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Background: Recurrent pregnancy loss (RPL) poses significant challenges in
clinical management due to an unclear etiology in over half the cases.
Traditional screening methods, including ultrasonographic evaluation of
endometrial receptivity (ER), have been debated for their efficacy in identifying
high-risk individuals. Despite the potential of artificial intelligence, notably deep
learning (DL), to enhance medical imaging analysis, its application in ER
assessment for RPL risk stratification remains underexplored.

Objective: This study aims to leverage DL techniques in the analysis of routine
clinical and ultrasound examination data to refine ER assessment within RPL
management.

Methods: Employing a retrospective, controlled design, this study included
346 individuals with unexplained RPL and 369 controls to assess ER.
Participants were allocated into training (n = 485) and testing (n = 230)
datasets for model construction and performance evaluation, respectively. DL
techniques were applied to analyze conventional grayscale ultrasound images
and clinical data, utilizing a pre-trained ResNet-50model for imaging analysis and
TabNet for tabular data interpretation. The model outputs were calibrated to
generate probabilistic scores, representing the risk of RPL. Both comparative
analyses and ablation studies were performed using ResNet-50, TabNet, and a
combined fusion model. These were evaluated against other state-of-the-art DL
and machine learning (ML) models, with the results validated against the
testing dataset.

Results: The comparative analysis demonstrated that the ResNet-50 model
outperformed other DL architectures, achieving the highest accuracy and the
lowest Brier score. Similarly, the TabNet model exceeded the performance of
traditional ML models. Ablation studies demonstrated that the fusion model,
which integrates both data modalities and is presented through a nomogram,
provided the most accurate predictions, with an area under the curve of 0.853.
The radiological DL model made a more significant contribution to the overall
performance of the fusion model, underscoring its superior predictive capability.
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Conclusion: This investigation demonstrates the superiority of a DL-enhanced
fusion model that integrates routine ultrasound and clinical data for accurate
stratification of RPL risk, offering significant advancements over traditional
methods.
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Introduction

Recurrent pregnancy loss (RPL) remains a contentious issue due
to the lack of universally accepted guidelines, leading to ongoing
debates about clinical management, diagnostic protocols, and
potential interventions. According to the latest guidelines from
the European Society of Human Reproduction and Embryology
(ESHRE), RPL is defined as two or more miscarriages before the
24th week of gestation (TEGGo et al., 2023). This represents a shift
from the previous definition, which required three or more
miscarriages, as upheld by both ESHRE and the Royal College of
Obstetrics and Gynecology (No RG-tG, 2011). It is anticipated that
this redefinition may significantly increase the recognized
prevalence of RPL, which currently affects an estimated 1%–5%
of women, suggesting that the true incidence may be higher.

Addressing the challenges in RPL management requires a
strategy focused on clinical risk screening to precisely identify at-
risk individuals. This typically involves identifying known and
potential risk factors and examining their correlation with the
onset of RPL (Turesheva et al., 2023). Despite substantial clinical
efforts to clarify factors such as infections, metabolic disorders,
chromosomal, endocrine, immunological irregularities, and uterine
anatomical abnormalities as established causes of RPL, more than
half of affected couples lack a clear cause for pregnancy failure (Cao
et al., 2022). This lack of identifiable reasons complicates the
assessment of RPL risk.

Given these insights, our strategy seeks to refine the RPL screening
process by extensively utilizing ultrasound imaging. RPL patients often
exhibit a condition known as “superfertility”, evidenced by inadequate
fibroblast decidualization and an uncoordinated maternal response to
embryonic signals (Teklenburg et al., 2010). This condition is speculated
to extend the window of endometrial receptivity (ER), potentially
delaying the implantation of compromised embryos (Patel and
Lessey, 2011). As supported by Wilcox et al. (1999), evaluating ER
differences between women with RPL and healthy individuals could be
crucial for identifying those at higher risk. Recent studies on
ultrasonographic ER evaluation have mainly highlighted endometrial
features crucial for predicting outcomes in assisted reproductive
technologies, such as endometrial morphology and Doppler blood
flow (Khan et al., 2016; Bahrami et al., 2023; Sharfi et al., 2015).
However, the utility of these features in identifying RPL risk
remains debated.

With the evolution of information technology, digital image
analysis in assessing ER has reached new levels of precision, even
integrating advanced techniques such as radiomics (Fournier et al.,
2021; Huang et al., 2023). However, the complexity and time-
consuming nature of these methods limit their routine clinical
adoption as screening tools. Recent advancements have highlighted

the significant role of deep learning (DL) technologies, especially
convolutional neural networks (CNNs), in enhancing the utility of
medical imaging data (Iglesias et al., 2021). Celebrated for their
capabilities in image recognition and classification, CNNs present a
promising path for managing the complex, high-dimensional data
intrinsic to ultrasound imaging (Cheng and Malhi, 2017). This
facilitates the identification of intricate patterns associated with ER
states, offering a sophisticated, computer-aided method for ER
evaluation. DL-enhanced ER assessments are expected to improve
diagnostic accuracy for RPL while minimizing additional workload
for clinicians. Initial efforts have demonstrated that integrating DL with
clinical data and ultrasound can effectively predict pregnancy outcomes
and aid in diagnosis (Liang et al., 2023;Wang et al., 2022). Despite these
advancements, the application of DL innovations in specifically
stratifying RPL risk has not been thoroughly explored, leaving a
significant gap in the current research.

This study presents a novel approach by employing DL
techniques for analyzing routine clinical and ultrasound data.
Unlike traditional methods that rely on three-dimensional
imaging, our approach focuses on leveraging DL to extract and
interpret subtle features from routine diagnostic evaluations. This
innovation enhances the precision of ER assessments and offers a
more efficient and accessible method for managing RPL risk. By
integrating ultrasound data and clinical parameters, this research
proposes an improved methodology for RPL risk stratification,
offering significant clinical value. Ultimately, our approach is
expected to lead to the development of personalized management
strategies for RPL patients, improving prognostic outcomes and
optimizing clinical decision-making.

Material and methods

This investigation was conducted in accordance with a
retrospective, controlled design and adhered strictly to ethical
standards as prescribed by the Declaration of Helsinki. Approval
for the study was granted by the Institutional Review Board of
Deyang People’s Hospital (2022-04-083-K01). Owing to its
retrospective design, the ethical committee provided a waiver for
the requirement of informed consent from participants. Measures
were taken to anonymize participant data thoroughly prior to
analysis, safeguarding their confidentiality and privacy.

