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Introduction: Sex-specific patterns in respiratory conditions, such as asthma,
COPD, cystic fibrosis, obstructive sleep apnea, and idiopathic pulmonary fibrosis,
have been previously documented. Animal models of acute lung injury (ALI) have
offered insights into sex differences, with male mice exhibiting distinct lung
edema and vascular leakage compared to female mice. Our lab has provided
evidence that the chemoreflex is sensitized in male rats during the recovery from
bleomycin-induced ALI, but whether sex-based chemoreflex changes occur
post-ALI is not known. To bridge this gap, the current study employed the
bleomycin-induced ALI animal model to investigate sex-based differences in
chemoreflex activation during the recovery from ALI.

Methods: ALI was induced using a single intra-tracheal instillation of bleomycin
(bleo, 2.5 mg/Kg) (day 1). Resting respiratory frequency (fR) was measured at 1-
2 days pre-bleo, day 7 (D7) post-bleo, and 1 month (1 mth) post-bleo. The
chemoreflex responses to hypoxia (10% O2, 0% CO2) and normoxic-hypercapnia
(21%O2, 5%CO2) weremeasured before bleo administration (pre-bleo) and 1mth
post-bleo using whole-body plethysmography. The apnea-hypopnea Index
(AHI), post-sigh apneas, and sighs were measured at each time point.

Results: There were no significant differences in resting fR betweenmale and female
rats at the pre-bleo time point or in the increase in resting fR at D7 post-bleo. At 1mth
post-bleo, the resting fR was partially restored in both sexes but the recovery towards
normal ranges of resting fR was significantly lower in male rats. The AHI, post-sigh
apneas, and sighs were not different between male and female rats pre-bleo and
1mth post-bleo. However, at D7 post-bleo, themale rats exhibited a higher AHI than
female rats. Bothmale and female rats exhibited a sensitized chemoreflex in response
to hypoxia and normoxic-hypercapnia with no significant differences between sexes.

Conclusion: A sex difference in resting ventilatory parameters occurs post ALI
with a prolonged increase in resting fR and larger AHI in male rats. On the other
hand, we did not find any sex differences in the chemoreflex sensitization that
occurs at 1 mth post-bleo. This work contributes to a better understanding of
sex-based variations in lung disorders.
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1 Introduction

In studies involving vertebrate animals and humans, the
consideration of “sex” as a critical biological variable is essential
throughout the design, analysis, and reporting of research (Lee,
2018). Sex-related differences in lung development are apparent
throughout life, affected by factors like variations in lung growth and
maturity, as well as the influence of sex hormones (Carey et al., 2007;
Silveyra et al., 2021). Pulmonary diseases such as respiratory distress
syndrome, bronchiolitis, pneumonia, chronic obstructive
pulmonary disease (COPD), obstructive sleep apnea (OSA), and
the SARS-CoV-2 epidemic have reported sex differences (Silveyra
et al., 2021).

Acute lung injury (ALI) and its severe form, acute respiratory
distress syndrome (ARDS) caused by the disruption of the normal
capillary endothelial barrier leads to impacting ventilatory control
(Young et al., 2019). Acute respiratory failure, responsible for 10% of
ICU admissions with significant mortality and morbidity, affects
approximately 200,000 new cases annually in the US alone (Mowery
et al., 2020). Epidemiological research on sex differences in all-cause
ARDS presents contradictory findings, with some studies indicating
a substantial correlation between ARDS incidence, mortality, and
sex (Moss andMannino, 2002; Agarwal et al., 2006; Phua et al., 2009;
Lemos-Filho et al., 2013; Chen et al., 2015). Structural and functional
variations in lung and airway development, influenced by genetic,
epigenetic, hormonal, and environmental factors, contribute to these
disparities (Silveyra et al., 2021). Notably, pre-term birth in males is
associated with a greater disadvantage (Bancalari and Jain, 2019).
Sex hormones, particularly testosterone and estrogen, play a role in
influencing immune-related cells, macrophage polarization, airway
smooth muscle cells, and inflammation (Becerra-Díaz et al., 2018).
Clinical studies show that male infants are more susceptible to lower
respiratory tract infections, bronchiolitis, respiratory distress
syndrome, and bronchopulmonary dysplasia (Liptzin et al.,
2015). In contrast, male children are more prone to asthma,
while women exhibit a higher exacerbation risk in chronic
obstructive pulmonary disease (COPD) and a lower likelihood of
obstructive sleep apnea (OSA) compared to men (Han et al., 2018).
Sex differences have also been studied in different models of ALI by
several groups. Most importantly, all those studies focused on lung
pathology post-ALI. A potential sex difference in the neural control
of breathing post-ALI has not been investigated.

