k∈ℤ are the spike times generated by the Noisy
Connor-Stevens point-neuron model and δ denotes the Dirac
delta functional. Compared with the Connor-Stevens point-neuron
(Connor and Stevens, 1971), the Noisy Connor-Stevens point-
neuron model exhibits a tunable frequency-current response curve
controlled by the variance of the noise. A detailed computational
description of the Noisy Connor-Stevens point neuron is available
in the Appendix of Lazar and Yeh (2020).

In conclusion, the notation of the key parameters and
input/output variables of the Antenna circuit (see Figures 3, 4) are
shown in detail in Table 1.

2.3 I/O modeling of the antennal lobe

The Antennal Lobe (AL) can be anatomically divided into
some 52 regions called glomeruli, where all the OSNs expressing
the same olfactory receptor project their axons into (Buck and
Axel, 1991; Firestein, 2001). The dendrites of a uniglomerular
projection neurons (uPNs) exclusively innervate a single glomerulus
(Scheffer et al., 2020) (see also Figure 1 third column, each color
marks the PNs innervating a single glomerulus). Therefore each
glomerulus can be considered a separate coding channel in which
the odorants sensed by a single olfactory receptor type all converge
onto the same uPNs. In addition to uPNs, multiglomerular PNs
innervate multiple glomeruli and most of them project to the
Lateral Horn (LH) while skipping the Mushroom Body (MB).
Following (Lazar et al., 2023), multiglomerular PNs are ignored in
our AL model described below as physiological recordings are only
available for uPNs (Kim et al., 2015). An extensive group of Local
Neurons (LNs) exclusively innervates the AL (Scheffer et al., 2020;
Lazar et al., 2022). LNs are known to mediate presynaptic inhibition
on the OSN axon terminals (Olsen and Wilson, 2008).

The I/O modeling of the Antennal Lobe is extensively covered
in the Supplementary Material, Section 1. Here, we briefly describe
the I/O of the Antennal Lobe circuit with spatio-temporal feedback.
The schematic diagram of this circuit is shown in Figure 5. This
circuit consists of R channels modeling glomeruli (2 channels
are shown in Figure 5). As shown in the Supplementary Material,
Section 1, each channel r is modeled with 3 Divisive Normalization
Processors (DNPs) (Lazar et al., 2023). The first DNP, a model of
the OSN Axon Terminal, is controlled by the Presynaptic inhibitory
Local Neuron (Pre-LN). The Pre-LN receives inputs from and
provides spatio-temporal feedback to all R channels. The OSN
Axon Terminal DNP plays a key role in extracting the odorant
identity. Each of the other two DNPs models the Postsynaptic
excitatory Local Neuron (Post-eLN) and the Postsynaptic inhibitory
Local Neuron (Post-iLN), respectively. Their functions are to
extract the stimulus onset and offset semantic timing information.
Overall, the AL is modeled as a multi-channel DNP with spatio-
temporal feedback.

In what follows, in response to the spike train generated by
an OSN, we will evaluate the currents injected by each of the
three DNPs of a single channel r into a Projection Neuron. For
guidance see Figure 5.

The r-th channel parameters of the OSN to Pre-LN synapse
are [αOL1 ,β

OL
1 ,g

OL
max,E

OL]. The synaptic current IOLr in channel r is
described by (see also (the middle of) Figure 5)

d
dt
xOLr = α

OL
1 ⋅ [NT]

OP
r ⋅ (1− x

OL
r ) − β

OL
1 ⋅ x

OL
r , (12)

IOLr = g
OL
max ⋅ x

OL
r ⋅ (VL

r −EOL) , (13)

where [NT]OPr is the concentration of the synaptic neurotransmitter
released by theOSN expressing the r-th receptor and captured by the
downstream PN, VL

r is the Pre-LN BSG membrane voltage and EOL

is the reversal potential of the synapse.
Pre-LN BSG is modeled as a Noisy Connor-Stevens point

neuron model (Lazar and Yeh, 2020), similar to the OSN BSGs. The
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FIGURE 5
Schematic diagram of the multi-channel AL circuit with spatio-temporal Pre-LN feedback. “OSN” represent a group of OSNs that express the same OR.
Their axon terminals provide inputs to uPNs (“PN”) in the same channel (glomerulus). OSN spikes are fed into both Post-eLN and Post-iLN in the
channel. These two neurons also drive PNs. In addition to providing inputs to their corresponding PNs, neurotransmitter release at all OSN axon
terminals also drive the Pre-LN, which then feedback into the OSN axon terminals. Channels 1 and R are shown. Refer to Table 2 for the mathematical
notation. Adapted from Lazar et al. (2023) under Creative Commons Attribution License.

generated spike train is given by

∑
k∈ℤ

δ(t− tLk) ←NoisyConnorStevens(
R

∑
r=1

IOLr ;σL), (14)

where (tLk)k∈ℤ are the Pre-LN spike times, and (σL)2 is the noise
variance of the point neuron model controlling its frequency-
current response curve.

