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Conger eel (Conger myriaster) is an economically important species in China.
Due to the complex life history of the conger eel, achieving artificial reproduction
has remained elusive. This study aimed to explore the effect of water stimulation
on hormonal regulation during the artificial reproduction of conger eel. The
experiment was divided into four groups: A1 (no hormone injection, still water), A2
(no hormone injection, flowing water), B1 (hormone injection, still water), and B2
(hormone injection, flowing water). The flowing water group maintained a flow
velocity of 0.4 ± 0.05 m/s for 12 h daily throughout the 60-day period. Steroid
hormone levels in the serum and ovaries of conger eels were analyzed using
UPLC-MS/MS and ELISA on the 30th and 60th days of the experiment. The
relative expression levels of follicle-stimulating hormone (FSHβ) and luteinizing
hormone (LHβ) in the pituitary were determined by quantitative PCR. The results
showed a significantly lower gonadosomatic index (GSI) in B2 compared to B1
(p < 0.05) on the 30th day. FSHwas found to act only in the early stages of ovarian
development, with water stimulation significantly enhancing FSH synthesis (p <
0.05), while FSHβ gene was not expressed after hormone injection. Conversely,
LH was highly expressed in late ovarian development, with flowing water
stimulation significantly promoting LH synthesis (p < 0.05). Serum cortisol
(COR) levels were significantly higher in the flowing water group than in the
still water group (p < 0.05). Furthermore, estradiol (E2) content of B2 was
significantly lower than that of B1 on the 30th and 60th day. Overall, flowing
water stimulation enhanced the synthesis of FSH in early ovarian development
and LH in late ovarian development, while reducing E2 accumulation in the
ovaries. In this study, the effect of flowing water stimulation on hormone
regulation during the artificial reproduction of conger eel was initially
investigated to provide a theoretical basis for optimizing artificial reproduction
techniques.
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1 Introduction

Conger eel (Conger myriaster) is a highly economically
valuable demersal fish found in the Pacific Northwest (Ma
et al., 2018).They are often referred to as sand eels due to
their predominant habitat in coastal mud, sand, and gravel
substrates (Ma et al., 2018). Currently, artificial propagation of
eels remains challenging, with eel culture industries relying solely
on wild-caught larvae resources (Horie et al., 2010). Previous
studies have successfully obtained and hatched fertilized eel eggs
through exogenous hormone-induced maturation. However,
challenges persist, including high larval mortality rates and
poor quality of fertilized eggs (Utoh et al., 2010b; Horie et al.,
2010). Therefore, optimizing the artificial breeding techniques is
of great importance for both research and industrial
practice in eels.

The conger eel is a deep-sea migratory fish (Hao et al., 2020).
The ovaries of the conger eel gradually mature during migration
and lay eggs near the spawning grounds (Okamura et al., 2000; Li
et al., 2018; Xiaolong et al., 2021). Under captive breeding
condition, the ovarian development of female broodstock
stops at the secondary yolk globule stage (Utoh et al., 2010a;
Chiba et al., 2010). The development of ovaries in eels only occurs
when exogenous hormones are injected (Utoh et al., 2010a; Chiba
et al., 2010). Swimming behavior is the main way to realize the
physiological activity of migratory fish, which is important for
individual survival and population reproduction (Liu et al.,
2015). Swimming can promote gonadal maturation in male
eels, and promote lipid accumulation in female eels’ oocytes
(Couillard et al., 1997; Palstra et al., 2007; Palstra et al., 2009;
Palstra et al., 2010b). The development of the gonads in teleost is
controlled by the hypothalamic-pituitary-gonadal (HPG) axis
(Kr et al., 2020). Inhibition of gonadal development in eels is
caused by dopamine suppression and gonadotropin-releasing
hormone deficiency, which in turn inhibits the synthesis of
follicle-stimulating hormone (FSH) and luteinizing hormone
(LH) (Palstra et al., 2009; Wang et al., 2015). FSH primarily
promotes the biosynthesis of testosterone T) and estradiol (E2),
which are essential for spermatogenesis and oogenesis (Yaron
et al., 2003). LH induces final gonadal maturation and ovulation
more effectively by stimulating the secretion of mature steroid
hormones (Yaron et al., 2003).

