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Introduction: Lung image segmentation plays an important role in computer-aid
pulmonary disease diagnosis and treatment.

Methods: This paper explores the lung CT image segmentation method by
generative adversarial networks. We employ a variety of generative adversarial
networks and used their capability of image translation to perform image
segmentation. The generative adversarial network is employed to translate the
original lung image into the segmented image.

Results: The generative adversarial networks-based segmentation method is
tested on real lung image data set. Experimental results show that the
proposed method outperforms the state-of-the-art method.

Discussion: The generative adversarial networks-based method is effective for
lung image segmentation.
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1 Introduction

Machine learning (Nian et al., 2020; Shehab et al., 2022) has received substantial research
interest due to its wide application in fields such as computer vision (Servadei et al., 2020),
communication (Zhu et al., 2020), speech recognition (Latif et al., 2023), automatic medical
diagnosis (Latif et al., 2020; Richens et al., 2020), and natural language processing (Chowdhary
and Chowdhary, 2020). Deep learning (Cai et al., 2024) has recently become one of the most
popular research topics inmachine learning. Increasingly people have focused on deep learning-
based image analysis, including image super-resolution (Wang et al., 2021a), image generation
(Jiang et al., 2021), and image content classification (Onishi et al., 2020). Generative adversarial
network (GAN) (Goodfellow et al., 2014) is a popular deep learning model in the research field
of computer vision. It has become one of the most valuable technologies for image generation.

Medical image segmentation plays an important role in computer-aided clinical
diagnosis and treatment (Habuza et al., 2021). Traditional medical image segmentation
algorithms mainly include binarization methods (Seo et al., 2020), watershed algorithms
(Chen et al., 2020), level set-based methods (Wang et al., 2021), semi-supervised clustering
(Chen et al., 2023; Xu et al., 2023), and optimization models (Bateson et al., 2021). However,
these algorithms achieve good results only when there is a large difference between the
background area and the object area. The effect of image processing is poor when the
background is similar, so other methods are needed to improve the segmentation.

To improve the accuracy of segmentation, curvature constraints and local feature
constraints are often added to the models (Han et al., 2020; Wang et al., 2021c). However,
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these methods remain ineffective when distinguishing object areas
that closely resemble the background. Therefore, the use of deep
learning algorithms for medical image segmentation has become a
research direction with theoretical significance and practical
application value (Aref et al., 2021). Deep learning uses
multilayer networks and learns rich local features. It has a strong
fitting ability but also has some shortcomings such as a time-
consuming training process and difficulty of explaining
concretely. Deep learning-based medical image segmentation
usually adopts a fully convolution neural network (FCN) (Chen
et al., 2022), Mask R-CNN (Tu et al., 2023), U-Net (Deb and Jha,
2023), and other deep networks. The advantage of these models is
that they have multilayer structures to generate rich features that
help improve recognition performance. The disadvantages of these
models are that the training time is often very long, and the
segmentation results do not contain enough spatial details.
Sometimes it cannot be guaranteed that the segmentation effects
of them show a great improvement over traditional algorithms (Jia
et al., 2023).

The lung is a frequent site of human diseases, and lung imaging
constitutes a primary diagnostic tool for physicians. However,
conventional images often contain excessive and irrelevant
information. During diagnosis, these irrelevant areas can lead to
inefficiencies and prolonged evaluation times. Lung image
segmentation aims to expedite the extraction of relevant lung areas,
thereby enhancing diagnostic efficiency for medical professionals
(Gugulothu and Balaji, 2024). The purpose of lung image
segmentation is to help doctors quickly extract the region of interest
to extract biomarkers and help image-guided surgery. Gordaliza et al.
(2018) proposed an unsupervised CT lung image segmentation model
based on fuzzy connectedness for mycobacterium tuberculosis-infected
patients. Xue et al. (2010) proposed a joint registration and
segmentation algorithm to segment lung CT images for lung cancer
diagnosis. Chen et al. (2019) proposed a lung CT image segmentation
method by integrating an eigenvector space shape prior model and
sparse shape composition. The approach can accurately discover
pathological lung surfaces on low-dose CT images. Grychtol et al.
(2010) proposed a lung electrical impedance tomography image
segmentation method based on fuzzy logic. For the segmentation of
lung images, Chen and Zhuang (2002) proposed an automatic
segmentation method for lung parenchyma in chest high-resolution
CT images. This method is divided into six steps: binarization,
extracting upper and lower torso boundaries and removing the outer
part of the torso, median filtering, connected domain marking,
morphological filtering, mask display, and most of them are
completed by machines. Zhao et al. (2006) proposed an interactive
manual lung nodule segmentation method based on multi-slice CT
images. This method can obtain ideal segmentation results through
improved Live Wire algorithm for 3D reconstruction, but the
segmentation speed depends on manual operation. Arthi et al.
(2023) proposed a combination of denseNet and genetic algorithm
for lung CT scans cancer classification. Although this algorithm takes a
lot of time for segmentation, it can make the segmentation result more
accurate. However, lung images have the characteristics of complex
structures, low image quality, multimodality, gray level fuzziness, and
uncertainty, which lead to an unsatisfactory segmentation effect for
many algorithms (Chen et al., 2019). Especially, pulmonary nodules are
very small. Some nodules are even hidden. Once the segmentation

details are not well processed, these nodules will be hard to detect by
traditional deep learning models (Cai and Zhu, 2019a).