The r-th channel parameters of the OSN Axon-Terminal
are [αAxT1 ,β

AxT
1 ,κ

AxT
1 , [NT]max], where αAxT1 ,β

AxT
1 ,κ

AxT
1 are rate

constants and [NT]max denotes the maximum neurotransmitter
concentration, and the r-th channel OSN Axon-Terminal is
described by

d
dt
xAxTr = α

AxT
1 ⋅ ∑

k∈ℤ
δ(t− tOkr) ⋅ (1− x

AxT
r ) − β

AxT
1 ⋅ x

AxT
r

− κAxT1 ⋅ ∑
k∈ℤ

δ(t− tLk) ⋅ x
AxT
r (15)

[NT]OPr = [NT]max ⋅ x
AxT
r . (16)

where [NT]OPr denotes the vesicle concentration in the OSN Axon-
Terminal. Equation 15 describes a temporal feedback Divisive
Normalization Processor (DNP) (Lazar et al., 2023) that models
the presynaptic normalization taking place at the OSN axon
terminal (Olsen and Wilson, 2008). Note that the steady-state
response of Equation 15 is of divisive form (see Equation 5 in
Supplementary Material; Section 1). The outputs of each OSN
Axon-Terminal (feedback DNP) are joined with two additional
feedforward DNPs modeled by a Post-eLN and a Post-iLN in each
channel (for more details, see Supplementary Material, Section 1).
The three DNP outputs in the channel then drive synapses of the
ProjectionNeuron (PN) arborizing the same channel.The total spike
train generated by the PN BSG with noise variance (σP)2 amounts to

∑
k∈ℤ

δ(t− tPkr) ←NoisyConnorStevens(IOPr , I
eLP
r , I

iLP
r ;σ

P) , (17)

where IOPr , IeLPr , IiLPr are the synaptic currents from, respectively,
the OSN axon terminal, Post-eLN and Post-iLN, and (tPkr)k∈ℤ are
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TABLE 2 Mathematical notation of the Antennal Lobe circuit model.

Symbol Description

r = {1,…,R} Index of the channels in the spatio-temporal AL circuit

∑k∈ℤδ(t− t
O
kr) Input into the r-th AL channel, where (tOkr)k∈ℤ are spike times generated by the OSN expressing receptor type r (see Equation 11)

[NT]OPr Normalized output signal of the feedback DNP in the r-th channel (see Equation 15, 16)

∑k∈ℤδ(t− t
P
kr) Output of the r-th channel of the AL, where (tPkr)k∈ℤ are spike times generated by the r-th channel output PN BSG (see Equation 17)

{∑k∈ℤδ(t− t
P
kr)}

R
r=1 Multi-dimensional output spike trains across all AL channels

IOeLr Synaptic current to Post-eLN driven by OSN r (see Equations 6–9)

IOiLr Synaptic current to Post-iLN driven by OSN r (see Equations 11–14)

∑kδ(t− t
eL
kr ) Output of Post-eLN in the r-th channel (see Equation 10)

∑kδ(t− t
iL
kr) Output of Post-iLN in the r-th channel (see Equation 15)

IOPr Synaptic current into PN driven by OSN axon terminal (see Equations 16, 17)

IeLPr Synaptic current into PN driven by Post-eLN (see Equations 18, 19)

IiLPr Synaptic current into PN driven by Post-iLN (see Equations 20, 21)

∑δ(t− tLk) Output of the Pre-LN (see Equation 14)

IOLr Synaptic current to Pre-LN driven by OSN axon terminal in the r-th channel (see Equations 12, 13)

{∑k∈ℤδ(t− t
O
kr)}

R
r=1 Multi-dimensional input across all AL channels

xAxTr Normalized output signal of the feedback DNP in the r-th channel

xAxT = {xAxT}Rr=1 Multi-dimensional normalized output signals of the feedback DNPs across all AL channels

the spike times of the PN (see Figure 5). Details regarding the
derivation of the synaptic currents IOPr , IeLPr and IiLPr are given in the
Supplementary Material, Section 1.

In conclusion, the key parameters and input/output variables
of the Antennal Lobe circuit with spatio-temporal feedback (see
Figure 5) are shown in detail in Table 2.

2.4 I/O modeling of the mushroom body
calyx

The primary circuit architecture of the Mushroom Body Calyx
(MB Calyx) exhibits 3 types of neurons. The first neuron type, the
uPNs of the Antennal Lobe, projects into theMBCalyx and provides
inputs to the second neuron type, the Kenyon Cells (KCs). In the
fruit fly, there are about 2,000 KCs on each hemisphere (Li et al.,
2020).The connectivity between PNs andKCs is considered random
and differs among individual flies (Caron et al., 2013; Masuda-
Nakagawa et al., 2005), although a more recent connectome study
suggested the existence of more discernible structures (Zheng et al.,
2022). Nevertheless, the connectivity is stereotypic with each KC
receiving inputs, on average, from 6 to 7 PNs. The third type is
an Anterior Paired Lateral (APL) neuron. It covers the entire MB,
including the Calyx, and has reciprocal interactions with all the

KCs throughout. It has been recently shown that the APL neuron
normalizes the magnitude of the overall responses of all the KCs in
the MB Calyx (Prisco et al., 2021).