Therefore, artificial breeding in an indoor environment may
affect the development of ovaries by blocking migration behavior.
Previous studies have shown that water stimulation can significantly
reduce mortality in conger eels during ovarian maturation (Meng,
2020). Studying the regulatory effect of swimming on the ovarian
development of conger eel is necessary for optimizing artificial
breeding techniques of conger eels. In this study, conger eels
were induced to swim for 30 or 60 days through water
stimulation with hormone injection and no-hormone injection.
To explore the effects of flowing water stimulation on hormone
regulation during the artificial reproduction of conger eel, we
analyzed the relative expression levels of FSHβ and LHβ genes in
the pituitary gland, as well as the changes in steroid hormones in the
ovary and serum. The present study may provide a theoretical basis
for the optimization of artificial reproduction technology of conger
eel and other fish.

2 Materials and methods

2.1 Ethics statement

All fish samples were handled by the Animal Ethics Committee
of Shanghai Ocean University (2016 NO.4) and the Regulations for
the Administration of Affairs Concerning Experimental Animals
approved and authorized by the State Council of the People’s
Republic of China.

2.2 Experimental eels

The female conger eel (n = 86, 303.64 ± 10.02 g) with oocytes at
the oil droplet stage and primary yolk globule stage were obtained
from Shenghang Aquatic Technology Co. Ltd. (Weihai, China). The
developmental stages of the female eels were determined by
observing the histological sections of ovaries. Oocytes in the oil
droplet stage contain numerous vacuolar small lipid droplets, while
oocytes in the primary yolk globule stage exhibit light purple yolk
protein granules at the cell periphery. The experiment begun in May
2021 at the company’s fish farm. The eels were acclimated in a
cement tank (30.0 ± 0.5 psu, 18°C ± 0.5°C) for 2 weeks before the
experiment.

A cylindrical glass fiber tank (radius = 0.75 m, height = 1.5 m,
aquaculture water body = 1000 L) with a built-in pumpwas designed
to provide circulating water flow for fish swimming (Liu et al., 2022).
According to a previous study on flow velocity (0.4 ± 0.05 m/s) and
the findings of the eel migration route, the swimming duration was
set at 12 h per day (Hammer, 1995; Miller et al., 2011; Meng, 2020).

2.3 Experiment design and sampling

Eels were selected and randomly distributed into four cylindrical
glass fiber tanks (n = 20, 30.0 ± 0.5 psu, 18°C ± 0.5°C), and the
criteria for selecting healthy eels include appropriate size, good
vitality, absence of injuries or illnesses, and a silver-white
abdomen. Six acclimated eels were sampled and measured as a
control group on the first day. Circulating water flow and hormone
injection regime were two factors set in the following trials: A1 (no
hormone injection, still water), A2 (no hormone injection, flowing
water), B1 (hormone injection, still water), and B2 (hormone
injection, flowing water). All experimental groups were placed in
a dark environment.

A mixture of carp pituitary extract (CPE, 20 mg/kg) and
human chorionic gonadotropin (HCG, 100 IU/kg) was
intraperitoneally injected weekly to induce eel development of
the hormone injection groups (B1 and B2), while the no hormone
injection groups (A1 and A2) were injected with an equal amount
of physiological saline solution until the end of the experiment.
On the 30th and 60th days of the trial, six eels in each group were
anesthetized using MS-222 (0.05 g/L). The weight of each eel was
measured. Blood samples were collected from the bulbous
arteriosus using a syringe and centrifuged at 3000 rpm for
15 min at 4°C. The Serum was frozen at −80°C. The pituitary
and ovary were weighed and stored in a RNase-free tube at −80°C
for Quantitative real-time PCR analysis.
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2.4 Quantitative real-time PCR

The distinct functions of FSH and LH are determined by their
respective β subunits, encoded by the FSHβ and LHβ genes. After
obtaining the gene sequences of FSHβ (GenBank accession no.
AB045157.1) and LHβ (GenBank accession no. AB045158.1) of
conger eel on NCBI, specific primers were designed by primer
software and used for quantitative real-time PCR to analyze gene
expression. The β-actin gene served as an internal control. Before the
experiment, the specificity and amplification efficiency of β-actin
primers were verified (Table 1).