Participants

From 2021 to 2023, this study compiled data from transvaginal
ultrasounds and routine clinical examinations of 400 patients
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suffering from unexplained RPL (uRPL), defined as women who had
experienced two or more consecutive pregnancy losses without
identifiable causes such as autoimmune, anatomical, genetic,
endocrine, infectious, or male factor issues (Yu et al., 2023).
Additionally, 400 women who had undergone thorough fertility
assessments and subsequently achieved full-term pregnancies
without previous losses were included as the control cohort.

Inclusion criteria for both cohorts specified women aged
20–40 years with regular menstrual cycles (27–35 days) and
normal ovarian reserve. Exclusion criteria included significant
ovarian or uterine abnormalities, substantial alcohol
consumption, systemic diseases affecting hemodynamic
parameters, or recent use of medications like steroid hormones
or antibiotics that could influence pregnancy outcomes. After
screening, 346 uRPL patients and 369 controls were included in
the study. Figure 1 illustrates the participant selection process.

Ultrasound image acquisition

In the designated window of implantation (WOI), occurring
7–9 days post-ovulation (days 21–23 of the menstrual cycle),
uniform transvaginal ultrasound scans were administered to all
participants using the Resona R9T system (Shenzhen Mindray
Corporation, Shenzhen, China). Two-dimensional grayscale
images of the endometrium in a standard longitudinal section
were systematically captured and archived for off-line analysis.
Ultrasound data acquisition was performed by two experts, each
with over a decade of experience in obstetric and gynecological
ultrasonography.

Tabular database establishment

A structured database was established from data collected with
participants. This database incorporated demographic information
and outcomes of previous pregnancies, including age, body mass
index (BMI), and history of miscarriages. Key fertility indicators,
such as levels of follicle-stimulating hormone (FSH), luteinizing
hormone (LH), estradiol (E2), and antimüllerian hormone (AMH),

were systematically recorded throughout the WOI. Additionally,
ultrasonographic measurements, including endometrial thickness
(EMT) and the vascular indices-namely, the pulsatility index (PI)
and resistance index (RI) for both the uterine arteries (UA) and
spiral arteries (SA)-were comprehensively integrated during
this period.

Data preparation prior to DL model
development

We included a total of 715 participants, consisting of 346 uRPL
patients and 369 controls. The participants were divided into two
datasets: a training set consisting of 485 individuals (235 with RPL
and 250 controls) for model development, and a testing set
comprising 230 cases (111 RPL cases and 119 controls) for
evaluating the model’s performance. A stratified five-fold cross-
validation was employed, where the training set was divided into five
segments, each serving as a validation subset sequentially (Figure 2).
The performance of the model in each fold was evaluated, and the
iteration displaying the highest area under the receiver operating
characteristic curve (AUC) during the validation phase was selected
as the final model for further testing.

Image pre-processing and data
augmentation

Before incorporation into the neural network frameworks,
central endometrial regions were extracted from ultrasound
images and rescaled to 224 × 224 pixels using bilinear
interpolation to optimize computational efficiency. Image
preprocessing included Gaussian smoothing to reduce image
noise and smooth pixel intensity variations, enhancing the
model’s ability to detect relevant features by minimizing the
impact of irrelevant high-frequency noise. Additionally, pixel
standardization was applied to ensure consistent input quality for
the neural network.

Data augmentation techniques were applied, including random
horizontal and vertical flips, rotations within a range of ± 20°, and

FIGURE 1
Participant selection flowchart for the RPL and control cohorts.
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translations up to 15% of the image scale. These augmentations
simulate common variations in ultrasound imaging, such as probe
angle adjustments and patient positioning differences. By
introducing these variations, the model is trained to recognize
more robust and generalizable features, thereby minimizing
overfitting and enhancing its accuracy on previously unseen data.

DL prediction model

Separate neural networks were trained to analyze image and
tabular data, respectively. For the image data, the pre-trained
ResNet-50 model was selected due to its robust feature extraction
capabilities, particularly its ability to capture complex patterns in
ultrasound images (He et al., 2016). The residual learning
framework of ResNet-50 addresses the vanishing gradient
problem, enabling high accuracy even in deep networks (Sharma
and Singh, 2021). As illustrated in Figure 3, the initial final layer of
the network, a softmax layer, was replaced with a sigmoid output
layer specifically designed to estimate the RPL risk based on
ultrasound imagery. The optimization of this network employed
stochastic gradient descent (SGD) with a momentum of 0.9 and a
binary cross-entropy loss function to enhance the precision of RPL
risk prediction. The learning rate was initially set at 0.001, with a

protocol to decrease it by a factor of 0.1 upon the plateauing of
validation loss across ten epochs. Training proceeded for 10 epochs
with a batch size of 64, balancing the need for precision with
computational efficiency.

For tabular data, TabNet, a neural network framework
optimized for handling high-dimensional clinical datasets, was
chosen. Its attention mechanism enhances interpretability and
efficiently models non-linear relationships, functioning similarly
to a DL-based decision tree (Arik and Pfister, 2021). This
architecture was selected for its stability, reliability, and proven
effectiveness in clinical prediction tasks (Oba et al., 2021). The
contribution of each feature within the tabular dataset to the
model’s outcome predictions was quantitatively evaluated. A
heatmap was generated to visualize feature importance, which
played a critical role in improving the overall predictive accuracy of
the model. Fine-tuning of the TabNet model involved the
adjustment of several hyperparameters: a learning rate set at
0.1, utilization of the Adagrad optimizer for adaptive rate
modifications, a cap of 200 epochs to facilitate model
convergence, a patience setting of 50 to mitigate overfitting, and
a batch size of 16 to streamline training processes. A hold-out test
set was utilized to assess the model’s accuracy throughout the
training phase. Both DL models were developed using the
TensorFlow framework and Python 3.11.

FIGURE 2
Depiction of participant stratification into training and testing sets for the training and evaluation of the DL model. The five-fold cross-validation
method is employed, where subsets are sequentially designated for validation, ensuring a robust evaluation across diverse dataset partitions.

FIGURE 3
Network structure illustration for the DL model ResNet-50. Conv, convolutional layer; Batch Norm, batch normalization; ID, identity; FC, full
connection.
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The fusion model was constructed by integrating the outputs of
the ResNet-50 and TabNet models to leverage both radiological and
tabular data. Sigmoid outputs from ResNet-50 and TabNet were
each converted into probabilistic scores representing RPL risk.
These scores were then combined using a logistic regression (LR)
model, where the scores from both models served as independent
variables. The LR model generated a final probabilistic score for RPL
risk by effectively integrating complementary information from
both data sources. This integration is visualized in a nomogram,
demonstrating the improvement in model accuracy achieved by
combining the scores for RPL risk stratification.