Here, we refine the MB Calyx circuit with two primary
structures. First, the PN to KC connectivity is modeled as a bipartite
graph, as PNs andKCs can be considered two disjoint sets of vertices
in the graph and all edges connect a PN to a KC. Second, we model
the interactions between KCs and the APL as a spatio-temporal
feedback DNP circuit, similar to the Pre-LN feedback circuit in the
Antennal Lobe.

The schematic diagram of the MB Calyx circuit with
spatio-temporal Anterior Paired Lateral (APL) feedback
is shown in Figure 6. The m-th KC dendritic output current IKCDm
(superscript “KCD” for “KC Dendrite”) is determined by the input
of a random number of PN axons projecting into each KC dendritic
tree and the feedback xAPL provided by the APL neuron.

The output current IKCDm of themth KC dendrite with parameters
[αKCD1 ,β

KCD
1 ,κ

KCD
1 ] is described by

d
dt
xKCDm = α

KCD
1 ⋅ ∑

r∈𝕀m

∑
k∈ℤ

δ(t− tPkr) ⋅ (1− x
KCD
m )

− βKCD1 ⋅ x
KCD
m − κ

KCD
1 ⋅ x

KCD
m ⋅ xAPL (18)

IKCDm = I
K
max ⋅ xKCDm , (19)
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FIGURE 6
Schematic diagram of the Calyx circuit with spatio-temporal APL feedback. Spiking outputs of the PNs provide inputs to KC dendrites. Each KC receives
inputs from Q PNs. Output of the KC dendrites then drive their respective KC BSGs (“KC”) to respond and their spikes are fed into the APL neuron. The
APL neuron output provides a second input to each KC dendrite. Refer to Table 3 for the mathematical notation.

where 𝕀m denotes a set of PNs connected to the dendrite of the mth
KC, αKCD1 ,β

KCD
1 ,κ

KCD
1 are rate constants. Here, we assume 𝕀m to be a

random set (Caron et al., 2013). The number of PN inputs that a KC
receives is parameterized by Q.

For simplicity, the APL feedback signal xAPL is modeled as the
solution of a kinetic equation with parameters [αAPL1 ,β

APL
1 ] driven

by the aggregated input KC spike trains ∑Mm=1∑k∈ℤδ(t− t
K
km):

d
dt
xAPL = αAPL1 ⋅

M

∑
m=1
∑
k∈ℤ

δ(t− tKkm) ⋅ (1− x
APL)

− βAPL1 ⋅ x
APL. (20)

where ∑Mm=1∑k∈ℤδ(t− t
K
km) is the total KC spiking activity. For

simplicity, we omit the PN-KC and KC-APL synaptic dynamics.
The KC BSG is modeled by the NoisyConnorStevens point

neuron, with noise variance (σK)2 = 0, and generated spike train

∑
k∈ℤ

δ(t− tKkm) ←NoisyConnorStevens(IKCDm ;σ
K) , (21)

where (tKkm)k∈ℤ are the spike times generated by the mth KC neuron
and δ denotes the Dirac functional.

In conclusion, the key parameters and input/output variables
of the Calyx circuit (see Figure 6) are shown in detail in
Table 3.

3 I/O characterization of odor signal
processing in the MB calyx

In what follows, our goal is to characterize the I/O of the
MB Calyx, the last building block of the OEM cascade depicted
in Figure 2. Given the prior modeling of the space of odorants

in Section (2.1), the odorant encoding process in the Antenna
described in Section (2.2) and, the odor signal processing taking
place in the Antennal Lobe and detailed in Section (2.3), the input
to the Mushroom Body Calyx can be readily evaluated as the
PN response at the output of the Antennal Lobe for pure and
odorant mixtures.

Recall that, we evaluated the odorant encoding process
described in Section (2.2) with 110/23 odorant/receptor pairs stored
in the DoOR dataset (Münch and Galizia, 2016). Each of the 110
odorants was associated with a 23-dimensional affinity vector whose
entries were estimated using the algorithm advanced in (Lazar
and Yeh, 2020). Given the PN output provided by the Antennal
Lobe model (Lazar et al., 2023), we shall investigate whether the
Mushroom Body Calyx extracts semantic information, i.e., the
identity of pure odorants and odorant mixtures, faithfully and
distortion free.