Carotid bodies (CBs), peripheral chemoreceptors found at the
common carotid artery bifurcation, are stimulated by hypoxemia
brought on by ALI. As a basic defensive response to return blood gas
concentrations to normal, these chemoreceptors detect changes in
pH and blood gas levels. The enhancement of sympathetic drive by
acute or chronic CB activation is a well-established phenomenon.
Excessive sympathetic output can cause cardiac arrhythmias, cardio-
renal syndrome, metabolic syndrome, Type 2 diabetes, and impaired
cardiac activity (Mark, 1995; Marcus et al., 2014; Moreira et al., 2015;
Li, 2022). Previously, our laboratory has provided evidence of
increased chemosensitivity during recovery from ALI in male rats
(Kamra et al., 2022). Nevertheless, there remains a knowledge gap
regarding the comparisons of male vs. female chemoreflex changes
during the recovery from ALI. The current study utilizes a
bleomycin-induced ALI animal model to investigate sex-based
differences in chemoreflex activation under ALI conditions.

2 Methods

2.1 Ethical approval

Animals were housed in a temperature-controlled environment
(22°C–25°C) with a 12 h light-dark cycle and ad libitum access to
food and water, by standards set by the National Institutes of Health
Guidelines for the Care and Use of Laboratory Animals. All
experimental protocols were approved by the Institutional
Animal Care and Use Committee (IACUC) of the University of
Nebraska Medical Center (protocol ID no. 17-006-03 FC).

2.2 Animals

Eighteen adult (eight male and ten female) Sprague-Dawley rats
(2 - 3 months old) were used for these experiments. They were
allowed to acclimate for 3 days to their new environment before the
experiment. All animal experimentation (collection of ventilatory
parameters during rest and hypoxic/hypercapnic gas exposure) was
performed during the day (9:00–16:00 h). Delivery of bleomycin
sulfate (bleo) was performed within the Department of Comparative
Medicine. At the end of the experimental protocol, all animals were
humanely euthanized with an overdose of pentobarbital sodium
(150 mg/kg, IV). Euthanasia was confirmed by the removal of vital
organs. An experimental timeline is shown in Figure 1.

2.3 Drugs and chemicals

Bleo was purchased from Enzo Life Sciences (New York,
United States). Bleo was dissolved in saline for intra-tracheal
administration. This procedure was performed within the
Department of Comparative Medicine.

2.4 Rat model of lung injury

Rats were randomized into two experimental groups and
evaluated at three time points- 1-2 days before instillation (pre-
bleo), day 7 (D7) post-bleo, and 1 month (1 mth) post-bleo
instillation as follows: male bleo-treated rats (n = 8) and female
bleo-treated rats (n = 10). Bleo (2.5 mg/kg) was instilled on day
0 intratracheally under 2% - 3% isoflurane anesthesia.

2.5 Breathing and ventilatory
chemoreflex function

Unrestrained whole-body plethysmography was utilized to
measure ventilatory parameters-respiratory rate (fR), tidal
volume (Vt) and minute ventilation (V_E) in conscious rats by
using signals from a differential-pressure transducer (DLP 2.5,
Harvard Apparatus), amplified, and connected to a PC via an
acquisition system (PowerLab 35 Series) managed by LabChart
(v8.1.5) software (ADInstruments, Colorado Springs,
United States). Rats were acclimated to the plethysmograph
chamber for 1 h each for two consecutive days before
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recordings. Respiratory parameters were not recorded during the
acclimatization sessions. The plethysmography chambers used
for this study were custom-made (Midwest Plastics Inc.,
Nebraska, United States) and were 10, 10.5, and 20 cm in
height, width, and length, respectively. The volume channel
(i.e., flow integration) was calibrated by pushing 5 mL of air
using a syringe before the start of the recording. During
recordings, a constant flow of gas at 3 L/min was maintained
to avoid an increase in humidity, temperature, and CO2 levels
using a manually operated flow meter (Precision Medical,
Northampton, PA, United States). The body weight (in grams)
of rats was recorded before each experiment. In the resting state,
rats were exposed to normoxia (21% O2, 0% CO2) for baseline
measurements followed by two different gas challenges-hypoxia
(10% O2, 0% CO2) and normoxic hypercapnia (21% O2, 5% CO2)
balanced by N2. The order of the gas challenge was randomized
and was maintained for 5 minutes. The last 1-min-long segment
without any artifacts was used for analysis. A normoxic exposure
of a minimum of 10 min or more was used in between challenges.
All resting ventilatory parameters considered for analysis were
recorded when the rats were awake and stationary (no activity-
related events were included in the analysis in the LabChart8 raw
data file). V_E was calculated as the product of fR and Vt. Vt and V_E
were normalized to body weight. All data values were extracted
from LabChart8 raw data files. A 30-min recording without
artifacts was recorded for all rats while they breathed room
air. This was used to measure all resting ventilatory
parameters and to manually extract apneas, hypopneas, sighs,
and post-sigh apneas from LabChart 8 raw data files. Apneas were
defined as the cessation of breathing for at least three respiratory
cycles, as determined by the respiratory rate for the prior 10 s;
hypopneas were defined as reductions in breath amplitude 50% of