Evaluation and comparison of
predictive models

Both the radiological and tabular data-derived DL models
employed a sigmoid output to generate probabilistic scores
indicative of the likelihood of RPL presence. Scores close to
1 suggest a higher risk, while those near 0 indicate normal
fertility, with a threshold set at 0.5. To assess the effectiveness of
our proposed model, we conducted comparative studies with other
state-of-the-art architectures. For radiological data, we compared
our model with DL architectures such as VGG-16 (Ritahani et al.,
2024), DenseNet-121 (Chhabra and Kumar, 2024), and Inception-
V3 (KIM, 2022). For tabular data, we included comparisons with
traditional machine learning (ML) models such as LR, Support
Vector Machines (SVM), and Random Forest (RF). Each model was
configured and trained using the recommended hyperparameters
specified in their respective official resource. A consistent training
protocol was applied across all models for general optimization
processes. Subsequently, all models were evaluated on the same
testing cohort, ensuring that comparisons were conducted fairly and
focusing on the inherent differences between the models’
architectures.

To evaluate the contributions of each data modality to the
overall model performance and their impact on RPL risk
prediction, we conducted an ablation study comparing the
radiological DL model, the tabular DL model, and the fusion
model integrating both data types. Evaluated on the same testing
cohort, the concordance between model predictions and actual
classifications was used to assess each model’s performance,
focusing on metrics such as discriminatory capability, calibration,
and clinical utility, thereby providing a comprehensive evaluation of
how each modality contributes to the prediction process.

Statistical analysis

Differences between the training and testing sets were evaluated
using the Chi-square test, independent-sample t-test, or the
Mann–Whitney U test, depending on the characteristics of the
data. Predictive scores from the fusion model were obtained
through logistic regression, incorporating scores from the
radiological and tabular DL models. Model performance was
assessed via receiver operating characteristic (ROC) curve
analysis, with discrimination capability quantified by AUC, which
underwent comparison through Delong’s test. Calibration curve

analysis and the Brier score (BS) were employed to examine the
goodness of fit for each model. Decision curve analysis (DCA) was
utilized to assess the net benefits at various threshold probabilities,
determining the models’ clinical applicability. Further, the
evaluation of the model’s practical utility involved the analysis of
key performance indicators, such as accuracy, precision, recall, and
the F1 score, with a particular focus on the comparative model
experiments and ablation studies conducted within the testing
cohort. Analyses were conducted using Python version 3.11, with
a p-value below 0.05 indicating statistical significance.

Result

Participant clinical characteristics

In the study involving 346 participants identified as experiencing
RPL, the distribution of miscarriage events was observed as follows:
58.3% had encountered two miscarriages, 30.6% had three, and
11.1% reported four or more miscarriages. These individuals were
systematically allocated into training and testing datasets for model
development and performance assessment. Comparative evaluation
of demographic, clinical, and ultrasonographic indices, as presented
in Table 1, indicated no significant differences in baseline
characteristics between the datasets (all P values >0.05), ensuring
an unbiased foundation for analysis.

Development of predictive models

Through univariate and multivariate LR analyses, we examined
the association between clinical data from the training set and the
likelihood of RPL. As illustrated in Table 2, the initial univariate
analysis identified significant correlations between RPL risk and
several factors, including age, SAPI, SARI, UAPI, and UARI.
Subsequent multivariate regression analysis further refined these
results, establishing age, SAPI, and SARI as independent predictors
of elevated RPL risk. These variables were then used to construct a
LR model for linear prediction.

The ResNet-50 architecture was employed for transfer learning,
where ultrasound images of the endometrium from 235 RPL patients
and 250 controls within the training set were utilized for model
development. The customized radiological DL model, modified by
replacing its final layer with a sigmoid output, was used to
accurately estimate the risk of RPL. Optimization of the model was
conducted over ten epochs. As depicted in Figure 4, significant
enhancements in model accuracy were observed during the training
phase. These enhancements were accompanied by reductions in loss
across both the training and validation datasets, demonstrating effective
learning and optimization processes.

Utilizing the TabNet architecture, the tabular DL model was
trained with clinical datasets to predict the risk of RPL. By epoch 95,
an optimal test accuracy of 83.51% was achieved, triggering the early
stopping mechanism as no further performance improvements were
observed. This epoch was thus identified as the most effective in
model performance. Graphical depictions of the training
progression, illustrating accuracy and loss metrics, substantiated
the numerical efficacy of the model as shown in Figure 5.
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The outputs from both the radiological DL model (ResNet-50)
and the tabular DL model (TabNet) were converted into
probabilistic scores representing the risk of RPL. These scores
were subsequently integrated into an LR model to generate a
final probabilistic score for RPL risk. By combining radiological
and clinical data, this fusion model provided a more comprehensive
risk assessment. The final integrated prediction is presented in a
nomogram (Figure 6), demonstrating the improved capacity of the
model to predict RPL risk through the integration of multiple
data sources.

Model comparison and ablation
study results

The comparative analysis of different DL and ML models on
radiological and tabular data, as presented in Table 3, emphasizes
the superior performance of the proposed ResNet-50 model for
radiological data and the TabNet model for tabular data. Among
radiological models, the ResNet-50 architecture demonstrated the
highest overall performance, with an accuracy of 0.739 and the
lowest BS of 0.175, reflecting both its strong predictive capability and

TABLE 1 Comparative analysis of demographic, clinical, and ultrasonographic characteristics between training and testing datasets.

Indicators Training set (n = 485) Testing set (n = 230) Statistical values P value

Age, year 33 (30–35) 33 (30–35) 1.026a 0.338

BMI, kg/m2 21.24 ± 3.73 21.17 ± 3.83 0.693b 0.528

Proportion of RPL, n (%) 235 (48.8%) 111 (48.3%) 0.002c 0.962

FSH, IU/L 7.36 (6.83–8.25) 7.53 (6.25–8.73) 0.527a 0.524

LH, IU/L 6.37 (5.45–7.22) 6.94 (5.24–7.23) 0.068a 0.934

E2, pg/mL 34.6 (29.2–39.4) 34.8 (29.6–39.7) 0.086a 0.914

AMH, ng/mL 1.44 ± 0.45 1.46 ± 0.47 0.545b 0.564

EMT, mm 8.95 ± 1.78 8.83 ± 1.85 0.263 0.828

SAPI 0.94 (0.85–1.12) 0.95 (0.84–1.16) 0.446b 0.675

SARI 0.55 ± 0.04 0.53 ± 0.56 0.735b 0.434

UAPI 2.14 ± 0.22 2.15 ± 0.23 0.096b 0.935

UARI 0.82 (0.81–0.83) 0.82 (0.79–0.83) 0.075a 0.936

aFor Mann–Whitney U test.
bFor independent-sample t-test.
cFor Chi-square test.