This section is organized as follows. In section 3.1 we evaluate
the effect of the PN-KC connectivity on the KC dendritic input for
both pure (mono-molecular) and odorant mixtures. In section 3.2
we evaluate the effect of the KC-APL feedback on the KC dendritic
output for both pure and odorantmixtures. Finally, in section 3.3 we
show how the Calyx extracts and represents semantic information in
the spike domain.

3.1 The effect of the PN-KC connectivity
on the KC dendritic input for pure and
odorant mixtures

A key descriptor of the Calyx circuit is the connectivity
between PNs and KCs, i.e., the adjacency matrix of the PN-
KC bipartite graph. The topology of the bipartite graph is
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TABLE 3 Mathematical notation of the Mushroom Body Calyx circuit model.

Symbol Description

m = {1,…,M} Index of the KC neurons in the Calyx circuit

r = {1,…,R} Index of the PNs

∑r∈𝕀m∑k∈ℤδ(t− t
P
kr) Input to the m-th KC dendrite, where 𝕀m denotes a random set of PNs connected to the m-th KC dendrite and (tPkr)k∈ℤ is the set of spike times

generated by the PN BSG at the output of the r-th AL channel

{∑r∈𝕀m∑k∈ℤδ(t− t
P
kr)}

R
r=1

Multi-dimensional input to the dendrites across all KC neurons

xKCDm Normalized dendritic output current of the m-th KC neuron

xKCD = {xKCDm }
M
m=1 Multi-dimensional normalized dendritic output current across all KC neurons

∑k∈ℤδ(t− t
K
km) Output of the m-th KC neuron, where (tKkm)k∈ℤ is the set of spike times generated by the m-th KC BSG

{∑k∈ℤδ(t− t
K
km)}

M
m=1 Multi-dimensional output across all KC neurons

∑kδ(t− t
P
kr) PN spike outputs

IKCD Synaptic outputs of the KC dendrite (see Equation 18, 19)

∑kδ(t− t
K
km) KC spike output

determined by two factors. First, each KC receives inputs from a
number of Q PNs. Second, the PNs are randomly selected in an
individual fly (Caron et al., 2013). This determines how the KC
dendritic trees sample the R-dimensional space of the PN responses
to odorants.

We first evaluate the dependency of the KC dendritic inputs on
Q. Biologically, the value of Q corresponds to the number of claw-
like endings of the KCdendrites (Schürmann, 1974; Yusuyama et al.,
2002). Each KC claw receives dense synaptic inputs mostly from
a single PN. Therefore, the number of dendritic claws of a KC
largely determines the number of different PNs that the KC receives
inputs from.

A recent experimental study has examined the
effect of the number of KC claws on fly’s ability to
discriminate odorants (Ahmed et al., 2023). Genetic manipulation
allowed the authors to obtain flies that have an increased or
decreased number of dendritic claws. Here we evaluate the effect
of computationally changing the value of Q.

3.1.1 The effect of the PN-KC connectivity on the
dendritic KC input for pure odorants

In this section we evaluate the dependence of the KC dendritic
inputs on Q (number of claw-like endings of the KC dendrites)
for pure odorants. In Figure 7, we evaluate our model for Acetone
at four constant amplitude concentration levels: 50ppm, 100ppm,
150ppm and 200ppm, and examined the respective steady-state
responses at the OSNs, PNs and KC dendritic inputs. In Figure 7A,
the affinity value of each of the 23 receptors normalized by
the sum of all affinity values is shown in descending (ranking)
order. Note that the responses presented in ranking order
provide a more intuitive representation of the structure of the
response vectors. The OSN and PN spike train responses are
shown in Figures 7B, C, respectively. Consistent with (Lazar et al.,

2023), while both OSN and PN responses are sensitive to
odorant concentration, the dependency at the PN level is
markedly reduced.

Visualizing the KC responses in Figures 7D1–D3, we observe
that the number of KCs activated by a given odorant is strongly
influenced by the Q values: Q = 3, Q = 6 and Q = 9.

We note that the ranking of the KC dendritic inputs is largely
determined by the number of top responding PNs. For example,
if the Q = 6 inputs to a KC originate from the top 6 responding
PNs, then that KC is ranked tops among all other KCs. Since only
1 PN (DM4 PN) out of the 23 PNs strongly responds to Acetone, the
KCs that receive inputs from the DM4 PN have significantly higher
total dendritic input than the other KCs (see also Figures 7D1–D3).
This results in a large gap in the dendritic input-rank curve. As
Q increases from 3 to 9, the number of KCs that have DM4
PN dendritic input also increases. This increase leads to a larger
percentage of KCs with larger inputs while the total number of KCs
remains unchanged.

In Figure 8, we characterize responses to the odorant Nerol
in the same way as in Figure 7 for the odorant Acetone. We
note that the affinity values of 3 receptors are relatively higher.
This creates a different signature in the ordered ranking of
the KC inputs. The general trend is similar to the case when
Acetone is presented. With a smaller Q value, less KCs receive
enough inputs to generate spikes, as experimentally observed in
Ahmed et al. (2023).