Total RNA was extracted from the liver using a kit (Tiangen
Biotech Co., Ltd.) according to the manufacturer’s instructions.
About 1 μg of total RNA was reverse transcribed with Hifair® Ⅱ
first Strand cDNA Synthesis SuperMix for qPCR (gDNA digester
plus) (CAT:11123 ES). Diluted cDNA (1:10) was used in all qPCR
reactions. The qRT-PCR experiments were carried out in triplicate
on CFX96 Touch Real-time PCR Detection System (Applied
Biosystems®, BIO-RAD, America) using 1 μL of diluted cDNA as
a template for each reaction with SYBR Green PCR Master Mix
(Bio-Rad). Thermal cycling conditions included an initial heat
denaturation step at 95°C for 30 s, 40 cycles at 95°C for 5 s, 60°C
for 30 s, and at 95°C for 15 s. Melting curves of the PCR products
were determined from 60°C to 95°C to ascertain the specificity of the
amplification. Relative gene expression was calculated using the
2−ΔΔCt method.

2.5 Ultra-high-performance liquid
chromatography–tandem mass
spectrometry (UPLC-MS/MS)

The extraction of steroid hormones in serum followed the
method described by Dang (Dang, 2020). Specifically, 10 µL
serum was homogenized with methyl tert-butyl ether (MTBE)
and condensed to dry. Subsequently, 50 µL methanol
(chromatographic grade) was added to dissolve the residue. After
thorough shaking and mixing, the mixture was filtered through a
microporous filter membrane (0.22 µm, Shanghai Amp
Biotechnology Co., LTD.) into a 1.5 mL sample bottle for
machine detection.

The extraction of steroid hormones from ovaries was conducted
based on the protocol outlined by Ma (Ma et al., 2016). Pre-cooled
methanol (chromatographic grade) was added to the ovarian tissue
and thoroughly homogenized. The homogenate was then subjected

to centrifugation (4°C, 10000r/min, 10min), and the supernatant was
collected. Following this, the crude extract underwent solid-phase
extraction using an HLB solid-phase extraction column (Shanghai
Amp Biotechnology Co., LTD.). The resulting extract was
evaporated nearly to dryness using a nitrogen blower at 40°C,
and the volume was adjusted to 500 µL with methanol. After
shaking and mixing, the extract was filtered through a
microporous filter membrane (0.22 µm) into a 1.5 mL sample
bottle, which was to be tested by the machine.

Calibration stock solutions of E2, cortisol (COR), 17α-
hydroxyprogesterone (17α-OHP), T, and 11-Ketoltestosterone
(11-KT) were prepared from Shanghai Amp Biotechnology Co.,
LTD. The concentration of the standard curve was 1, 5, 25, 50, 100,
and 200 ng/mL.

2.6 Enzyme−linked immunosorbent
assay (ELISA)

The E2 content in the ovarian and FSH, LH content in the serum
was determined using an enzyme-linked immunosorbent assay kit
(Shanghai Enzyme-linked Biotechnology Co., Ltd., China) by the
instructions of the kit.

2.7 Statistical analysis

The UPLC-MS/MS and ELISA data were processed and
imported into EXCEL for analysis using Mass Lynx V4.1 and
ELISA Calc software respectively. All statistical tests were
performed in SPSS 22.0 software, and graphical representations
were generated using GraphPad Prism 9.0. Two-way analysis of
variance (ANOVA) was used for multi-group statistical analysis.
Results were expressed as Mean ± standard deviation (Mean ± SD).
p < 0.05 was considered statistically significant.

3 Results

3.1 Ovarian development

In the two groups without injection (A1 and A2), there was no
significant difference in gonadosomatic index (GSI, Figure 1A). The
GSI of eels in groups B1 and B2 increased gradually during the
experiment (Figure 1B). On the 30th day, the GSI of B1 was
17.62% ± 0.42%, which was significantly higher than that of B2
11.41% ± 4.37%. However, by the 60th day, there was no significant
difference between the two groups with GSI of 26.36% ± 17.09% and
23.748% ± 12.21% respectively.

3.2 Changes of hormone content in ovary
and serum

The concentrations of COR, 17α-OHP, T, 11-KT and E2 in
serum and ovary were detected by UPLC-MS/MS, and they were
well separated on XBridge C18 column. The correlation
coefficients of the above standard curves were all above 0.9,

TABLE 1 Primers’ sequences of Target Genes in qPCR from Conger eel.