TABLE 2 Univariate and multivariate logistic regression analysis of clinical indicators predictive of RPL risk.

Variable Univariate logistic regression Multivariate logistic regression

P value OR 95% CI P value OR 95% CI

Age <0.001 1.231 1.157–1.310 <0.001 1.242 1.161–1.328

BMI 0.210 0.967 0.917–1.019

FSH 0.461 0.955 0.843–1.080

LH 0.597 1.050 0.876–1.258

E2 0.804 1.004 0.974–1.035

AMH 0.159 0.735 0.479–1.128

EMT 0.057 0.907 0.820–1.003

SAPI <0.001 1.461* 1.275–1.674 <0.001 1.534* 1.324–1.776

SARI <0.001 2.171* 1.495–3.153 <0.001 2.288* 1.511–3.466

UAPI 0.031 1.103* 1.009–1.206 0.506 1.034* 0.936–1.143

UARI 0.015 1.909* 1.137–3.206 0.123 1.571* 0.885–2.792

The OR values represented by * is the elevated risk per 0.1-unit increment.
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good calibration. Considering the clinical context of RPL, where
minimizing missed diagnoses (false negatives) is critical, ResNet-50
achieved the highest recall value of 0.748, demonstrating its

heightened sensitivity in identifying high-risk patients. Similarly,
the TabNet model outperformed traditional models such as LR,
SVM, and RF in tabular data analysis, achieving an accuracy of

FIGURE 4
Trends in training and validation metrics over epochs. (A) displays the trajectory of accuracy for the training (blue) and validation (orange) sets, while
(B) delineates the corresponding loss. An observable enhancement in accuracy and a decrease in loss are demonstrated throughout the training epochs.

FIGURE 5
Training loss and test accuracy of the TabNet model over epochs. (A) shows the decrease in training loss, while (B) illustrates fluctuations in test
accuracy, with epoch 95 marking the implementation of early stopping due to optimized model performance.
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0.717 and a BS of 0.197. Its recall of 0.685 further confirmed its
applicability in clinical risk stratification. The heatmap analysis
(Figure 7) revealed that age, SAPI, and UARI made significant
contributions to the predictive accuracy of the Tabular DL model,
indicating a discrepancy in predictive variables between the Tabular
DL and LR models. This discrepancy suggests that the nonlinear DL
architecture, TabNet, is more suitable for predicting
clinical outcomes.

In the ablation study, as shown in Table 4, the individual
contributions of the radiological and tabular data modalities, as
well as their integration within the fusion model, were assessed. The
results demonstrated that the fusion model achieved the best overall
performance, with an accuracy of 0.743 and the highest recall of
0.802, outperforming both the radiological DL-only and tabular DL-
only models. This indicates the added value of integrating
multimodal data to capture RPL cases. The fusion model also
demonstrated improved calibration with the lowest BS (0.156),
underscoring its potential as a reliable and clinically relevant tool
for RPL risk prediction. Further analysis revealed that the
radiological DL model surpassed the tabular DL model across all
metrics, proving its greater contribution to the fusion model and
highlighting the enhanced capability of DL networks based on
ultrasonographic endometrial imagery for RPL risk prediction.

These findings are further supported by the ROC curves,
calibration curves, and DCA presented in Figure 8, where the
fusion model achieved the highest AUC (0.853) and
demonstrated superior calibration and clinical utility compared
to the single-modality models. Additionally, the radiological DL-
only model consistently outperformed the tabular DL-only model
across all metrics.

Discussion

In advancing routine screening for RPL risk, this study
demonstrates the integration of DL technologies with
endometrial ultrasound imaging and clinical data to improve ER
assessment. By employing pre-trained ResNet-50 for imaging and
TabNet for clinical data, this approach achieved higher accuracy in
dataset analysis, surpassing traditional methods during testing. The
model comparison experiment indicated that the trained TabNet
model outperformed the linear RF model and other traditional ML
models when analyzing identical clinical data. The ablation study
further revealed that the radiological DL model outperformed the
tabular DL model. The fusion model, which integrates radiological
and tabular data, proved to be the superior predictive tool in this

FIGURE 6
Nomogram for predicting RPL risk integrating outputs from radiological and tabular DL models.

TABLE 3 Comparative performance of different models on radiological and tabular data.

Model Accuracy Precision Recall F1 score BS

Radiological data

VGG-16 0.703 0.633 0.690 0.660 0.217

DenseNet-121 0.715 0.725 0.715 0.720 0.193

Inception-V3 0.710 0.702 0.704 0.703 0.187

ResNet-50 (Ours) 0.739 0.722 0.748 0.735 0.175

Tabular data

LR 0.615 0.672 0.477 0.558 0.307

SVM 0.670 0.691 0.660 0.675 0.255

RF 0.682 0.664 0.680 0.672 0.231

TabNet (Ours) 0.717 0.717 0.685 0.700 0.197
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study. This non-invasive and reliable method effectively
differentiates high-risk RPL patients from healthy individuals,
enabling more precise therapeutic interventions. Characterized by
its integrated use of routinely collected data, the study leverages the
power of DL to refine ER evaluations, offering novel insights and
methodologies for RPL risk management.

AI-based ultrasound models for ER
assessment

The critical role of ER in implantation success and pregnancy
initiation is highlighted by its facilitation of embryonic attachment

and development (Miravet-Valenciano et al., 2015). Identification of
the WOI, a critical period for optimal embryo acceptance by the
endometrium, is essential through ER assessment (Lessey, 2000).
Disturbances in ER during the WOI are correlated with RPL,
emphasizing a compromised implantation process as a significant
factor in pregnancy maintenance failure (Patel and Lessey, 2011).
The process of decidualization, involving the transformation of
endometrial fibroblasts into decidual cells, is critical for
concluding the implantation window (Krieg et al., 2013). This
transformation facilitates the endometrium’s ability to recognize
and eliminate non-viable embryos (Goto et al., 2023). Deficiencies in
decidualization may escalate the risks of implantation delays,
inadequate embryo evaluation, and early placental dysfunction

FIGURE 7
Heatmap visualization of feature contributions to the Tabular DL model, highlighting age, SAPI, and UARI as key factors in predicting high Ki-67
expression.