With an increasing number of PNs responding to a pure
odorant, the dendritic input-ranking curve becomes smoother. See,
for example, the results for Diethyl Succinate and Ethyl Butyrate
shown, respectively, in Supplementary Figures S3, S4. Ethyl Butyrate
elicits responses in a wide range of PNs, and the dendritic input-
rank curves are smoother without noticeable gaps between KC
dendritic inputs.
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FIGURE 7
Evaluating the effect of the PN-KC connectivity parameter Q on the dendritic KC input for Acetone. (A) Acetone affinity in descending (ranking) order.
Affinity is normalized by the sum of all affinity values across receptor types. (B) Steady-state responses of OSNs to Acetone at four different constant
amplitude concentration levels. (C) Steady-state responses of PNs to Acetone at four different constant concentration levels. (D) Dendritic inputs to
each KC in descending order of input strength, at four different different constant concentration levels. (D1) Q = 3, (D2) Q = 6, (D3) Q = 9. The
horizontal axis lists the KCs in ranking order.

FIGURE 8
Evaluating the effect of the PN-KC connectivity parameter Q on the dendritic KC input for Nerol. (A) Nerol affinity in descending order. Affinity is
normalized by the sum of all affinity values across receptor types. (B) Steady-state responses of OSNs to Nerol at four different constant amplitude
concentration levels. (C) Steady-state responses of PNs to Nerol at four different constant concentration levels. (D) Dendritic inputs to each KC in
descending order of input strength, at four different constant concentration levels. (D1) Q = 3, (D2) Q = 6, (D3) Q = 9. The horizontal axis lists the KCs
in ranking order.

Similar dendritic input-rank plots can be obtained for randomly
instantiated PN-KC bipartite graphs (see Supplementary Figure S5).
Note,however, that for randomconnectivity, theexact rankingorderof
eachKCmight differ. Since the connectivity betweenPNs andKCshas
been shown to be random and may differ from fly to fly (Caron et al.,
2013), the preservation of the input-ranking for different odorants
across concentration amplitudes applies across individual flies.

3.1.2 The effect of the PN-KC connectivity on the
KC dendritic input for odorant mixtures

In Figure 9, we evaluate the dependence of the KC dendritic
inputs on the connectivity parameter Q when a binary odorant
mixture consisting of Acetone and Diethyl Succinate is presented.
The concentration of Acetone is kept at 100ppm, and the
concentration ofDiethyl Succinate changes in each column such that
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FIGURE 9
Evaluating the effect of the PN-KC connectivity parameter Q on the dendritic KC input with mixtures of Acetone and Diethyl Succinate. Concentration
of Acetone is kept at 100ppm, and the concentration of Diethyl Succinate changes in each column such that the ratio of the two odorants are (column
1) 4:1, (column 2) 2:1, (column 3) 1:1, (column 4) 1:2 (column 5) 1:4. The mixtures are presented at constant concentration levels, and the steady-state
responses are shown. (A) Effective affinity of the mixture at different component ratios. (B) OSN responses. (C) PN responses. (D) KC dendritic inputs
for (blue) Q = 3, (orange) Q = 6 and (green) Q = 9. The horizontal axis lists the KCs in ranking order.

the ratio of the two odorants are, respectively, 4:1, 2:1, 1:1, 1:2 and
1:4. The mixtures are presented at constant amplitude concentration
levels, and the steady-state responses are shown.

We observe that across all Q values, the ordered KC dendritic
input exhibits different characteristics when the component
concentration amplitude ratio shifts from 4:1 to 1:4. This
characteristic is largely preserved for different Q values at a
particular component concentration ratio. In particular, the range
of magnitude of KC dendritic inputs are similar across 3 Q values,
as there are only 3 large components in the affinity vectors.

Concluding, the connectivity between the PNs andKCsmodeled
by a bipartite graph with parameter Q changes the distribution of
the ranking of the output of dendritic KCs. In Figures 7–9 higher
rank KC input values gravitate and are grouped together. These
groupings can be more easily distinguished from lower rank values
that also gravitate together. In addition, these response properties

are preserved despite the randomness of the connectivity between
PN and KC across individual flies.

3.2 The effect of the KC-APL feedback on
the KC dendritic output for pure and
odorant mixtures

In this section we analyze the dependence of the Mushroom
Body Calyx circuit on the APL feedback. We focus on the effect of
APL feedback on the KC dendritic outputs that drive the KC spike
generation. For simplicity, we set the connectivity parameter of the
PN-KC bipartite graph toQ = 6, a number consistent with average of
PN-to-KC connections observed in the connectome (Scheffer et al.,
2020). We show that the APL feedback facilitates the extraction
of semantic odorant information by normalizing KC responses
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and by reducing odorant concentration dependence of the KC
dendritic output.