GAN is a network developed by Goodfellow et al. (2014). GAN
employs an algorithm that achieves the optimization goal through
repeated antagonistic games (Goodfellow et al., 2014). GAN has
been used for pulmonary nodule classification. Xu et al. (2018)
introduced the derivative model of GAN deep convolution
generation countermeasure network (DCGAN) into early
pulmonary nodule classification. Messay et al. (2015) rated the
benign and malignant grades of pulmonary nodules as five grades:
benign, suspected benign, unknown, suspected malignant, and
malignant. Xu et al. (2018) used improved DCGAN to classify
pulmonary nodules based on this standard. However, how to
perform lung image segmentation by GAN is still a challenge.
GAN is also mainly used to expand images. It can change a certain
number of pictures into many pictures of the same type. GAN can
also achieve the transformation between different styles of
pictures. Many researchers have used these algorithms to
perform many interesting operations such as art painting. This
inspired us to solve the lung image segmentation problem by
employing GAN. In this paper, the original image and the
segmented image of the lung are regarded as pictures of
different styles for conversion.

This paper proposes a segmentation method based on GAN.We
employ the Image-to-Image Translation with Conditional
Adversarial Networks (Pix2Pix) (Isola et al., 2017) network, a
variety of GAN, to adopt lung images. Pix2Pix is an image
translation algorithm that can transform the blurred image into
the exact image. This inspired us to perform image translation for
image segmentation. Pix2Pix has demonstrated outstanding
performance in various image-to-image translation tasks,
including medical image segmentation, image denoising, and
image restoration. Pix2Pix utilizes a conditional GAN framework,
which allows it to learn a direct mapping from input images to target
images using paired training data. This capability is particularly
advantageous for segmentation tasks, where accurate mapping
between input and output images is crucial. Pix2Pix compared to
other methods such as U-Net. U-Net is specifically designed for
biomedical image segmentation and has an encoder-decoder
structure, while Pix2Pix can better capture the complex
relationships in image-to-image translation tasks by exploiting
adversarial loss. Pix2Pix is more suitable for paired image
transformation tasks like ours. We employ Pix2Pix to translate
the lung image to the segmented image. As an extension of our
previous conference presentation (Cai and Zhu, 2019a), our
methodology considers the original lung image (Kevin, 2017) as
a blurred image and the segmented image as the exact image. The
exact image refers to the binary segmentation result, where each
pixel in the image is classified as either foreground (representing the
region of interest) or background. This binary segmentation
provides a clear delineation of the structures within the CT
image that are relevant for further analysis. We translate the
blurred image into the exact image using the Pix2Pix framework.
Pix2Pix is a generative adversarial network (GAN) designed for
image-to-image translation tasks. By training the network on pairs
of blurred and exact images, the model learns to produce accurate
binary segmentation results from the input CT images. The result of
the translation from blur image to exact image is taken as the
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segmentation result. The Pix2Pix based segmentation method is
tested on the lung image data set. Experimental results demonstrate
that this method is effective and has better performance than the
state-of-the-art method of medical image segmentation, the U-Net
(Deb and Jha, 2023) architecture. This method offers the advantage
of continuously improving accuracy with increasing training
samples and iterations, while also achieving efficient
segmentation post-training. Compared with the results of manual
segmentation by experts, our algorithm is better at processing lung
CT images. The contribution of this paper includes:

(1) We have introduced a novel method for lung image
segmentation based on Pix2Pix, innovatively framing the
lung segmentation task as a translation process from
blurred to precise images. In this perspective, the original
lung grayscale image is regarded as the “blurred” input, while
the segmented image is considered the “exact” output. Our
contribution lies in optimizing the application of GANs in
lung CT image segmentation, particularly in handling
complex image features and improving
segmentation accuracy.

(2) The experimental results show that our method can achieve
good results and outperforms the state-of-the-art method.
Through fine-tuning the network architecture and optimizing
the training strategy, we have not only improved
segmentation accuracy but also made breakthroughs in
handling challenging tasks such as processing blurred
boundaries. The training time and test time of our method
are also less than that of the state-of-the-art method.

The rest of this paper is organized as follows. Section 2 is the
method. Section 3 is the experimental results and analysis. Section 4
is the discussions. Section 5 is the conclusion.

2 Materials and methods

2.1 Materials

We chose the dataset “Finding_lungs_in_CT_data” (Kevin,
2017) for testing the methods. The dataset was published by
Kevin Mader. The last update time is 2017, and the download
time is March 2019. It had a set of manually segmented lung
images. There are 2D and 3D images in the dataset. In this study,
we did not use 3D images and only tested 2D images. There are
267 2D original gray-scale images, and 267 lung segmentation
images corresponding to them one by one. The images belong to
different patients. The dataset was divided by (Kevin, 2017) into a
training set that has 237 lung images and a test set that contains
30 lung images. The manual segmentation results of experts were
given by (Kevin, 2017). This lung CT image dataset uses lung
window optimization, and the parameters are set to about

FIGURE 1
Examples of training lung CT images and their corresponding
ground truths.