Primer Sequence of primer Target gene

β-actin-F 5′- CAGGTCATCACCATCGGCAA -3′ β-actin

β-actin-R 5′- TCCTTCTGCATTCTGTCGGC -3′

FSHβ-F 5′- GTTGATGCTGGCTCCTGCTCTG -3′ FSHβ

FSHβ-R 5′- ACACAGGGTCCTGGGTGAAGC -3′

LHβ-F 5′- GACAGTCCGTCTGCCAGATTGC -3′ LHβ

LHβ-R 5′- GCACAGGTTACAGTCACAGCTCAG -3′
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indicating that there was a good linear relationship between the
four hormones detected by this method and the results were
reliable. The Transition one values of COR, 17α-OHP, T and 11-
kT were 407.5 > 331.4, 331.4 > 96.9, 298.4 > 97.1, 303.1 > 109.1.
The detection limits were 0.1, 0.04, 0.01, 0.25 ng/mL. The
recoveries were 78%–98%. Therefore, this method can
accurately detect five hormones of conger eel.

3.2.1 COR, 17α-OHP, T, 11-KT and E2 in ovary
The contents of E2 and T in the ovary of the groups A1 and

A2 had no significant changes (Figures 2A, C). The content of 17α-
OHP in A2 gradually decreased, while the content of 17α-OHP in
A1 was significantly higher than that in A2 on the 60th day (1.10 ±
0.15 ng/mL vs. 0.55 ± 0.03 ng/mL; Figure 2E). The content of COR
in A1 decreased initially and then increased, but there was no
significant difference between A1 and A2 (Figure 2G). The
content of 11-kT was lower than the detection limit.

The contents of E2 in both B1 and B2 increased initially and then
decreased, but the group B1 was always significantly higher than B2
(Figure 2B). The contents of T and COR in B1 and B2 increased
gradually; the contents of these two hormones in B1 were
significantly higher than that in B2 on the 30th day (T: 14.36 ±
2.12 ng/mL vs. 9.23 ± 1.69 ng/mL; COR: 13.51 ± 3.22 ng/mL vs.
6.88 ± 2.34 ng/mL; Figures 2D,H), but no significant difference was
observed on the 60th day (T: 15.71 ± 1.95 ng/mL vs. 9.75 ± 4.28 ng/
mL; COR: 17.52 ± 5.25 ng/mL vs. 15.81 ± 1.42 ng/mL; Figures
2D,H). The contents of 17α-OHP decreased on the 60th day, but
there was no significant difference between B1 and B2 (0.6901 ±
0.2315 ng/mL vs. 0.7047 ± 0.1995 ng/mL; Figure 2F). The contents
of 11-KT in B2 were 0.97 ± 0.31 ng/mL on 30th day and there was no
significant difference between the two groups on 60th day (1.10 ±
0.41 ng/mL vs. 1.05 ± 0.36 ng/mL).

3.2.2 COR, 11-KT and E2 levels in serum
The contents of 17α-OHP and T in the serum of the four

experimental groups were lower than the detection limit, while
E2 and 11-KT had no significant change (Table 2). In all four
experimental groups, COR levels were consistently significantly

higher in the flowing water group than in the still water
group (Table 2).

3.3 FSHβ and LHβ gene expression and
content changes

The expression levels of FSHβ in A1 and A2 increased
continuously compared to those in the control group, with
A2 significantly higher than A1 on the 60th day (Figure 3A).
However, with hormone injection, the expression levels of FSHβ
of B1 and B2 decreased rapidly. Similarly, B2 was significantly higher
than B1 on the 60th day (Figure 3B). The expression levels of LHβ in
all four groups increased significantly. On the 60th day, the
expression levels of LHβ in A1 and B1 were significantly higher
than A2 and B2 (Figures 3C, D), respectively.