3.2.1 The effect of the KC-APL feedback on the
KC dendritic output for pure odorants

We first note that the differential DNP described by
Equations 18, 20 is, in steady-state, approximately characterized
by a monotonically increasing sigmoid function of KC dendritic
inputs. Therefore, we expect that the ranking of the magnitude of
KC dendritic inputs is preserved by the KC dendritic outputs.

In Figure 10, we depict the transformation of KC dendritic
inputs (left column) into dendritic outputs (middle column) in
the presence of APL feedback. Each row of Figure 10 shows the
transformation for one of the four odorants that we tested (Acetone,
Diethyl Succinate, Nerol and Ethyl Butyrate) each with four different
constant amplitude concentration values. The dendritic output
amounts to xKCDm in steady-state. Here the KC spiking threshold was
chosen to be 0.5. Thus, the KCs that have dendritic output greater
than 0.5 will generate spikes that contribute to the magnitude of the
amplitude of the APL feedback.

As shown in Figure 10, the presence of APL feedback largely
removes the concentration dependence of the KC dendritic
output if the latter is above threshold. This demonstrates that
the proposed divisive normalization circuit is capable of further
reducing the variability of KC responses to odorants of different
concentration levels (Prisco et al., 2021) beyond the normalization
effect induced by the Local Neurons of the Antennal Lobe
(Lazar et al., 2023), thereby further separating odorant semantic
information from syntactic information (Lazar et al., 2023). The
aggregation of the KC responses in Figure 10 (right column) will be
discussed in Section 3.3.

3.2.2 The effect of the KC-APL feedback on the
KC dendritic output for odorant mixtures

APL feedback is equally effective for extracting the semantic
information of odorant mixtures. In Figure 11, we consider a
binary mixture consisting of Acetone and diethyl succinate at
different component constant amplitude concentration ratios.
For each component ratio, we also varied the total concentration
while keeping the ratio fixed. The OSN responses to the
mixtures are shown in Figure 11A. PN responses, as shown in
Figure 11B, exhibited reduced variability to constant concentration
ratios. The KC dendritic inputs and and the dendritic outputs
are, respectively, shown in Figures 11C. While the magnitude
of dendritic inputs varies across component ratios and total
concentration, the dendritic outputs display a markedly reduced
variability across concentration amplitudes. Among the different
component ratios tested, the overall range of responses at the KC
dendritic outputs are also similar.

Normalized KC dendritic outputs naturally maintain the
number of active KCs with a single spiking threshold. From
Figures 10, 11, we can see that about 20% of the KCs are above
the spiking threshold. With a different threshold or Q value, the
percentage of active KCs can easily be controlled. This demonstrates
that the spatio-temporal DNP model of the MB Calyx circuit
is a more natural mechanism for ensuring the sparsity of KC
responses, as opposed to an artificial winner-take-all mechanism
that has been used by other models of the mushroom body for

enforcing the sparseness of KC responses (Dasgupta et al., 2017;
Saumweber et al., 2018; Gkanias et al., 2022).

3.3 The Calyx extracts and represents
odorant semantic information in the spike
domain

Ranking the dendritic input and output KCs in Figures 10, 11
provides insights into the structure of the affinity vector of pure
and mixture odorants under consideration. The ranking operation,
however, exhibits a combinatorial complexity. This forbidding
complexity can be computationally readily avoided by mapping, for
each KC, the dendritic output into the spike domain. The proposed
code takes the first spike of each activeKCand joins themall together
at generation time into a single first spike sequence. Figure 10 (right
column) shows the first spike sequences for four different odorants,
each at four different concentration levels. We note that these
spike sequences are not generated by a single neuron. Rather, each
sequence consists of a train of spikes received by, e.g., a Mushroom
Body Output Neuron (MBON) (or APL neuron) innervating its
presynaptic KCs in a MB compartment. Therefore, the order of the
KC dendritic output that is invariant to odorant concentration can
be naturally read out by an MBON (or APL) based on the timing of
the proposed first spike sequence.

Since the KC dendritic output is largely concentration invariant
for the KCswith dendritic output above the threshold, the variability
of the sequence of spikes across a range of concentration amplitude
values is small. The first spike sequences in Figure 10 (right column)
are clearly different when due to two different odorants but rather
similar when due to two different concentration waveforms of
the same odorant. In the Supplementary Figure S6, we display the
ranked KC dendritic inputs, the ranked KC dendritic outputs, the
first spike sequence and the cumulative interspike intervals for all
110 odorants whose OSN responses have been characterized for 23
ORs at a single concentration level in the DoOR dataset (Münch and
Galizia, 2016). Note that the cumulative interspike distance plots are
largely concentration invariant. This is amply displayed in the last
column of the Supplementary Figure S6 for 110 mono-molecular
odorants evaluated at four different concentration amplitude values.
Thus, we hypothesize that the sequence of first spikes generated by
each individual KC represents the odorant semantic information in
the time domain largely unaltered by the syntactic information of
the odorant concentration waveform.