FIGURE 2
Examples of test lung CT images and their corresponding
ground truths.
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1600 HU for WW and −600 HU for WL, which effectively
improves the contrast of lung details and is conducive to
accurate observation. For the Pix2Pix model, 256 ×
256 resolution training is used to improve the efficiency of the
algorithm. Because artifacts and lung abnormalities may impair
the recognition accuracy of deep learning models, this dataset has
been strictly screened to eliminate low-quality images to ensure the
purity of samples. The average pixel coverage of lung area is 60,846,
corresponding to the actual area of about 43,590.55 square
millimeters, accounting for 25.43% of the volume ratio of a
single section, and the average HU value is −657.913, reflecting
the typical density of lung tissue. Through the selection of data, the
risk of misdiagnosis is effectively avoided, the accuracy and
robustness of the lung anomaly detection model based on deep
learning are enhanced, the recognition challenges caused by
artifacts and anomalies are overcome, and the possibility of
misdiagnosis is reduced. There are some manual segmentation
errors in the ground true images due to the expert’s mistake, and
these incorrect training labels may pose difficulties for artificial
intelligence diagnosis, as incorrect training labels can train the
artificial intelligence diagnosis to tend towards incorrect
recognition. The details of the dataset are given in (Kevin,
2017). Examples of training images and their corresponding
ground truth images are shown in Figure 1. Examples of test
images and their corresponding ground truth images are shown
in Figure 2.

2.2 Methods

GAN employs an algorithm to achieve the optimization goal
through repeated antagonistic games. It consists of a generator and a
discriminator. The main purpose of the generator is to generate
enough false images so that the discriminator cannot determine
whether these images are true or not. The purpose of the
discriminator is to ensure that it is not deceived by the
generator. The classical generative models usually need to give a
specific framework and require parameter estimation which needs
complex calculations such as Monte Carlo sampling or other
approximate estimation procedures. Different from classical
generative models, GAN does not need complex calculations
about probability. Besides, GAN does not need to specify the
distribution type. It directly stimulates the distribution of real

data by deep neural networks. The gradient descent algorithm,
typically using the Backpropagation (BP) algorithm, is usually
employed in the training process.

The optimization function of GAN is written as Equation 1.

min G max D V D,G( ) � Ex~Pdata x( ) logD x( )
+ Ez~Pz z( ) log 1 −D G z( )( )( ), (1)

WhereG is the generator, andD is the discriminator. x is the real
picture. z is the noise input of the generator G. G(z) is the picture
generated by generator G. D(x) is the probability that the
discriminator D judges whether the real picture is true or not.
D(G(z)) is the probability that the discriminator judges whether the
picture generated by the generator G is true or not.

The purpose of GAN is to learn the distribution of training data
(Goodfellow et al., 2014). To accomplish this goal, first, noise is input
into the generator. The generator transforms this noise into a picture.
The discriminator identifies the simulated pictures with the real picture
and gives the true and false coefficients of the image. Through cyclic
alternate training, the generator and the discriminator are both
improved. The generator can generate synthetic images that are
very similar to the original images (Jia et al., 2023).

Pix2Pix (Isola et al., 2017) is a framework developed based on
conditional GAN (cGAN) (Mirza and Osindero, 2014). Similarly,
Pix2Pix has a generator G and a discriminator D. The input and
output of G are both a single image. To ensure that the generated
image matches the input image, the loss function of conditional
GAN takes the form as Equation 2.

Γ cGAN G,D( ) � E x, y( ) [ logD x, y( )]

+ E x, z( ) [ log 1 −D x,G x, z( )( )( ), (2)

Where G is the generator andD is the discriminator. z is the input
random vector. x is the image to be converted. y is the target image. In
the process of image translation, a lot of information is shared between
the input and the output of the generator G. An L1 loss is added to
ensure the similarity between the input image and the output image is
large. The L1 loss function is written as Equation 3.

ΓL1 G( ) � Ex,y,z y − G x, z( )����
����1[ ], (3)

Finally, the loss function of Pix2Pix is constructed based on
merging the cGAN loss function and the L1 loss function. The
solution of Pix2Pix is written as Equation 4.

FIGURE 3
Network structure of Pix2Pix. X represents the input image, Y represents the ground truth image, G(X) denotes the image generated by the
generator network G*, and D represents the discriminator network.
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G* � argmin
G

max
D

ΓcGAN G,D( ) + λΓL1 G( ), (4)

Where Γc denotes the cGAN loss function and ΓL1 denotes the
added L1 loss function. G* denotes the final solution. The structure
of Pix2Pix is shown in Figure 3. In Figure 3, X represents the image
to be converted, Y represents the real image, G(X) represents the
image generated by the generator, G* represents the generation
network, and D represents the discrimination network.

Pix2Pix is a model that can transform blurred images into exact
images. We employed Pix2Pix to translate the original image to the
segmented image. We took the original gray image of the lung as a
blurred image and made the segmented image as an exact image.
Then we translated the blurred image into the exact image by
Pix2Pix. The result of the translation was taken as the
segmentation result. Figure 4 shows the workflow of the method.
In the training stage, the training images are input into the
generator, and the generated images and the ground truths are
input into the discriminator for judging. In the test stage, the test
images are input into the generator, and the generated images are
employed as the output segmentation results.