TABLE 4 Results of the ablation study comparing radiological DL, tabular DL, and fusion models for RPL risk prediction.

Model Accuracy Precision Recall F1 score BS

Radiological DL only 0.739 0.722 0.748 0.735 0.175

Tabular DL only 0.717 0.717 0.685 0.700 0.197

Fusion model 0.743 0.706 0.802 0.751 0.156
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(Coulam et al., 2020). Thus, the emphasis on the WOI for ER
assessment is critical in examining the link between ER anomalies
and RPL, underscoring the importance of precise and timely ER
evaluations to mitigate RPL risks.

Currently, AI-based models utilizing ultrasound for ER
assessment represent a cutting-edge approach, with recent studies
demonstrating superior accuracy compared to traditional methods,
such as EMT measurements, particularly in predicting embryo
implantation success in assisted reproductive technology (ART)
cycles (Fjeldstad et al., 2024). Ultrasound, as the primary
modality for obstetric imaging, is being explored through
advanced techniques like ultrasound elastography and radiomics
to provide more detailed insights into tissue properties and
structural features relevant to ER evaluation. Research has shown
that ultrasound elastography improves the precision of pregnancy
outcome predictions in ART cycles (Li et al., 2024), while DLmodels
applied to ultrasound radiomics have achieved high accuracy in
predicting implantation success after frozen embryo transfer (Liang
et al., 2023). Furthermore, the integration of three-dimensional
ultrasound data with AI has been shown to outperform

traditional markers such as EMT in assessing ER (Wang et al.,
2022; Ricardo et al., 2024). These studies have achieved ER
assessment accuracies similar to those found in our research,
underscoring the potential of AI-enhanced ultrasound in this
area. However, most of these studies have focused on ART,
leaving a significant gap in applying AI-enhanced ultrasound
models for ER evaluation in RPL. Accurate ER assessment is
crucial not only for identifying women at higher risk of RPL but
also for improving endometrial conditions in RPL patients to
enhance pregnancy success rates (Haouzi et al., 2014). This study
addresses this gap by applying AI-based ultrasound models
specifically to RPL, improving both the accuracy and clinical
relevance of ER evaluation in this context.

Justification for model selection in RPL risk
prediction

The selection of ResNet-50 and TabNet in this study was based
on their proven ability to handle the complexity of medical imaging

FIGURE 8
Ablation study results comparing the performance of radiological DL, tabular DL, and fusion models for RPL risk prediction. The fusion model (red)
demonstrated the best overall performance across all metrics, including the highest AUC of 0.853 in the ROC curve (A), superior calibration (B), and the
greatest clinical utility in the DCA (C). Additionally, the radiological DL model (blue) consistently outperformed the tabular DL model (green), highlighting
its more significant contribution to the overall performance of the fusion model.
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and clinical data. ResNet-50, with its deep residual learning
framework, was chosen over other CNN architectures like
VGGNet and DenseNet due to its capacity to address the
vanishing gradient problem, enabling deeper training without loss
of performance (Xu et al., 2023). This feature is critical in medical
imaging, where subtle patterns in ultrasound images must be
detected for accurate prediction of ER and RPL risk (Nagaraju
and Rao, 2022). In this study, ResNet-50 demonstrated the highest
accuracy among the radiological models, achieving 0.739, along with
a recall of 0.748. This emphasizes the model’s superior sensitivity in
identifying RPL risk, which is crucial for minimizing missed
diagnoses in clinical practice.

TabNet was selected for tabular data analysis because it better
handles complex, non-linear relationships that are common in high-
dimensional clinical datasets (Yingze et al., 2024). Its attention
mechanism enables the model to focus on the most relevant
features, allowing for more accurate prediction of RPL risk by
capturing interactions between various clinical factors (Wang and
Sun, 2022; Park et al., 2023). In the tabular data analysis, TabNet
outperformed traditional models such as LR, SVM, and RF, with an
accuracy of 0.717 and a recall of 0.685. This highlights the model’s
ability to effectively identify at-risk individuals while maintaining a
high sensitivity, which is particularly important in clinical settings
where minimizing false negatives is a priority.

Advantages of DL models in RPL prediction

In the model comparison experiment, the TabNet model
outperformed the linear LR model, likely because the DL model
can capture complex, non-linear relationships among variables that
linear models struggle to address. Notably, UARI emerged as a
critical predictor in the TabNet model but was not retained in the LR
model, possibly due to issues with multicollinearity. In traditional
linear models, UARI may lose statistical significance during
multivariate analysis due to overlapping effects with other
variables. In contrast, the DL model, such as TabNet, can better
handle and utilize these intricate, interdependent relationships
between predictors, which linear models often fail to do due to
their sensitivity to multicollinearity and limited capacity to model
non-linear interactions (Han et al., 2017).

Further, the superiority of the radiological DL model over the
tabular DL model can be attributed to the rich, high-dimensional data
contained within medical images. Imaging offers a comprehensive view
of the physiological state, capturing nuances that tabular data alonemay
not fully represent. This aligns with existing literature that demonstrates
the enhanced capability of imaging-based DL models in medical
diagnostics, where the spatial and morphological information within
images provides critical insights into disease states and risks (Panayides
et al., 2020). The integration of visual patterns through CNNs allows for
a more comprehensive assessment of ER and the subsequent
risk of RPL.

Contributions of the proposed model

The proposed fusion model demonstrates enhanced predictive
capability by integrating radiological and tabular data, leveraging the

radiological model’s ability to detect subtle image features and the
tabular model’s strength in interpreting clinical data. This
integration strategy is particularly beneficial in a multimodal
setting, where the physiological and clinical aspects of patient
data complement each other, offering a more reliable and
nuanced approach to RPL risk stratification. The combination of
ResNet-50 and TabNet, as evidenced by the ablation study, achieved
the highest performance, with an accuracy of 0.743 and a BS of
0.156. This approach allows for a more detailed and accurate risk
assessment compared to single-modality models. The model’s AUC
of 0.853 further highlights its superior discriminatory ability,
marking a significant improvement over existing RPL prediction
models (Bashiri et al., 2022; Sugiura-Ogasawara et al., 2009). Given
the challenges associated with the relatively low incidence of RPL
(Youssef et al., 2022), the focus is often on minimizing the oversight
of high-risk cases. The fusion model’s recall score of
0.8 demonstrates its ability to accurately identify 80% of high-
risk cases, representing a substantial advancement in RPL risk
stratification.