The contents of FSH in A1 first decreased and then increased,
while in A2 they first increased and then decreased. Additionally, the
contents of FSH in A2 were consistently significantly higher than in
A1 (the 30th day: 35.85 ± 2.81 U/L vs. 51.15 ± 1.46 U/L; the 60th day:
44.00 ± 2.61 U/L vs. 49.69 ± 3.25 U/L; Figure 3E). The contents of
FSH in B1 were decreased significantly on the 60th day, while in
B2 they first increased and then decreased. In addition, the contents
of FSH in B2 were significantly higher than in B1 on the 30th day,
and B1 was significantly higher than B2 on the 60th day (the 30th
day: 43.46 ± 3.02 U/L vs. 48.91 ± 3.30 U/L; the 60th day: 38.56 ±
2.39 U/L vs. 31.72 ± 2.61 U/L; Figure 3F). The changes in the LH
contents and the FSH contents in A1 and A2 were consistent. The
contents of LH in A2 were significantly higher than in A1 on the
30th day, and A1 were significantly higher than A2 on the 60th day
(the 30th day: 33.41 ± 2.43 pg/L vs. 47.98 ± 2.39 pg/L; the 60th day:
42.32 ± 2.31 pg/L vs. 36.39 ± 3.38 pg/L; Figure 3G). The contents of
LH in B1 decreased significantly on the 60th day, while in B2 they
first decreased and then increased. The contents of LH in B1 were
significantly higher than in B2 on the 30th day, and B2 was
significantly higher than B1 on the 60th day (the 30th day:
42.56 ± 2.18 pg/L vs. 39.62 ± 1.24 pg/L; the 60th day: 34.72 ±
3.46 pg/L vs. 48.36 ± 1.53 pg/L; Figure 3H).

FIGURE 1
Effects of water stimulation and hormone injection on GSI of conger eel. (A) GSI in the no hormone group and (B) GSI in the hormone group. The
capital letters marked in the chart indicate significant differences between the swimming group and the resting group at the same sampling time (p <
0.05). Lowercase letters indicate differences within the same group at different sampling periods (p < 0.05). A1, no hormone still water group; A2, no
hormone flowing water group; B1, hormone still water group; B2, hormone flowing water group. GSI, gonadosomatic index.
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FIGURE 2
Effects of water stimulation and hormone injection on the contents of COR, 17α-OHP, T and E2 in the gonads of conger eel. (A) The content of E2 in
ovary of no hormone group, (B) The content of E2 in ovary of hormone group, (C) The content of T in ovary of no hormone group, (D) The content of T in
ovary of hormone group, (E) The content of 17α-OHP in ovary of no hormone group, (F) The content of 17α-OHP in ovary of hormone group, (G) The
content of COR in ovary of no hormone group, (H) The content of COR in ovary of hormone group. The capital letters marked in the chart indicate
significant differences between the swimming group and the resting group at the same sampling time (p < 0.05). Lowercase letters indicate differences
within the same group at different sampling periods (p < 0.05). A1, no hormone still water group; A2, no hormone flowing water group; B1, hormone still
water group; B2, hormone flowing water group. E2, estradiol; T, testosterone; 17α-OHP, 17α-hydroxyprogesterone; COR, cortisol.
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4 Discussion

Water stimulation is crucial for some fish species, as it can
stimulate ovarian development, spawning and fertilization (Li et al.,
2020; Chen et al., 2021; Shu et al., 2023). This study found that water
stimulation slowed down the development of ovary. Prolonged
swimming can also delay ovulation in rainbow trout
(Oncorhynchus mykiss) (Contreras, 1998). However the inhibition
of vitellogenin (VTG) synthesis by water stimulation may be the
main reason for the slow growth of ovary (Liu et al., 2022).
Swimming can inhibit the synthesis of VTG from conger eel, a
similar phenomenon also found in European eel (Palstra et al.,
2010b). In the process of ovarian development, the synthesis of VTG
will lead to the shedding of calcium, phosphorus, and other elements
from the bone, which are then transported to the ovary. This process
is extremely detrimental to long-term migration (Gao, 2011). In
addition, swimming exercise suppresses oocyte development by
inhibiting VTG uptake in rainbow trout, and it downregulates
protein biosynthesis and energy supply functions in the ovary to
conserve energy (Palstra et al., 2010a; Palstra and Planas, 2011).
Therefore, water stimulation can inhibit ovarian development in
migrating conger eels, conserving energy to meet their energy
demands during reproduction and increasing
reproductive efficiency.