3 Results

3.1 Experimental environments

The experimental environments were Windows 10 OS, CPU i5-
4210U @ 1.70 GHz, 8 GB memory, Anaconda 3 (64-bit), Spyder
3.3.3, Numpy package, Pillow package, Pytorch 0.4.0 package, and
Torchvision 0.2.1 package. No GPUs were used for experiments.

3.2 Performance evaluation

In medical image processing, especially for the segmentation
task of lung images, researchers often use the “accuracy” metric to
evaluate the consistency between the model predictions and the true
annotations. In the image segmentation scenario, a pixel can be
viewed as an individual classification decision point, so indeed it is
possible to think of accuracy as the classification correct rate at each

pixel level. For the lung image segmentation task, a true positive
means the model correctly segments a pixel to a foreground (lung)
area outcome when the actual segmentation outcome is the
foreground area. A false positive means the model segments a
pixel to a foreground (lung) area outcome when the actual
segmentation outcome is the background area. A true negative
means the model correctly segments a pixel to a background area
outcome when the actual segmentation outcome is the background
area. A false negative means the model segments a pixel to a
background area outcome when the actual segmentation outcome
is the foreground (lung) area.

We used the overlap rate as a metric of lung area difference
between real area and segmented area. The overlap rate reflects the
degree of overlap between the segmented regions produced by the
algorithm and the true labeled regions. It is usually computed by
dividing the number of pixels in which the segmentation result
intersects the true labeled region by the number of pixels in the
union of the two. The ideal value of the overlap rate is 1, which
means that the segmentation results are completely consistent with
the true annotations.

F-measure is the harmonic mean of Precision and Recall, which
combines information from both precision and recall and can
provide a balanced evaluation. Precision refers to the fraction of
pixels correctly segmented by the algorithm over all pixels marked as
segmented by the algorithm, while recall refers to the fraction of
pixels correctly segmented by the algorithm over all pixels that
should be segmented.

The segmentation results of the test images were compared with
the ground truth image which was manually segmented by experts.
The accuracy, overlap rate, and F-measure were calculated. The
computation formulas are listed as Equations 5–7.

Accuracy � TP + TN

TP + TN + FP + FN
(5)

Overlap rate � A ∧ B| |
A ∨ B| | (6)

F � 2P ×
R

P + R
(7)

Where TP is the true positive rate, and FP is the false
positive rate. TN is the true negative rate, and FN is the

FIGURE 4
Workflow of the proposed method.
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false-negative rate. A denotes the segmentation result of
Pix2Pix, and B denotes the image manually segmented by
experts. P denotes the precision, and R denotes the recall. F
denotes the F-measure.

3.3 Setting the training epoch number as 20

We used the whole training set which has 237 images to train
the network. The training epoch number was set as 20. After the
network was trained, the tested images were imported into the
networks for generating the corresponding segmented images.
The segmented images were compared to the manually
segmented images. The accuracy, overrate and F-measure of
all 30 test images were computed. Table 1 shows the
segmentation performances of all 30 test images. From
Table 1, we can see that the segmentation results of Pix2Pix
approximate the ground truth. Table 1 shows the mean and
standard deviation of the segmentation performance of the test
images. As can be seen from Table 1, the average accuracy of
Pix2Pix based lung segmentation is 89.64%. The range of
accuracy is [54.79%, 96.77%], and the standard deviation of
accuracy is 7.37%. The average overlap of Pix2Pix based lung
segmentation is 93.03%. The range of overlap is [31.91%,
97.85%], and the standard deviation of overlap is 11.83%. The
average F measure of Pix2Pix based lung segmentation is 95.85%.
The range of F-measure is [48.38%, 98.91%], and the standard
deviation of F-measure is 9.07%. Experimental results
demonstrate that our proposed method is effective and
achieves considerable performance.

Table 1 also shows the mean and standard deviation of the
segmentation performance of the training images. As can be seen
from Table 1, the average training accuracy of Pix2Pix based lung
segmentation is 90.13%. The range of training accuracy is [63.80%,
96.99%], and the standard deviation of training accuracy is 4.82%.
The average training overlap of Pix2Pix based lung segmentation is
95.14%. The range of training overlap is [34.27%, 98.44%], and the
standard deviation of training overlap is 6.15%. The average training
F-measure of Pix2Pix based lung segmentation is 97.38%. The range
of training F-measure is [51.04%, 99.21%], and the standard
deviation of training F-measure is 4.29%. Experimental results
show that there was little difference between the segmentation
performances of the training images and those of the test images.
Experimental results demonstrate that our proposed method has
good performance.