The key advantage of the first spike sequence code across
the active KCs in the spike domain is that the readout of the
sequence of spikes arriving at the MBONs does not require the
knowledge of the KCs that the spike originated from. The entire
sequence becomes a single code. Therefore, the code remains the
same for different flies with different instantiations of the PN-KC
bipartite graph.

The first spike sequence code can also be used to distinguish
odorant mixtures with different mixture ratios. Figure 12 (right
column) shows the first spike sequence code for mixtures of
Methanol and Benzyl Alcohol at five different ratios. For each fixed
ratio, the concentration of the mixture components are presented at
four different Methanol concentration levels. Again, the first spike
sequence code shows different patterns for each ratio but similar
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FIGURE 10
APL feedback facilitates the extraction of odorant semantic information by normalizing KC responses and by reducing odorant concentration
dependence of the KC dendritic output. The connectivity parameter of the PN-KC bipartite graph is Q = 6. Odorant semantics in row (A) Acetone, (B)
Diethyl Succinate, (C) Nerol, and (D) Ethyl Butyrate. (left column) Ranking of KC dendritic inputs. (middle column) Ranking of KC dendritic outputs.
(right column) Odorant semantics encoded in the time domain across the population of KCs. The first spikes of each of the active KCs in response to
each odorant are collected onto a single row for each of the odorant concentration amplitude values.

patterns for different concentration ampitudes of the same ratio.
The corresponding cumulative interspike intervals are shown in
Supplementary Figure S7. The response of the OEM to two other
binary mixtures are shown in Supplementary Figures S8, S9.

4 Discussion

The early olfactory sensory circuits evolved to encode and
identify odorants in various ecological niches, thereby raising the
structure and features of the odorant space to be key determinants
of the encoding mechanisms adapted in the olfactory pathways.
Despite its importance, however, an explicit modeling of the
odorant space has often been neglected when discussing odor signal
processing in the early olfactory circuits (Endo and Kazama, 2022).

In the present work, we explicitly modeled odorant stimuli in
terms of their semantic and syntactic information content, and
explored how the early olfactory system of the fruit fly separates
semantic and syntactic information. Recall that, Shannon (Shannon,
1948) made a clear distinction between meaning (semantic) and
syntactic information. He felt, rightly so, that syntactic information
can be formalized and that led to, among others, key concepts in
information theory such as channel capacity, coding theorems, etc.
One of his main arguments was that “a bit is a bit” and there is no
meaning associated with “bits”. He did not address the challenges of
formalizing the concept of semantic information.

In accordance to Shannon’s distinction between syntax and
semantics, our key prior research results (Lazar and Yeh, 2020;
Lazar et al., 2023) have pointed out that the traditional application
of methods of information theory, signal processing and control
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FIGURE 11
By normalizing KC responses and by reducing odorant concentration dependence of the KC dendritic output, APL feedback reduces the variability of
KC responses to component concentration ratios of odorant mixtures. (A) OSN responses to mixture of Acetone and Diethyl Succinate at five different
component ratios and different total concentration levels. Legend shows the concentration of Acetone. Concentration of Diethyl Succinate can be
derived from the component ratio. (B) PN responses. (C) KC dendritic inputs. (D) KC dendritic outputs. Ratios of acetone to Diethyl Succinate are
(column 1) 4:1, (column 2) 2:1, (column 3) 1:1, (column 4) 1:2, (column 5) 1:4. The horizontal axes in rows (C) and (D) list the KCs in ranking order. The
connectivity parameter of the PN-KC bipartite graph is Q = 6.

theory to odor signal processing is lacking the notion of “meaning”
or semantics. An example might help clarify our point of view.
When a neuroscientist applies a mono-molecular odorant such as
Acetone, to the Antennae of the fruit fly, and only provides single
OSN recordings to a second neuroscientist without mentioning the
odorant identity, the recordings alone provide no clues that the
odorant in question is Acetone. This is because different odorant
identity and concentration pairs can lead to the same OSN spike
train response (Lazar and Slutskiy, 2012). Most of the experiments
in the olfactory literature, assume that the odorant identity is
known. As such, prior arts (Blazing and Franks, 2020; Endo and
Kazama, 2022; Bandyopadhyay and Sachse, 2023) have primarily
focused on the representation of odorant syntactic information
(i.e., concentration amplitude) and cannot, therefore, serve as
baseline methods without a formal computational/theoretic model

of odorant identity. In contrast we argue that odor signal processing
in the Early Olfactory System (EOS) of the fruit fly, is mostly
focussed on extracting semantic information. Consequently, we
argue that olfactory research needs to shift from solely focusing
on processing syntactic (or Shannon) information to processing
semantic, i.e., odorant identity information.