the average cycle amplitude of the preceding 10 s of regular
breathing; post-sigh apneas were defined as the cessation of
breathing for at least three respiratory cycles immediately after
a sigh. Apneas and hypopneas were expressed as Apnea-
Hypopnea Index (AHI, events/hour). Sighs and post-sigh
apneas were also expressed as events/hour.

2.6 Statistical analysis

Data analysis in text, tables, and figures are presented as mean ±
SD. Statistical evaluation was analyzed using GraphPad Prism
(GraphPad Software, San Diego, CA. Version 8). For the
chemoreflex comparisons, two-way ANOVA with Bonferroni
corrections (male vs. Female and Pre-Bleo vs. Post-Bleo) was
used with p ≤ 0.05 being statistically significant. Body weight and
baseline respiratory parameters at multiple time points post-Bleo
were compared by using two-way Repeated Measurement (RM)
ANOVA with p ≤ 0.05 being statistically significant.

3 Results

3.1 Effect of bleomycin on body weight in
male and female rats post-ALI

Body weights were measured in all rats at pre-bleo
administration and post-bleo administration at D7 and 1 mth.
Body weight did not change in either male or female rates during
the first 7 days post-bleo (Table 1). At 1-mth post-bleo, male and
female rats significantly increased body weight by 99 ± 74 g
(p < 0.0001) and 56 ± 24 g, p < 0.0001), respectively (Table 1).

FIGURE 1
Timeline showing the experimental design.

TABLE 1 Mean body weight and mean change in body weight (in grams) for male and female dose bleo rats.

Body weight (grams)

W0 pre-bleo Day 7 post-bleo 1 mth post-bleo

Male rats (n = 8) 410 ± 59 394 ± 63 510 ± 47 **

Female rats (n = 10) 187 ± 27 175 ± 17 243 ± 19 **

Values are mean ± SD; Bleo indicates bleomycin. **p < 0.0001 vs. W0 (Week 0) pre-bleo.
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3.2 Sex-based differences in baseline
respiratory parameters between male and
female rats post-ALI

As noted in Figures 2A, C, E, G, male and female rats showed a
steady normal resting fR pattern pre-bleo with average fR similar
between groups (male rats = 95 ± 15 bpm; female rats = 86 ± 11 bpm
(Table 2). However, as expected, consistent with our previously
published data, both male (280 ± 70 bpm, p < 0.0001) and female
(240 ± 43 bpm, p < 0.0001) rats exhibited a significant increase in
resting fR post-bleo treatment at D7 after receiving bleo compared to
the pre-bleo time point (Table 2). This increase in fR was partially
restored at 1 mth post-bleo treatment in both groups (male = 141 ±
44 bpm (p = 0.0004, D7 vs. 1 mth post-bleo) and female = 104 ±
23 bpm (p < 0.0001, D7 vs. 1 mth post-bleo) (Table 2; Figures 2B, D,
F, H). The comparison of fR between male and female rats at 1 mth
post-bleo time point was significantly different (p = 0.03) with male

rats having a higher resting fR than female rats (male vs. female:
141 ± 44 bpm vs. 104 ± 23 bpm). In male rats, the Vt and VE were
significant differences in D7 post-bleo when compared to pre-bleo
time points. The female group also showed no significant differences
in Vt, however, VE was significantly increased at D7 post-bleo and
1mth-post-bleo when compared to pre-bleo (p < 0.0001, female rats:
pre-bleo vs. D7 post-bleo).