3.4 Setting the training epoch number as 100

We used the whole training set which has 237 images to train the
network. The training epoch number was set as 100. After the
network was trained, the tested images were imported into the
network for generating the corresponding segmented images. The
segmented images were compared to the manually segmented
images. The accuracy, overrate and F-measure of all 30 test
images were computed. Table 2 shows the segmentation
performances of all 30 test images. Table 2 shows the mean and
standard deviation of the segmentation performance of the test
images. As can be seen from Table 2, the average accuracy of Pix2Pix
based lung segmentation is 93.40%. The range of accuracy is
[56.13%, 96.01%], and the standard deviation of accuracy is
7.09%. The average overlap of Pix2Pix based lung segmentation
is 91.69%. The range of overlap is [32.68%, 97.54%], and the
standard deviation of overlap is 13.04%. The average F-measure
of Pix2Pix based lung segmentation is 95.03%. The range of
F-measure is [49.29%, 98.75%], and the standard deviation of
F-measure is 9.70%. Compared to the experiment in which the
training epoch number was set as 20, the average accuracy increases
from 89.64% to 93.40%, the average overlap rate decreases from
93.03% to 91.69%, and the average Fmeasure decreases from 95.85%
to 95.03%. Figure 5 shows the comparison results between training
20 epochs and training 100 epochs. As can be seen from Figure 5,
increasing the training epoch number from 20 to 100 has not
significantly improved the segmentation performance.

3.5 Setting the training sample number as
67 and the training epoch number was set
as 20

We chose 67 training samples from the training set to train the
networks. The training epoch number was set as 20. After the
networks were trained, all the tested images were imported into
the networks and generated the corresponding segmented images.
The segmented images were compared to the manually segmented
images. The accuracy, overrate and F-measure of all 30 test images
were computed. Table 3 shows the segmentation performances of all
30 test images. Table 3 shows the mean and standard deviation of the
segmentation performance of the test images. As can be seen from
Table 3, the average accuracy of Pix2Pix based lung segmentation is
83.46%. The range of accuracy is [50.26%, 92.73%], and the standard
deviation of accuracy is 8.09%. The average overlap of Pix2Pix based

TABLE 1 Statistical values of training and testing image segmentation performance when the number of training epochs is set to 20.

Metric Minimum Maximum Mean Standard deviation

Test Accuracy 0.54785 0.96773 0.8963389 0.07371077

Overlap rate 0.31905 0.97852 0.9302968 0.11829190

F-measure 0.48375 0.98914 0.9585260 0.09074364

Train Accuracy 0.63797 0.96985 0.9013378 0.04818742

Overlap rate 0.34268 0.98439 0.9514375 0.06152281

F-measure 0.51044 0.99214 0.9737749 0.04290255
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lung segmentation is 78.61%. The range of overlap is [34.42%,
94.80%], and the standard deviation of overlap is 15.66%. The
average F-measure of Pix2Pix based lung segmentation is 87.05%.
The range of F-measure is [51.22%, 97.32%], and the standard
deviation of F-measure is 11.51%. Compared to the experiment in
which the training samples were set as 237, the average accuracy
decreased from 89.64% to 83.46, the average overlap rate decreased
from 93.03% to 78.61%, and the average F-measure decreased from
95.85% to 87.06%. Figure 6 shows the comparison results between
training with 237 samples and training with 67 samples when the
training epoch number was set as 20. As can be seen from Figure 6,
decreasing the training sample number from 237 to 67 has
significantly hastened the decline of segmentation performance.
However, using a smaller training set led to less training time.
Table 4 shows the comparison of computation time. For the
experiment in which the training sample number is 237 and the
training epoch number is 20, the training time is 24 h. For the
experiment in which the training sample number is 237 and the
training epoch number is 100, the training time is 120 h. For the
experiment in which the training sample number is 67 and the
training epoch number is 20, the training time is 6 h. For the

experiment in which the training sample number is 237 and the
training epoch number is 20, the computation time for testing the
whole test set is 2 min and 25 s, and the computation time for testing
the whole training set is 19 min and 23 s.

3.6 Test samples with large F-measure

We have analyzed the test samples which had the largest
F-measure in the whole test set (Abdlaty et al., 2021). The
results are shown in Figure 7. Figure 7A shows the tested lung
images. Figure 7B shows the corresponding ground truth images.
Figure 7C shows the segmentation results. The first figure of
Figure 7A is the test image whose ID is ID_0246_Z_0228. Its
corresponding segmentation result is shown in the first figure of
Figure 7C. The segmentation was performed by using the Pix2Pix
trained 20 epochs with 237 training samples. The F-measure is
0.98914, which is the largest F-measure among that of the test
images segmented by the Pix2Pix which was trained 20 epochs
with 237 training samples. The second figure of Figure 7A is the
test image whose ID is ID_0247_Z_0070. Its corresponding
segmentation result is shown in the second figure of Figure 7C.
The segmentation was performed by using the Pix2Pix trained
100 epochs with 237 training samples. The F-measure is 0.98754,
which is the largest F-measure among that of all test images
segmented by the Pix2Pix which was trained 100 epochs with
237 training images. The third figure of Figure 7A is the test image
whose ID is ID_0246_Z_0228. Its corresponding segmentation
result is shown in the third figure of Figure 7C. The segmentation
was performed by using the Pix2Pix trained 20 epochs with
67 training images. The F measure is 0.97319, which is the
largest F measure among that of all test images segmented by
the Pix2Pix which was trained 20 epochs with 67 training images.
The fourth figure of Figure 7A is the test image whose ID is ID_
0154_Z_0070. Its corresponding segmentation result is shown in
the fourth figure of Figure 7C. The segmentation was performed by
using the Pix2Pix trained 20 epochs with 237 training images. The
F-measure is 0.99214, which is the largest F-measure among that of
all training images segmented by the Pix2Pix which was trained
20 epochs with 237 training images. From Figure 7, we can see that

TABLE 2 Statistical values of the segmentation performance of the tested image when the training epoch number was set as 100.

