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Background: Infections and seizures are some of themost common complications
in stroke survivors. Infections are themost common risk factor for seizures and stroke
survivors that experience an infection are at greater risk of experiencing seizures. A
predictive model to determine which stroke survivors are at the greatest risk for a
seizure after an infection can be used to help providers focus on prevention of
seizures in higher risk residents that experience an infection.

Methods: A predictivemodel was generated from a retrospective study of the Long-
Term Care Minimum Data Set (MDS) 3.0 (2014–2018, n = 262,301). Techniques
included three data balancing methods (SMOTE for up sampling, ENN for down
sampling, and SMOTEENN for up and down sampling) and three feature selection
methods (LASSO, Recursive Feature Elimination, and Principal Component Analysis).
One balancing and one feature selection technique was applied, and the resulting
dataset was then trained on four machine learning models (Logistic Regression,
Random Forest, XGBoost, and Neural Network). Model performance was evaluated
with AUC and accuracy, and interpretation used SHapley Additive exPlanations.

Results:Using data balancing methods improved the prediction performances of
the machine learning models, but feature selection did not remove any features
and did not affect performance. With all models having a high accuracy (76.5%–
99.9%), interpretation on all four models yielded the most holistic view. SHAP
values indicated that therapy (speech, physical, occupational, and respiratory),
independence (activities of daily living for walking, mobility, eating, dressing, and
toilet use), and mood (severity score, anti-anxiety medications, antidepressants,
and antipsychotics) features contributed themost. Meaning, stroke survivors who
received fewer therapy hours, were less independent, had a worse overall mood
were at a greater risk of having a seizure after an infection.

Conclusion: The development of a tool to predict seizure following an infection
in stroke survivors can be interpreted by providers to guide treatment and prevent
complications long term. This promotes individualized treatment plans that can
increase the quality of resident care.
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1 Introduction

For the past decade, stroke has ranked in the top five leading
causes of death in the United States (US) (Ahmad and Anderson,
2021; Heron, 2021; Shiels et al., 2022). Stroke related deaths account
for 4.7% of deaths across all age groups and 6.1% of deaths in aging
populations classified as age 65 and older (Shiels et al., 2022).
However, not all strokes are fatal and 60% of ischemic stroke
patients and 38% of hemorrhage stroke patients survive the first
year (Smajlović et al., 2006). Patients that survive often face serious
complications or disabilities. In fact, stroke is the leading cause of
serious long-term disability in the United States and each year
accounts for about $56.5 billion dollars (CDC, 2023).

Within the last few years, the number of stroke related deaths
has been decreasing (Chohan et al., 2019). With this increased
survival rate, there has been an increase in the number of patients
with complications. The major complications include recurrent
stroke (9% of patients), epileptic seizure (3%), urinary tract
infection (24%), chest infection (22%), other infections (19%),
falls (25%), shoulder pain (9%), other pain (34%), depression
(16%), anxiety (14%), emotionalism (12%), and confusion (56%)
(Langhorne et al., 2000). By focusing on the prevention of these
complications, the long-term survival rate and quality of life for
stroke survivors can be improved.

It has been well documented that infections are a leading risk
factor for seizures and epilepsy (Vezzani et al., 2015). However, there
has not been extensive research into how infections impact seizure
risk in stroke survivors. Stroke survivors are especially prone to both
bacterial and viral infections, and having these infections may
consequently increase their seizure risk (Langhorne et al., 2000).
Having frequent infections and seizures could severely postpone the
patient’s recovery process and possibly result in death. Exploring
this coupling of complications could help prevent adverse effects by
placing a stronger emphasis on limiting infection and preventing
seizure in patients who have already had an infection.

To help prevent infection and subsequent seizure, focusing on
the patient’s recovery through their rehabilitation plan is a
promising pathway. When a stroke survivor is discharged from
the hospital or other treatment facilities to a skilled nursing facility
(SNF), they will begin rehabilitation following a set plan (Bindawas
and Vennu, 2016). The effectiveness of this set plan at the SNF relies
heavily on the team of professionals that goes into making it (Lenze
et al., 2012). In fact, it has been shown that rehabilitation plans made
by a group of professionals are more effective than those made by a
single professional (Graham, 2013). In addition, if the team takes the
time to specialize the plan, it has been shown that the patient will
have a faster recovery rate and yield better functional outcomes
(Bindawas and Vennu, 2016). Other studies have also shown that
specialized plans yield greater participant engagement with
activities being completed at higher intensities (Lenze et al.,
2012). These specialized rehabilitation plans are typically
variations of a standardized version and vary depending on
the patient’s severity of complications and response to the
therapy (Bernhardt et al., 2016). However, plans are adjusted
by healthcare professionals using intuition rather than numerical
feedback, which leads to plans that fail to help patients reach their
recovery goal (Levinson, 2013). If the plans were individualized
and a patient’s response to changes in the plan could be measured

with concrete numerical evidence, then the outcome of recovery
could improve for stroke survivors.