3.3 Sex-based differences in the occurrence
of apneic events between male and female
rats post ALI

The 30-minute-raw data recorded during normoxic gas
exposure were utilized to manually extract apneas from male and
female rats at three time points-pre-bleo, D7 post-bleo, and 1 mth
post-bleo. Male and female rats showed a significant difference

FIGURE 2
Representative ventilator tracings at normoxia, 10% hypoxia, and 5% normoxic-hypercapnia were obtained in a male and a female rat.
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(p = 0.02) in the occurrence of apneas throughout the experimental
timeline. The changes pre- and post-bleo were also seen to be
significantly different (p = 0.002) (Figure 3A).

The post-sigh apneas were significantly different between male
vs. female rats (p = 0.02). These differences however were not seen to
be affected by bleo treatment (pre-vs. post-bleo, p = 0.08)
(Figure 3B). The occurrence of sighs did not change significantly
at all three time points for either sex and for pre-vs. post-bleo,
revealing no sex differences for sighs during the acute and recovery
phase of ALI (Figure 3C).

3.4 Sex-based differences in the
chemoreflex sensitivity between male and
female rats during the recovery from ALI

The chemoreflex responses to 10% hypoxia and 5% normoxic-
hypercapnia were assessed by measuring the absolute difference
between 21% O2/0% CO2 and 10% O2/0% CO2 or 21% O2/5% CO2-
induced responses. At pre-bleo, both male and female rats exhibited
similar increases in fR and VE in response to 10% hypoxia (Figures
4A, C, E). At 1 mth post-bleo, there was a significant increase in
chemosensitivity (Figures 4B, F) with no differences in chemoreflex
activation between male vs. female groups of rats (Figures 4B, F).
The changes in Vt in response to 10% hypoxia were not statistically
significant for either male vs. female groups of rats (Figures 4C, D).

Similarly, in response to 5% normoxic-hypercapnia, both male
and female rats showed similar changes in fR and VE at pre-bleo time
points (Figures 5A, E). Like 10% hypoxia, both groups showed a
significant increase in chemoreflex activation at 1 mth post-bleo
with no difference between sexes (Figures 5B, F). The changes in Vt

in response to 5% normoxic-hypercapnia were not statistically
significant for either male vs. female groups of rats (Figures 5C, D).

4 Discussion

In this study, we examined the resting breathing parameters (fR,
AHI, sighs, post sigh apneas) during both the acute phase (D7) and
recovery phase (1mth) of ALI, and the chemoreflex sensitization during

the recovery from ALI in male and female rats. The key findings of this
study are summarized as follows: 1) There were no significant
differences in the resting breathing parameters (fR, AHI, sighs, post
sigh apneas) between male and female rats. At the D7 post-bleo, resting
fR was significantly increased in bothmale and female rats but tended to
increase by a larger degree inmale rats. At 1mth post-bleo, the resting fR
was partially restored in both sexes but the recovery towards normal
ranges of resting fR was significantly lower inmale rats. At D7 post-bleo,
the males exhibited significantly more events/hour of AHI compared to
females. 2) At the pre-bleo time point, both male and female groups
showed similar chemoreflex responses in fR to 10% hypoxia and 5%
normoxic-hypercapnia. During recovery from ALI at 1 mth post-bleo,
the chemoreflex sensitivity in response to hypoxia and normoxic-
hypercapnia did not exhibit sex-based differences.

Animal models, such as the two-hit model involving acid
instillation followed by overventilation, have provided histological
evidence of sex differences in ALI, with male mice exhibiting
distinct lung edema and vascular leakage compared to female mice
(Erfinanda et al., 2021). Another study observed higher levels of airway
inflammation and hyperresponsiveness in male mice (Carey et al.,
2007). Lingappan et al. investigated sex-specific differences in lung
injury induced by hyperoxic exposure in neonatemice (Lingappan et al.,
2016). They found that male neonate mice exhibited a greater cytokine
response and pulmonary angiogenesis arrest compared to females
(Lingappan et al., 2016). They observed similar patterns in adult
male mice compared to females (Lingappan et al., 2016). On the
other hand, several other studies from LPS-induced ALI models
showed no significant sex difference in lung pathology. For instance,
Nguyen et al. reported no differences in pulmonary injury and
abnormal lung development between male and female mice exposed
to early postnatal systemic LPS challenge (Nguyen et al., 2019). They
also reported findings that suggest a similar innate response to early
neonatal LPS exposure and the resulting pulmonary sequelae in male
and female mice (Nguyen et al., 2019). Another study demonstrated no
sex-based differences in LPS-induced TLR4 expression in the adult rat
lung (Du et al., 2005).