Minimum Maximum Mean Standard deviation

Accuracy 0.56131 0.96005 0.9340500 0.07088869

Overlap rate 0.32677 0.97539 0.9169011 0.13043104

F-measure 0.49258 0.98754 0.9503117 0.09669589

FIGURE 5
Comparison results of training with different epochs.

TABLE 3 Statistical values of the segmentation performance of the tested lung images when the training sample number was 67 and the training epoch
number was set as 20.

Minimum Maximum Mean Standard deviation

Accuracy 0.50266 0.92731 0.8345856 0.08098433

Overlap rate 0.34424 0.94779 0.7860806 0.15662531

F-measure 0.51217 0.97319 0.8705305 0.11506310
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our segmentation results are like the results manual segmented
by experts.

3.7 Test samples with small F-measure

We have analyzed the test samples which had the smallest
F-measure in the whole test set. The results are shown in
Figure 8. Figure 8A shows the tested lung images. Figure 8B
shows the corresponding ground truth images. Figure 8C shows
the segmentation results by the Pix2Pix trained 20 epochs with
237 samples. Figure 8D shows the segmentation results by the
Pix2Pix trained 100 epochs with 237 samples. Figure 8E shows
the segmentation results by the Pix2Pix which was trained 20 loops
with 67 samples.

The first figure of Figure 8A is the test image whose ID is ID_
0254_Z_0075. Its corresponding segmentation result is shown in the
first figure of Figure 8C. The segmentation was performed by using
the Pix2Pix which was trained 20 epochs with 237 training images.
The F-measure is 0.48375, which is the smallest F-measure among
that of all test images segmented by the Pix2Pix which was trained
20 loops with 237 training images. However, it can be seen that the
segmentation is effective. From the first figure of Figure 8B we can see
that the ground truth image got from experts is very poor. The reason

that the F-measure is very small is that the ground truth image used to
compare has a big mistake. We can see that the Pix2Pix segmentation
has outperformed the manual segmentation by experts.

The second figure of Figure 8A is the test image whose ID is ID_
0241_Z_0124. Its corresponding segmentation result is shown in the
second figure of Figure 8D. The segmentation was performed by using
the Pix2Pix trained 100 loops with 237 training images. The F-measure
is 0.74140, which is the smallest F-measure among that of all test images
segmented by the Pix2Pixwhichwas trained 100 loopswith 237 training
images. The reason that the F-measure is very small is that training
100 loops caused the overfitting.However, as shown in the second figure
of Figure 8C, the segmentation result by the Pix2Pix which was trained
20 loops with 237 training images is very good.

The third figure of Figure 8A is the test image whose ID is ID_
0243_Z_0056. Its corresponding segmentation result is shown in the
third figure of Figure 8E. The segmentation was performed by using
the Pix2Pix trained 20 loops with 67 training images. The F-measure
is 0.68454, which is the smallest F-measure among that of all test
images segmented by the Pix2Pix which was trained 20 epochs with
67 training images. The reason that its F-measure is very small is that
there were not enough training samples. In Figure 8, the expert
mistakenly manually segmented the lung images due to a mistake.
The expert only segmented the right half of the lung, without
processing the left half of the lung. In addition, experts did not
completely remove the background during manual segmentation.
As a result, the model cannot fully learn the complexity of the lung
structure, particularly in distinguishing the boundary between the
background and lung tissue. So, the background removal is not
thorough in the segmentation results of our method. However, our
method successfully segmented the other half of the lung that the
expert overlooked for segmentation. In contrast, as depicted in the
second figure of Figure 8C and the second figure of Figure 8D, the
segmentation results produced by Pix2Pix, which was trained using
237 training images, demonstrate high quality. However, as shown
in the second figure of Figure 8C and the second figure of Figure 8D,
the segmentation results by the Pix2Pix which was trained with
237 training images are very good.

The fourth figure of Figure 8A is the image whose ID is ID_0079_
Z_0072. This is a special image that belongs to the training set and the
test set simultaneously. Its corresponding segmentation result is shown
in the fourth figure of Figure 8C. The segmentation was performed by
using the Pix2Pix trained 20 loops with 237 training images. The
F-measure is 0.51044, which is the smallest F-measure among that of all
training images segmented by the Pix2Pix which was trained 20 loops
with 237 training images. However, the segmentation results are still
good. From the fourth figure of Figure 8B we can see that the ground
truth image got from experts is very poor. The reason that the Fmeasure
is very small is that the ground truth image used to compare has a big
mistake. And the Pix2Pix segmentation has outperformed the manual
segmentation by experts.

FIGURE 6
Comparison results of training with different samples.

TABLE 4 Comparison of computation time.