Limitation

Despite the demonstrated efficacy of the proposed DL approach
in assessing RPL risk, the study is constrained by several limitations.
First, the sample size is relatively small, which is partly due to the low
incidence rate of uRPL in the general population, making large-scale
data collection a challenging endeavor. While the current sample
size provides valuable insights, future studies with larger, multi-
center cohorts are needed to validate the model and improve its
statistical power and external validity. Second, the ultrasound
images used for model development was sourced from a single
manufacturer and clinical center, which may compromise the
model’s generalizability across different clinical settings.
Standardization of imaging protocols and the inclusion of
multiple imaging modalities (e.g., color Doppler ultrasound,
elastography) in future studies could further enhance the
robustness of the model. Furthermore, while the model
demonstrates potential, its direct clinical applicability remains a
challenge, and the development of a user-friendly interface for
clinical integration is a critical step for ensuring its practical
utility in routine RPL screening. Additionally, the ResNet-50 and
TabNet models used in this study, while effective, are pre-trained
models not specifically designed for medical applications. While
they have been successfully adapted for medical use, there is
potential for the development of DL models more specifically
tailored to the unique characteristics of medical imaging and
clinical data. Future research could explore the use of purpose-
built DL architectures, which may offer improved performance for
medical applications.

Conclusion

This study reveals the efficacy of a DL methodology in refining
RPL risk assessment by integrating radiological and clinical data
through advanced models such as ResNet-50 and TabNet. This
fusion model, utilizing DL techniques, demonstrates superior
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accuracy and efficiency over conventional diagnostic methods.
Notably, this approach is based on routinely collected data,
allowing for easier large-scale implementation in clinical practice.
The method can be readily adopted by clinicians, promoting broader
and more effective risk stratification for RPL.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Ethics statement

The studies involving humans were approved by the Ethics
Committees of Deyang People’s Hospital. The studies were
conducted in accordance with the local legislation and
institutional requirements. The ethics committee/institutional
review board waived the requirement of written informed
consent for participation from the participants or the
participants’ legal guardians/next of kin because Informed
consent was waived by the Ethics Committee due to the study’s
retrospective design.

Author contributions

SY: Conceptualization, Investigation, Software,
Writing–original draft, Writing–review and editing. FX:

Methodology, Project administration, Validation, Visualization,
Writing–original draft. YX: Data curation, Formal Analysis,
Project administration, Resources, Writing–original draft. ZZ:
Formal Analysis, Methodology, Software, Visualization,
Writing–original draft. WL: Conceptualization, Funding
acquisition, Supervision, Writing–original draft, Writing–review
and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. Deyang City
Science and Technology Plan Project (2021SZZ108).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Arik, S. Ö., and Pfister, T. (2021). TabNet: attentive interpretable tabular learning.
Proc. AAAI Conf. Artif. Intell. 35 (8), 6679–6687. doi:10.1609/aaai.v35i8.16826

Bahrami, F., Eftekhar, M., and Zanbagh, L. (2023). Uterine artery Doppler and
endometrial blood flow in frozen embryo transfer: a cohort study. Int. J. Reprod. Biomed.
21 (3), 205–212. doi:10.18502/ijrm.v21i3.13196

Bashiri, A., Giliutin, M., Ziedenberg, H., Plakht, Y., and Baumfeld, Y. (2022). A
proposed prognostic prediction tool for a live birth among women with recurrent
pregnancy loss. J. Maternal-Fetal and Neonatal Med. 35 (19), 3736–3742. doi:10.1080/
14767058.2020.1839877

Cao, C., Bai, S., Zhang, J., Sun, X., Meng, A., and Chen, H. (2022). Understanding
recurrent pregnancy loss: recent advances on its etiology, clinical diagnosis, and
management. Med. Rev. 2 (6), 570–589. doi:10.1515/mr-2022-0030

Cheng, P. M., and Malhi, H. S. (2017). Transfer learning with convolutional neural
networks for classification of abdominal ultrasound images. J. Digit. Imaging 30 (2),
234–243. doi:10.1007/s10278-016-9929-2

Chhabra, M., and Kumar, R. (2024). A smart healthcare system based on classifier
DenseNet 121 model to detect multiple diseases (Singapore: Springer Nature Singapore).

Coulam, C., Bilal, M., Beaman, K., and Dambaeva, S. (2020). Decidualization score
identifies causes of recurrent implantation failure. Fertil. Steril. 113 (4), e14. doi:10.1016/
j.fertnstert.2020.02.036

Fjeldstad, J., Qi,W., Siddique, N., Mercuri, N., Krivoi, A., and Nayot, D. (2024). O-025
an artificial intelligence (AI) model non-invasively evaluates endometrial receptivity
from ultrasound images, surpassing endometrial thickness (EMT) in predicting
implantation. Hum. Reprod. 39 (Suppl. ment_1). doi:10.1093/humrep/deae108.025

Fournier, L., Costaridou, L., Bidaut, L., Michoux, N., Lecouvet, F. E., de Geus-Oei, L.-
F., et al. (2021). Incorporating radiomics into clinical trials: expert consensus endorsed
by the European Society of Radiology on considerations for data-driven compared to
biologically driven quantitative biomarkers. Eur. Radiol. 31 (8), 6001–6012. doi:10.
1007/s00330-020-07598-8

Goto, T., Goto, S., Ozawa, F., Yoshihara, H., Kitaori, T., Komura, M., et al. (2023). The
association between chronic deciduitis and recurrent pregnancy loss. J. Reprod.
Immunol. 156, 103824. doi:10.1016/j.jri.2023.103824

Han, S., Zhang, H., Karmaus, W., Roberts, G., and Arshad, H. (2017). Adjusting
background noise in cluster analyses of longitudinal data. Comput. Statistics and Data
Analysis 109, 93–104. doi:10.1016/j.csda.2016.11.009

Haouzi, D., Entezami, F., Vincens, C., Bringer-Deutsch, S., Monforte, M., and
Hamamah, S. (2014). Endometrial receptivity assessment and personalized patient
care management: a mean to optimize pregnancy rate. Fertil. Steril. 102 (3), e297. doi:10.
1016/j.fertnstert.2014.07.1009

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. Proceedings of the IEEE conference on computer vision and pattern
recognition. (IEEE).