FSHβ gene is highly expressed in the early stage of ovarian
development, while LHβ gene is highly expressed in the late
ovarian development in conger eels. The increase in hormone
levels may be the cause of this phenomenon. A similar pattern
was found in Japanese eel, with higher mRNA levels of FSHβ were
found in immature fish and higher mRNA levels of LHβ were
found in adult female and male fish treated with exogenous
hormones (Yoshiura et al., 1999). In this experiment, the
increase of gonad steroid content was also observed during the
development of conger eel, but no change in ovarian steroid
content was observed in the two groups without hormone
treatment. The non-expression of FSHβ in the later stage of
hormone injection may be due to the regulatory effect of
increased steroid hormone content in the pituitary gland.
Increased levels of T and E2 have been shown to significantly

reduced the level of FSHβ mRNA in Japanese eels and European
eels (Schmitz et al., 2005; Jeng et al., 2007). In the study, increased
levels of hormones such as T and COR in the gonads were found
in both hormone groups. These increased hormone levels may be
responsible for the inhibition of FSH gene expression.

Water stimulation can promote the synthesis of FSH and LH
at different stages of ovarian development in conger eels.
Swimming was also observed to increase serum COR levels in
this experiment. After long-term swimming, the levels of FSH and
LH in conger eel significantly increased during gonadal
development, which may be due to the regulation of COR on
the HPG axis. When changes in the external environment put
stress on the fish organisms, teleost fish adapt to the changes by
promoting the synthesis of hormones such as COR through the
hypothalamic-pituitary-adrenal axis (HPA) (Kr et al., 2020). COR
can significantly elevate the LHβmRNA content in European eels,
and stimulate FSHβ gene expression in Atlantic cod as well
(Huang et al., 1999; Krogh et al., 2019). The widespread
presence of glucocorticoid receptors in both the brain and
gonads of fish underscores the pivotal role of COR and other
glucocorticoids in the reproductive process of fish (Teitsma, 1999;
Maruska and Fernald, 2011; Ogawa and Ishwar, 2014). However,
COR exerts species-specific regulatory effects on organisms, and
its mechanism needs further exploration (Mommsen et al., 1999).
Studies have shown that during the silver plating period of
Japanese eels and European eels, the expression of FSHβ and
LHβ significantly increased and effectively reduced the expression
of dopamine receptors (Jeng et al., 2014). After swimming for
60 days the expression level of FSHβ significantly increased in fish
without hormone injection, suggesting that swimming can help
with the early development of fish. In zebrafish, both males and
females lacking the FSH gene were able to reproduce normally,
but the gonad development rate was slow, and females lacking the
LH gene were unable to lay eggs (Zhang et al., 2015). When the
gonads of Japanese eels mature, it is necessary to inject the
hormones DHP or OHP to induce spawning in captivity
(Jiang, 2012). Therefore, the observed inability of eels to
ovulate naturally in our study could potentially be attributed to
inadequate LH synthesis. Stimulating LH synthesis through water

TABLE 2 Effects of water stimulation and hormone injection on the levels of COR, 11-KT and E2 in serum of Conger eel.

The first day (control group) The 30th day The 60th day The 30th day The 60th day

A1 A2

11-KT (ng/mL) 1.31 ± 0.39a 1.09 ± 0.11Aa 1.04 ± 0.28Aa 1.01 ± 0.12Aa 1.01 ± 0.19Aa

E2 (ng/mL) 6.24 ± 0.69a 4.12 ± 1.62Aa 6.50 ± 2.37Aa 3.96 ± 1.04Aa 4.39 ± 1.35Aa

COR (ng/mL) - 5.09 ± 2.07B 7.24 ± 5.88B 14.25 ± 6.97A 22.16 ± 11.36A

B1 B2

11-KT (ng/mL) 1.31 ± 0.39a 0.96 ± 0.18Aa 1.07 ± 0.38Aa 1.09 ± 0.32Aa 1.09 ± 0.25Aa