Training 20 epochs
with 237 samples (h)

Training 100 epochs
with 237 samples (h)

Training 20 epochs
with 67 samples (h)

Testing
30 samples (s)

Testing
237 samples (s)

Computation
time

24 120 6 2min25 19min23
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3.8 The segmentation results by the
proposed method when the wrong manual
segmentation results were given by experts

From the examples in Figure 8, we can see that the proposed
method is sometimes able to correct the manual segmentation
results by experts. When the experts made the wrong
segmentation, the proposed method can still get the right
segmentation. Figure 9 shows more such examples. Figure 8A
shows the tested lung images. The first figure of Figure 8A is the
test image whose ID is ID_0052_Z_0108. The second figure of
Figure 9A is the test image whose ID is ID_0079_Z_0072. The
third figure of Figure 8A is the test image whose ID is ID_0134_
Z_0137. The last figure of Figure 9A is the test image whose ID is
ID_0254_0075. Figure 9B shows their corresponding ground
truth images. From Figure 9B we can see that the experts
made the wrong segmentation results. Figure 9C shows the
corresponding segmentation results by the Pix2Pix trained
20 epochs with 237 samples. From Figure 9C we can see that

the Pix2Pix segmentation can correct the wrong manual
segmentation by experts. In Figure 9, the expert also
mistakenly manually segmented the lung images. The expert
also only segmented the right half of the lung, without
processing the left half of the lung. In addition, experts also
did not completely remove the background during manual
segmentation. However, our method successfully removed
redundant background and successfully segmented the other
half of the lung that was missed by expertise. Our method has
successfully overcome the impact of manual labeling errors.

3.9 Comparison with state-of-the-
art methods

It has been proven that deep learning-based segmentation
outperforms traditional segmentation methods such as region
growing for lung segmentation. Traditional image segmentation
methods such as edge detection and thresholding are commonly

FIGURE 7
Examples of the test images with high F-measure and their experimental results. (A) shows the test lung images. (B) shows the corresponding
ground-truth images. (C) shows the corresponding segmentation results by the proposed method.
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used in image processing tasks. Edge detection algorithms, like the
Canny edge detector (Triwibowo et al., 2023), identify the
boundaries of objects in an image by detecting areas with
significant intensity changes. These methods are computationally
simple and effective for images with clear boundaries, but they are
sensitive to noise and may struggle with complex images.
Thresholding methods, such as Otsu’s method (Vite-Chávez
et al., 2023), segment images by selecting a threshold value that
separates the foreground from the background. While effective for

images with distinct contrast, thresholding methods may not
perform well on images with complex intensity distributions.
Machine learning based segmentation methods, such as U-Net,
have shown significant improvements in segmentation
performance. U-Net is a convolutional neural network that
consists of an encoder-decoder structure with skip connections
that retain high-resolution features. It is particularly effective for
medical image segmentation tasks and can achieve high accuracy
with a relatively small amount of labeled data. However, U-Net
requires substantial computational resources. Besides, U-net has
been proven as the state-of-the-art method for deep learning-based
lung segmentation and outperformed FCN andMask R-CNN (Chen
et al., 2018; Kohl et al., 2018; Tong et al., 2018; Park et al., 2020). We
choose U-Net, a state-of-the-art architecture in the field of deep
learning, as well as classical non-machine-learning segmentation
methods including the Otsu thresholding technique and Canny edge
detection algorithm, as the compared methods. We compare the
pix2Pi-based segmentation with the segmentation based on U-Net,
Otsu thresholding technique, and Canny edge detection algorithm
on the lung dataset. In this study, the U-Net we used follows the
standard architectural configuration, including convolutional layers,
pooling layers, up-sampling layers, and skip connections. To ensure
the fairness of the comparison, we did not make any additional
architectural modifications or hyperparameter tuning to U-Net but
used the widely accepted default settings. Furthermore, we trained
and tested all algorithms under the same hardware and software
environment to ensure the consistency of experimental conditions.
67 samples in the training set were used for training, and the whole
test set was tested. The training epoch number was 20. The average
accuracy with standard deviation, the average overlap rate with
standard deviation, and the average F-measure with a standard
deviation of the two algorithms were compared. We have also
compared the training time and the test time of the two machine
learning methods. The comparison results are shown in Table 5. The
comparison results show that the performances of Otsu threshold
technology and the Canny edge detection algorithm are far worse
than those of the Pix2Pix model. Pix2Pix has a better segmentation
effect. Compared to U-Net, Pix2Pix costs less computation time and
has better segmentation accuracy, overlap rate, and F-measure. The
Pix2Pix takes half of the training and test time of U-Net, which
indicates that the Pix2Pix algorithm is more time-efficient
than U-Net.

4 Discussions

One of the drawbacks of this paper is that we only test lung
segmentation. In the future, we intend to apply this method to
segmentation tasks involving other organs, such as the pancreas with
its indistinct boundaries, or blood vessels characterized by their
slender and intricate nature.