Huang, W., Jin, Y., Jiang, L., and Liang, M. (2023). Radiomics optimizing the
evaluation of endometrial receptivity for women with unexplained recurrent
pregnancy loss. Front. Endocrinol. (Lausanne) 14, 1181058. doi:10.3389/fendo.2023.
1181058

Iglesias, L. L., Bellón, P. S., del Barrio, A. P., Fernández-Miranda, P. M., González, D.
R., Vega, J. A., et al. (2021). A primer on deep learning and convolutional neural
networks for clinicians. Insights into Imaging 12 (1), 117. doi:10.1186/s13244-021-
01052-z

Khan, M. S., Shaikh, A., and Ratnani, R. (2016). Ultrasonography and Doppler study
to predict uterine receptivity in infertile patients undergoing embryo transfer. J. Obstet.
Gynaecol. India 66 (Suppl. 1), 377–382. doi:10.1007/s13224-015-0742-5

Kim, J.-H. (2022). Improvement of inceptionv3 model classification performance
using chest x-ray images. J. Mech. Med. Biol. 22 (08), 2240032. doi:10.1142/
s0219519422400322

Krieg, S. A., Hong, Y., Soares, M. J., and Krieg, A. J. (2013). The histone demethylase
JMJD2B is associated with recurrent pregnancy loss and promotes decidualization of

Frontiers in Physiology frontiersin.org12

Yan et al. 10.3389/fphys.2024.1404418

https://doi.org/10.1609/aaai.v35i8.16826
https://doi.org/10.18502/ijrm.v21i3.13196
https://doi.org/10.1080/14767058.2020.1839877
https://doi.org/10.1080/14767058.2020.1839877
https://doi.org/10.1515/mr-2022-0030
https://doi.org/10.1007/s10278-016-9929-2
https://doi.org/10.1016/j.fertnstert.2020.02.036
https://doi.org/10.1016/j.fertnstert.2020.02.036
https://doi.org/10.1093/humrep/deae108.025
https://doi.org/10.1007/s00330-020-07598-8
https://doi.org/10.1007/s00330-020-07598-8
https://doi.org/10.1016/j.jri.2023.103824
https://doi.org/10.1016/j.csda.2016.11.009
https://doi.org/10.1016/j.fertnstert.2014.07.1009
https://doi.org/10.1016/j.fertnstert.2014.07.1009
https://doi.org/10.3389/fendo.2023.1181058
https://doi.org/10.3389/fendo.2023.1181058
https://doi.org/10.1186/s13244-021-01052-z
https://doi.org/10.1186/s13244-021-01052-z
https://doi.org/10.1007/s13224-015-0742-5
https://doi.org/10.1142/s0219519422400322
https://doi.org/10.1142/s0219519422400322
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1404418


endometrial stromal cells. Fertil. Steril. 100 (3), S306. doi:10.1016/j.fertnstert.2013.
07.997

Lessey, B. A. (2000). Endometrial receptivity and the window of implantation. Best
Pract. and Res. Clin. Obstetrics and Gynaecol. 14 (5), 775–788. doi:10.1053/beog.2000.
0118

Li, M., Zhu, X., Wang, L., Fu, H., Zhao, W., Zhou, C., et al. (2024). Evaluation of
endometrial receptivity by ultrasound elastography to predict pregnancy outcome is a
non-invasive and worthwhile method. Biotechnol. Genet. Eng. Rev. 40 (1), 284–298.
doi:10.1080/02648725.2023.2183585

Liang, X., He, J., He, L., Lin, Y., Li, Y., Cai, K., et al. (2023). An ultrasound-based deep
learning radiomic model combined with clinical data to predict clinical pregnancy after
frozen embryo transfer: a pilot cohort study. Reprod. Biomed. Online 47 (2), 103204.
doi:10.1016/j.rbmo.2023.03.015

Miravet-Valenciano, J. A., Rincon-Bertolin, A., Vilella, F., and Simon, C. (2015).
Understanding and improving endometrial receptivity. Curr. Opin. Obstet. Gynecol. 27
(3), 187–192. doi:10.1097/gco.0000000000000173

Nagaraju, M. S., and Rao, B. S. (2022). An outlook of medical image analysis via
transfer learning approaches. Trait. Du. Signal 39 (5), 1463–1474. doi:10.18280/ts.
390502

No RG-tG (2011). The investigation and treatment of couples with recurrent first-
trimester and second-trimester miscarriage. London, UK: RCOG, 1–18.

Oba, Y., Tezuka, T., Sanuki, M., andWagatsuma, Y. (2021). Interpretable prediction of
diabetes from tabular health screening records using an attentional neural network (IEEE
8th International Conference on Data Science and Advanced Analytics DSAA).

Panayides, A. S., Amini, A., Filipovic, N. D., Sharma, A., Tsaftaris, S. A., Young, A.,
et al. (2020). AI in medical imaging informatics: current challenges and future
directions. IEEE J. Biomed. Health Inf. 24 (7), 1837–1857. doi:10.1109/jbhi.2020.
2991043

Park, H. Y., Shim, W. H., Suh, C. H., Heo, H., Oh, H. W., Kim, J., et al. (2023).
Development and validation of an automatic classification algorithm for the diagnosis
of Alzheimer’s disease using a high-performance interpretable deep learning network.
Eur. Radiol. 33 (11), 7992–8001. doi:10.1007/s00330-023-09708-8

Patel, B. G., and Lessey, B. A. (2011). Clinical assessment and management of the
endometrium in recurrent early pregnancy loss. Semin. Reprod. Med. 29 (6), 491–506.
doi:10.1055/s-0031-1293203

Ricardo, H. A. S., Suarez, J., Nicolas, L., MarleneRamirez, L. Z., and Alkon, T. (2024).
Artificial intelligence model utilizing endometrial analysis to contribute as a predictor of
assisted reproductive technology success. J. IVF-Worldwide. 2 (2), 1–8. doi:10.46989/
001c.115893

Ritahani, I. A., Syed Qamrun, N., Shaharuddin, S. A., Masni, S. I., and Suharudin
Amin, S. A. (2024). Utilising VGG-16 of convolutional neural network for medical
image classification. Int. J. Perceptive Cognitive Comput. 10 (1), 113–118. doi:10.31436/
ijpcc.v10i1.460

Sharfi, Y., Dzhemlikhanova, L. K., Niauri, D. A., Shilnikova, E. M., Fedorova, I. D.,
Kogan, I. U., et al. (2015). Endometrial receptivity evaluation in IVF cycles. Gynecol.
Endocrinol. 31 (Suppl. 1), 74–78. doi:10.3109/09513590.2015.1086514

Sharma, V., and Singh, N. (2021). Deep convolutional neural network with ResNet-
50 learning algorithm for copy-move forgery detection. 2021 7th international conference
on signal processing and communication (ICSC).