A previous study from our lab using a bleo-induced ALI adult
rat model demonstrated a significant increase in resting fR in male
ALI rats at D7 post-bleo administration (Kamra et al., 2022). The
present study demonstrated no significant difference in this

TABLE 2 Mean resting ventilatory parameters for male and female bleo rats.

Male rats (n = 8) Female rats (n = 10)

Resting fR (BPM) Pre-bleo 95 ± 15 86 ± 11

D7 post-bleo 280 ± 70 *** 240 ± 43 ***

I-mth post-bleo 141 ± 44 $ * 104 ± 23

Resting Vt (mL/Kg) Pre-bleo 0.45 ± 0.15 0.63 ± 0.27

D7 post-bleo 0.31 ± 0.1 $$ ** 0.57 ± 0.18

I-mth post-bleo 0.38 ± 0.05 $$$ 0.75 ± 0.19

Resting VE (mL/min/Kg) Pre-bleo 40 ± 9.8 50 ± 27.6

D7 post-bleo 85 ± 27 $$ ** 143 ± 52 ***

I-mth post-bleo 57 ± 20.76 74 ± 24 *

Values are mean ± SD; bleo indicates bleomycin. $ (all time points vs. pre-bleo); * (Male vs. Female rats).
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increase in resting fR at D7 post-bleo between male and female rats.
However, a trend of comparatively higher resting fR was seen in
adult male ALI rats at D7 post-bleo compared to female ALI rats.
More importantly, the recovery from increased resting fR in male
rats at 1 mth post-bleo was significantly slower than in female rats.
This may be due to the protective effects of female sex hormones
(Speyer et al., 2005; Carey et al., 2007; Erfinanda et al., 2021). It is
known that female neonate mice demonstrated a better
antioxidant defense mechanism against hyperoxia-induced
reactive oxygen species (ROS) (Vento et al., 2009; Tondreau
et al., 2012). Estrogen’s antioxidant, vasodilatory, and anti-
inflammatory properties contribute to a lower risk of
cardiovascular diseases in females (Xiang et al., 2021).

In addition, we also documented a significant increase in the
occurrence of apneas and hypopneas in male ALI rats at the
D7 post-bleo time point. This increase was significantly increased
in male rats at this time point compared to female bleo rats that
also exhibited a trend towards higher apneic incidences. The
post-sigh apneas were significantly higher at D7 post-bleo in
female rats while the male rats exhibited a trend to show an
increase. Consistent with our AHI data, clinical evidence also
suggests that obstructive sleep apnea is documented to be higher
in males than in females (Lin et al., 2008). In our study, we see this
significant increase in apneic events at the D7 post-bleo time
point as lung injury is at its peak during this period, after the first
and only insult of bleo (Kamra et al., 2022). It is known that the

FIGURE 3
Effects of sex, bleomycin (pre-vs. post-bleo) and the interaction between the sex and treatment for (A) Apnea-hypopnea index (AHI), (B) Post-sigh
apnea occurrence, and (C) Sigh occurrence in male (n = 8) and female (n = 8) rats. Two-way ANOVA, repeated measures, Values are mean ± SD.
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occurrence of apneas and hypopneas are among many factors
associated with increased sympathetic nerve activity,
inflammation, and intermittent hypoxia, and may be caused
by respiratory control instability (Javaheri et al., 2017).

Previously, we reported evidence of enhanced chemoreflex
response to hypoxia and normoxic-hypercapnia in the recovery

phase (1 mth post-bleo) in male ALI rats (Kamra et al., 2022).
However, a potential sex difference in chemoreflex sensitivity during
the recovery of ALI was not examined. The data from the present
study in male and female rats corroborate the findings from our
previous study in male ALI rats of chemoreflex sensitization with
recovery from ALI. We now show no statistically significant

FIGURE 4
Effect of bleomycin on ventilatory parameters in male (n = 8) and female (n = 10) rats in response to chemoreflex activation with 10% O2/0% CO2.
Two-way ANOVA, Values are mean ± SD: (A) Respiratory rate (fR) at normoxia vs. hypoxia; (B) Delta fR (Delta is the absolute difference between the
response at normoxia and hypoxia); (C) Tidal volume (Vt) at normoxia vs. hypoxia; (D) Delta Vt; (E) Minute ventilation (V_E) at normoxia vs. hypoxia; (F)
Delta V_E.
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differences in chemoreflex sensitization in male vs. female rats
during the recovery of ALI.