E2 (ng/mL) 6.24 ± 0.69a 7.42 ± 3.18Aa 4.92 ± 2.40Aa 5.46 ± 2.21Aa 5.28 ± 1.68Aa

COR (ng/mL) - 7.30 ± 5.00B 7.24 ± 4.92B 22.04 ± 9.77A 19.11 ± 6.38A

Note: The capital letters marked in the chart indicate significant differences between the swimming group and the resting group at the same sampling time (p < 0.05). Lowercase letters indicate

differences within the same group at different sampling periods (p < 0.05). “-" indicates that the hormone content is lower than the detection limit. A1, no hormone still water group; A2, no

hormone flowing water group; B1, hormone still water group; B2, hormone flowing water group. 11-KT, 11-Ketoltestosterone; E2, estradiol; COR, cortisol.
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FIGURE 3
Effects of fluid stimulation and hormone injection on the expression of Follicle stimulating hormone (FSHβ) and luteinizing hormone (LHβ) genes in
the pituitary, and follicle stimulating hormone (FSH) and Luteinizing hormone (LH) in the serum of conger eel. (A) The relative expression of FSHβ in the no
hormone group, (B) The relative expression of FSHβ in the hormone group, (C) The relative expression of LHβ in the no hormone group, (D) The relative
expression of LHβ in the hormone group, (E) The content of FSH in the hormone group, (F) The content of FSH in the hormone group, (G) The
content of LH in the hormone group, (H) The content of LH in the hormone group. The capital letters marked in the chart indicate significant differences
between the swimming group and the resting group at the same sampling time (p < 0.05). Lowercase letters indicate differences within the same group at
different sampling periods (p < 0.05). A1, no hormone still water group; A2, no hormone flowing water group; B1, hormone still water group; B2, hormone
flowing water group. FSHβ, Follicle-stimulating hormone beta subunit; LHβ, Luteinizing hormone beta subunit. FSH, Follicle-stimulating hormone; LH,
Luteinizing hormone.
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stimulation might prove beneficial for facilitating the final
maturation and ovulation of the gonads.

Water stimulation increased the level of 11-KT in B2 ovaries on
the 30th day, and reduced E2 levels in the ovaries. 11-KT is known to
promote the absorption of lipid substances by oocytes (Endo et al.,
2008). Similarly, swimming in European eel has also been found to
increase the level of 11-KT in serum and promote the accumulation
of lipid droplets in oocytes (Ginneken et al., 2007). E2 binds to
estrogen receptors in the liver and promotes vitellogenin synthesis
(Williams et al., 2013; Hara et al., 2016). Therefore, the decrease in
E2 may lead to a decrease in vitellogenin synthesis. Palstra et al.
found that swimming inhibited the expression of two VTG genes in
European eel (Palstra et al., 2010b). In oviparous vertebrates,
maternally derived miRNAs and hormones enter the oocytes
during vitellogenesis and participate in seedling embryonic
development (Groothuis and Schwabl, 2008; Tokarz et al., 2015).
The contents of E2 and DHP in oocytes of European eel are
negatively correlated with the quality of oocytes (Kottmann et al.,
2021). Changes in serum hormone levels with no discernible pattern
were observed, and were consistent with previous studies (Li, 2019).
Furthermore, there are notable differences between conger eel and
other eels, necessitating further study into specific regulatory
mechanisms. Therefore, we should not blindly pursue the
increase of hormone content related to reproduction in future
reproduction work.

5 Conclusion

In this study, we employed qPCR to detect the relative
expression levels of FSHβ and LHβ in the pituitary of the
Conger eel. Additionally, we utilized ELISA and UPLC-MS/
MS to assess hormone content in the serum and ovaries. FSH
hormone in Conger eel only functions in the early stage of
ovarian development, with water flow stimulation can
significantly promote the synthesis of FSH. After hormone
injection, the mRNA level of FSHβ gene was below detection.
LHβ gene in Conger eel exhibits high expressions in the later
stage of ovarian development, with water flow stimulation
significantly promoting the synthesis of LH in the late stage of
ovarian development. Water flow stimulation notably reduces the
content of hormones such as COR, E2, and T in the ovaries of
Conger eel while promoting COR content in the serum. This
study contributes to our understanding of the impact of water
flow stimulation on hormone regulation in Conger eel. Moreover,
further investigation is warranted to determine whether the
inhibitory effect of water stimulation on hormone content in
the ovary of the Conger eel can improve the hatching rate of
fertilized eggs and the survival rate of seedlings.
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