To that end, by extending our previous work on the functional
logic of odor signal processing in the Antennal Lobe (Lazar et al.,
2023), we have established that the Antennal Lobe and Calyx jointly
remove the concentration dependency of the odorant information
from the confounding representation of the Antenna (Lazar
and Yeh, 2020). We demonstrated that these circuits separate
the odorant semantics from syntax, thereby undoing the
multiplicative coupling of these two information streams in
the Antenna.
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FIGURE 12
Odorant semantics information of a mixture of Methanol and Benzyl Alcohol with different constant concentration amplitude ratios encoded in the
time domain across the population of KCs. The mixtures are presented at a fixed ratio in row (A) 4:1, (B) 2:1, (C) 1:1, (D) 1:2 and (E) 1:4. For each fixed
ratio, 4 Methanol concentration levels are used, (red) 50ppm, (green) 100ppm, (orange) 150ppm and (blue) 200ppm. (left column) Ranking of KC
dendritic inputs. (middle column) Ranking of KC dendritic outputs. (right column) Odorant semantics encoded in the time domain across the
population of KCs. The first spikes of each of the active KCs in response to each odorant are collected onto a single row for each of the odorant
concentration amplitude values.

We showed that in the Calyx the sought after semantic
information underlies the ranking of the KC dendritic output after
the KC dendritic input undergoes the PN-KC random connectivity
and the spatio-temporal feedback provided by the APL neuron.
Consequently, expansion recoding in the Calyx characterizes the

structure of vector PN responses by computing fixed mean random
additive combinations, and use their ranking as a simple yet
powerful way of extracting the semantic information of the odorant.
More importantly, we addressed the combinatorial complexity of
ranking by mapping, for each KC, the concentration-invariant
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dendritic output into the spike domain. The proposed time code
takes the first spike of each active KC and joins them all together at
generation time into a single first spike sequence. Clearly, the order
of the first spikes across the population of KCs reflects the ranking
order at negligible complexity. The existence of such concentration-
invariant spike code is supported by increasing evidence in the
Antenna and Antennal Lobe (Haddad et al., 2013; Wilson et al.,
2017; Zwicker, 2019; Chong et al., 2020; Egea-Weiss et al., 2018),
the piriform cortex (Bolding and Franks, 2018), the visual system
(Rullen and Thorpe, 2001; Gollisch and Meister, 2008), and at the
neuron level in general (Branco et al., 2010).

Time is an intrinsic variable of the concentration waveform, but
not of the odorant object identity. Interestingly, the key result of
the modeling and characterization of the early olfactory system we
advanced here asserts that the semantic information is mapped into
the time domain by the Calyx circuit, in the form of the first spike
sequence code. This allows a low complexity single readout of the
semantic information at the downstream MBONs regardless of the
exact connectivity betweenPNs andKCs in individual flies.The code
itself is temporally bounded, making it possible for timely memory
access in the MB compartments.

Overall, our work argues that the main information pattern
processed by the early olfactory system is supplied by the odorant
semantics and not the syntax. The odorant semantics is mapped by
the Calyx circuit into a first spike sequence in the time domain.
This is, clearly, central to understanding the functional logic of the
neural circuits involved in odor signal processing in the EOS of the
fruit fly brain. Our approach, backed up by the analysis of the fist
spike sequence code and the robustness of the cumulative interspike
intervals of 110 odorants in the DoOR dataset (Münch and Galizia,
2016), represents a radical departure in understanding the logic
of odor signal processing in the EOS. Among others, it calls for
recordings of the KCs in theMBwith the ultimate goal of addressing
the existence of the first spike sequence code that we advanced here.

Furthermore, we extended the model of mono-molecular
odor signal processing in the Antenna, Antennal Lobe and
Calyx to odorant mixtures. Our model covers the syntopic
interactions (Rospars et al., 2008) among odorants competing for
the unbound receptors in the OSN cilia while abstracting additional
resources (e.g., the number of permeable pores on the surface
of sensilla binding proteins (Larter et al., 2016)) into the peri-
receptor processes. No further interactions between odorants and
the same receptor type have been modeled that may result in
binding/dissociation facilitation or suppression (Singh et al., 2019).
We note that alternative extensions to the OTP model may be
developed for describing other phenomena of odorant mixture
encoding, such asmasking (Reddy et al., 2018), and ephaptic coupling
(Su et al., 2012; Wu et al., 2022; Pannunzi and Nowotny, 2021).
However, despite recent insight into the structure of Machili hrabei
olfactory receptor (del Mármol et al., 2021), additional recording
datasets are required to determine which model most accurately
describes odorantmixture binding toDrosophila olfactory receptors.

Algorithmically, our model of the first three stages of the EOS
anchors on Divisive Normalization Processors (DNPs). DNPs are
models of biological neural circuits (Lazar et al., 2020b; Lazar and
Zhou, 2023) with spatio-temporal feedforward and/or feedback
control.Thepower ofDNPs inmodeling key computational building
blocks in the early olfactory system suggests their applicability in

many other sensory processing systems in and beyond those of the
fruit fly brain.
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