Supportive evidence of no sex differences in chemosensitivity was
presented by Usselman et al. who examined the effect of sex on
chemoreflex regulation of muscle sympathetic nerve activity in

young healthy men and women who were not using any form of
hormonal contraception (Usselman et al., 2015). They observed similar
sympathetic responses to chemoreflex activation in men and women
(Usselman et al., 2015). Interestingly, in rats exposed to CIH, another
study showed there are sex differences in respiratory-related

FIGURE 5
Effect of bleomycin on ventilatory parameters in male (n = 8) and female (n = 10) rats in response to 21% O2/5% CO2. Two-way ANOVA, Values are
mean ± SD: (A) Respiratory rate (fR) at normoxia vs. normoxic-hypercapnia; (B) Delta fR (Delta is the absolute difference between the response at
normoxia and normoxic-hypercapnia); (C) Tidal volume (Vt) at normoxia vs. normoxic-hypercapnia; (D)Delta Vt; (E)Minute ventilation (V_E) at normoxia vs.
normoxic-hypercapnia; (F) Delta V_E.
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sympathetic nerve discharge that characterize differences in the
respiratory modulation of sympathetic activity after CIH (Souza
et al., 2018).

Independent of sex hormones, these data in juvenile rats (Souza
et al., 2018) demonstrate sexual dimorphism in the reconfiguration of
respiratory and pre-sympathetic network interactions after CIH
(Souza et al., 2018). It is interesting to note that in the current
study, at 1 mth post-bleo, the recovery of resting fR was
significantly faster in female bleo rats than in male bleo rats. The
generation of resting fR is controlled both by intrinsic respiratory drive
and thoracic neural receptors. It is possible that in the case of female
bleo-rats, the female sex hormone exhibited protective effects in the
reflexes controlling the resting fR generation (Behan et al., 2003; Zhang
et al., 2020). However, at the same time point (1 mth post-bleo), we
note that the chemoreflex activation in response to both hypoxia and
normoxic-hypercapnia was not different between the sexes. The
peripheral and central chemoreceptors contribute to the integrated
receptor input in the pons and medulla to modify the generation of
rhythmic breathing during non-normoxic conditions. The effect of
sex hormones on these chemoreceptors and whether estrogen has any
protective effects on the respiratory rhythm generator is not well
understood. It is noteworthy that sex-based differences in chemoreflex
were not measured at the D7 post-bleo timepoint in the current study.
According to our earlier research, male rats withmoderate ALI tend to
exhibit a significantly blunted chemoreflex response to hypoxia or
normoxic-hypercapnia at this timepoint, whereas those with severe
ALI generally have a more sensitive chemoreflex response (Kamra
et al., 2022). The reasons for this disparity in chemoreflex sensitivity
between male rats with moderate and severe ALI at D7—blunted
versus sensitized—remain unclear. However, we observed that during
the ALI recovery period, or 1-month post-ALI, both moderate and
severe ALI rats developed a sensitized chemoreflex. Given that both
moderate and severe ALI rats showed consistent chemoreflex
sensitization at this chronic time window, we chose to focus on
the recovery period in the current study due to the complex changes in
chemoreflex sensitivity between these groups at the D7 post-
ALI timepoint.

5 Conclusion

In conclusion, our study highlighted noteworthy sex differences
in terms of resting fR, with a pronounced increase observed in males
at the 1 mth post-bleo time point. Moreover, sex-specific variations
were identified in acute AHI (at the D7 post-bleo), emphasizing the
importance of sex as a determinant in respiratory responses.
Interestingly, the chemoreflex response exhibited consistency
across sexes during both pre-bleo and recovery from ALI (1-mth
post-bleo). These findings point to a need for a broader
understanding of sex-based variations in lung disorders and
underscore the importance of considering sex as a crucial factor
in respiratory research. Further exploration of these mechanisms is
warranted to advance our knowledge and refine therapeutic
strategies tailored to the unique aspects of male and female
respiratory physiology.
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