Sugiura-Ogasawara, M., Ozaki, Y., Kitaori, T., Suzumori, N., Obayashi, S., and Suzuki, S.
(2009). Live birth rate according to maternal age and previous number of recurrent
miscarriages. Am. J. Reprod. Immunol. 62 (5), 314–319. doi:10.1111/j.1600-0897.2009.
00741.x

Teggo, R. P. L., Bender Atik, R., Christiansen, O. B., Elson, J., Kolte, A. M., Lewis, S.,
et al. (2023). ESHRE guideline: recurrent pregnancy loss: an update in 2022. Hum.
Reprod. Open 2023 (1), hoad002. doi:10.1093/hropen/hoad002

Teklenburg, G., Salker, M., Heijnen, C., Macklon, N. S., and Brosens, J. J. (2010). The
molecular basis of recurrent pregnancy loss: impaired natural embryo selection. Mol.
Hum. Reprod. 16 (12), 886–895. doi:10.1093/molehr/gaq079

Turesheva, A., Aimagambetova, G., Ukybassova, T., Marat, A., Kanabekova, P.,
Kaldygulova, L., et al. (2023). Recurrent pregnancy loss etiology, risk factors,
diagnosis, and management. Fresh look into a full box. J. Clin. Med. 12 (12), 4074.
doi:10.3390/jcm12124074

Wang, X., Bao, N., Xin, X., Tan, J., Li, H., Zhou, S., et al. (2022). Automatic evaluation
of endometrial receptivity in three-dimensional transvaginal ultrasound images based
on 3D U-Net segmentation. Quant. Imaging Med. Surg. 12 (8), 4095–4108. doi:10.
21037/qims-21-1155

Wang, Z., and Sun, J. (2022). Transtab: learning transferable tabular transformers across
tables. Adv. Neural Inf. Process. Syst. 35, 2902–2915. doi:10.48550/arXiv.2205.09328

Wilcox, A. J., Baird, D. D., and Weinberg, C. R. (1999). Time of implantation of the
conceptus and loss of pregnancy. N. Engl. J. Med. 340 (23), 1796–1799. doi:10.1056/
nejm199906103402304

Xu, W., Fu, Y.-L., and Zhu, D. (2023). ResNet and its application to medical image
processing: research progress and challenges. Comput. Methods Programs Biomed. 240,
107660. doi:10.1016/j.cmpb.2023.107660

Yingze, S., Yingxu, S., Xin, Z., Jie, Z., and Degang, Y. (2024). Comparative analysis of
the TabNet algorithm and traditional machine learning algorithms for landslide
susceptibility assessment in the Wanzhou Region of China. Nat. Hazards 120 (8),
7627–7652. doi:10.1007/s11069-024-06521-4

Youssef, A., van der Hoorn, M.-L. P., van Lith, J. M. M., van Eekelen, R., du Fossé, N.
A., and Lashley, L. (2022). Prognosis in unexplained recurrent pregnancy loss: a
systematic review and quality assessment of current clinical prediction models. F&S
Rev. 3 (2), 136–145. doi:10.1016/j.xfnr.2022.02.002

Yu, N., Kwak-Kim, J., and Bao, S. (2023). Unexplained recurrent pregnancy loss:
novel causes and advanced treatment. J. Reproductive Immunol. 155, 103785. doi:10.
1016/j.jri.2022.103785

Frontiers in Physiology frontiersin.org13

Yan et al. 10.3389/fphys.2024.1404418

https://doi.org/10.1016/j.fertnstert.2013.07.997
https://doi.org/10.1016/j.fertnstert.2013.07.997
https://doi.org/10.1053/beog.2000.0118
https://doi.org/10.1053/beog.2000.0118
https://doi.org/10.1080/02648725.2023.2183585
https://doi.org/10.1016/j.rbmo.2023.03.015
https://doi.org/10.1097/gco.0000000000000173
https://doi.org/10.18280/ts.390502
https://doi.org/10.18280/ts.390502
https://doi.org/10.1109/jbhi.2020.2991043
https://doi.org/10.1109/jbhi.2020.2991043
https://doi.org/10.1007/s00330-023-09708-8
https://doi.org/10.1055/s-0031-1293203
https://doi.org/10.46989/001c.115893
https://doi.org/10.46989/001c.115893
https://doi.org/10.31436/ijpcc.v10i1.460
https://doi.org/10.31436/ijpcc.v10i1.460
https://doi.org/10.3109/09513590.2015.1086514
https://doi.org/10.1111/j.1600-0897.2009.00741.x
https://doi.org/10.1111/j.1600-0897.2009.00741.x
https://doi.org/10.1093/hropen/hoad002
https://doi.org/10.1093/molehr/gaq079
https://doi.org/10.3390/jcm12124074
https://doi.org/10.21037/qims-21-1155
https://doi.org/10.21037/qims-21-1155
https://doi.org/10.48550/arXiv.2205.09328
https://doi.org/10.1056/nejm199906103402304
https://doi.org/10.1056/nejm199906103402304
https://doi.org/10.1016/j.cmpb.2023.107660
https://doi.org/10.1007/s11069-024-06521-4
https://doi.org/10.1016/j.xfnr.2022.02.002
https://doi.org/10.1016/j.jri.2022.103785
https://doi.org/10.1016/j.jri.2022.103785
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1404418

	Automated assessment of endometrial receptivity for screening recurrent pregnancy loss risk using deep learning-enhanced ul ...
	Introduction
	Material and methods
	Participants
	Ultrasound image acquisition
	Tabular database establishment
	Data preparation prior to DL model development
	Image pre-processing and data augmentation
	DL prediction model
	Evaluation and comparison of predictive models
	Statistical analysis

	Result
	Participant clinical characteristics
	Development of predictive models
	Model comparison and ablation study results

	Discussion
	AI-based ultrasound models for ER assessment
	Justification for model selection in RPL risk prediction
	Advantages of DL models in RPL prediction
	Contributions of the proposed model
	Limitation

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