Our work was first released on the preprint website Arxiv (Cai
and Zhu, 2019b) and conference (Cai and Zhu, 2019a) in 2019.
There are several relative works about lung segmentation using
GAN. In 2020, Munawar et al. (2020) proposed the use of GAN to
perform lung segmentation on chest X-ray images. They use the
generator of GAN to generate a segmented mask of chest X-ray
image and use the discriminator of GAN to distinguish the ground

FIGURE 8
Examples of the test images with small F-measure and their
experimental results. (A) shows the test lung images, (B) shows the
corresponding ground-truth images, (C) shows the segmentation results
of the Pix2Pix model trained on 237 samples with 20 epochs, (D)
shows the segmentation results of the Pix2Pix model trained on 237
samples with 100 epochs, and (E) shows the segmentation results of the
Pix2Pix model trained on 67 samples with 20 epochs.
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truth and the generated mask. Our work is different from this work.
Our work uses a conditional GAN with L1 loss to produce a more
discriminative segmentation on CT images. In 2021, Pawar and
Talbar (Pawar and Talbar, 2021) proposed the LungSeg-Net for
automatic lung segmentation of lung CT scans. The input lung CT
images are encoded to a set of feature maps by the trail of encoders.
Our work is different from it. We directly transform the input lung

CT images to a segmented image without a supplementary feature
map generation step. In 2021, Tan et al. (2021) proposed the LGAN,
a Lung CT scan segmentation method by generative adversarial
network. The LGAN used EM distance for pixel segmentation, while
our work uses a simple L1 distance which is easy to calculate to
reduce computational complexity. In 2021, Tyagi and Talbar (2022)
proposed the CSE-GAN, a 3D conditional generative adversarial

FIGURE 9
Examples of the test images whose segmentation results by the proposed method are better than the corresponding manual segmentation results
by experts. (A) shows the tested images, (B) shows the corresponding ground-truth images labeled by experts, and (C) shows the corresponding
segmentation results obtained by the Pix2Pix model trained on 237 samples with 20 epochs.

TABLE 5 Comparison results of machine learning and non-machine learning models.

Accuracy Overlap rate F-measure Training time Test time

Pix2Pix 0.835 ± 0.081 0.786 ± 0.157 0.871 ± 0.115 6 h 2 min25 s

U-Net 0.820 ± 0.070 0.690 ± 0.109 0.811 ± 0.085 12 h 6 min12 s

Otsu 0.413 0.199 0.311 - -

Canny 0.735 0.110 0.198 - -
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network for lung nodule segmentation. The LGAN used EM
distance for pixel segmentation, while our work uses a simple
L1 distance which is easy to calculate to reduce computational
complexity. Our work is different from this work. Our work
employs a 2D conditional generative adversarial network with
sparse loss term for 2D lung field segmentation without squeeze
and excitation procedure with huge computational burden. There
are also some current works on using GAN for other lung image
analysis tasks such as lung CT image synthesis, lung cancer CT
image generation, classification of lung cancer disease, and 3D lung
tumor reconstruction. In 2021, Jiang et al. (2021) proposed a
conditional generative adversarial network for lung CT image
synthesis. In 2020, Jiang et al. (2021) proposed a combination of
convolutional neural network and generative adversarial network
for lung CT pulmonary nodule classification. Compared to (Onishi
et al., 2020; Jiang et al., 2021), our wok focus on application of
conditional generative adversarial network on lung region
segmentation on CT images.

In this study, we experimented with different numbers of
training images (237 or 67) and epochs (20 or 100) to optimize
the Pix2Pix segmentation network. These specific choices were
made due to limitations in dataset size and computational
resources. We acknowledge that this is not an exhaustive
investigation and that our conclusions are preliminary. Future
work will involve a more extensive exploration of training
parameters to fully optimize network performance. Nonetheless,
the current results provide valuable insights and a foundation for
further research.

The strengths of our research methodology are evident in its
ability to continuously enhance accuracy with increasing training
samples and iterations while maintaining a relatively short
segmentation process duration. Experimental data validates
these capabilities: after 20 training iterations with 67 samples,
the average F-measure reached 0.871 ± 0.115; reducing the
training samples to 20 under the same iteration count
significantly elevated the average F-measure to 0.959 ± 0.091;
and with 100 samples, the average F-measure stabilized at 0.950 ±
0.097. These series of experiments robustly demonstrate that
augmenting the number of training samples markedly improves
the precision of lung image segmentation. In comparison to
manual segmentation by experts, our algorithm exhibits
superior performance in handling specific images.
Nonetheless, despite the model’s exceptional performance,
segmentation errors may still occur when dealing with
complex images, often attributed to inherent image complexity
and limitations in the training dataset. To further enhance the
model’s generalization capability and segmentation accuracy,
future research endeavors will focus on refining training
strategies and optimizing dataset construction methods. These
efforts aim to achieve comprehensive and precise segmentation
outcomes in both clinical applications and broader contexts.

The experimental results show that Pix2Pix based lung
segmentation outperforms the manual segmentation by experts
many times. However, the experts can easily correct those
mistakes when they notice they have made the wrong segmentation.

5 Conclusion

This paper proposed a lung segmentation method using Pix2Pix.
The Pix2Pix was employed to translate the original lung image into
the segmented image. The Pix2Pix segmentation method was tested
on the real lung image data set. Experimental results show that the
proposed method is effective and outperforms the state-of-the-
art methods.
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