Additionally, it has been shown that stroke survivors at nursing
facilities receive fewer hours of rehabilitation compared to hospital
settings (Koopmans et al., 2010). This is typically a result of the
reduction in staffing and intensity of care, but receiving more
therapy hours has been associated with increased independence
(Jette et al., 2005), greater likelihood of discharge from SNF to
community (Jette et al., 2004; Jung et al., 2016), and greater
functional improvements (Chen et al., 2002). This means that
residents at SNFs could benefit from an increase in therapy
hours as part of their rehabilitation. With stroke survivor
rehabilitation plans typically lasting between a few months to a
few years (Bindawas and Vennu, 2016), this is considered long-term
rehabilitation (IHCP, 2023). Assessing the relationship between the
number of therapy hours in a rehabilitation plan and the risk of
seizure following an infection could yield beneficial results in
resident recovery.

This study used the Long-Term Care MinimumData Set (MDS)
3.0 (2014–2018) in a midwestern US state to retrospectively
investigate the risk of seizure following an infection both short
term and long term. By focusing on the stroke to infection to seizure
pathway, this study seeks to identify risk factors for seizure after an
infection to then help limit seizures in stroke survivors who have
experienced an infection. The model is fit to predict the risk, return
an individualized resident risk estimate, and interpret which factors
contribute the most to this risk estimate. Uncovering which factors
contribute the most to seizure risk may aid healthcare professionals
in adjusting rehabilitation plans to improve resident outcomes.

Other studies have predicted the risk of seizure in stroke
surviving patients (Bunney et al., 2022; Looti et al., 2023;
Lekoubou et al., 2024); however, none exist that include the
infection to seizure pathways in stroke survivors. Another novel
aspect is the use of the MDS data set for prediction of seizures in
stroke survivors, which has not even been used for seizure
prediction. The third novel aspect of this study is the use of
SHapley Additive exPlanations (SHAP) for model interpretations,
and though this technique was developed a number of years ago, its
application to the healthcare space is relatively novel.

2 Materials and methods

This study had two specific aims for investigating the risk of
seizure following infection in stroke survivors at skilled nursing
facilities (SNFs).

1. Determine the risk ratio of stroke survivors experiencing a
seizure after an infection short term (within 14 days) and long
term (within 1 year).

2. Interpret the resultant predictive models to identify risk factors
for a stroke surviving nursing home resident experiencing a
seizure within 14 days following an infection.

The data initially includes all individuals admitted to a Medicare
and Medicaid licensed SNF between 1 January 2014 to 20 April
2018 in Indiana taken from the Long Term Care MinimumData Set.
All assessments during the time period were evaluated. The main
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data features include demographic, diagnosis, activities of daily
living (ADL), pain, treatment, mobility, and therapy. Residents
with a previous history of seizure and epilepsy disorder were
excluded in order to establish the temporal association between
stroke and seizure occurrence.

2.1 Risk ratio

Prior to modeling, a preliminary analysis was conducted to
verify the relationship between stroke survivors, infections, and
seizures. Stroke survivors considered were nursing facility
residents with the stroke diagnosis code who remained in a
skilled nursing facility (SNF) after the incident. This included
both residents admitted with a stroke diagnosis and those who

had a stroke while in the SNF. An infection was said to have occurred
if any of the urinary tract infection, pneumonia, sepsis, tuberculosis,
viral hepatitis, wound infection, and multidrug resistant organism
diagnosis codes were noted in an assessment after the stroke noted
assessment. A seizure was said to occur if the diagnosis code for
seizure and epilepsy disorder was noted in an assessment after the
infection noted assessment.

Assessments from stroke survivors were used to count the
number of unique residents for four mutually exclusive
categories. Divisions were based on the occurrence of an
infection and/or stroke. The initial data were first split on the
occurrence of stroke in resident assessments, which yielded
24,570 stroke survivor residents. The data was then split on
whether a resident had an infection within 75 days following the
stroke, a time period associated with increased risk of disability and

FIGURE 1
Resident categorization flow chart.
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death (Finlayson et al., 2011; Ulm et al., 2012; Learoyd et al., 2017). It
was found that 2,861 unique residents had an infection within
75 days following a stroke. These could have been a resident who
had a stroke in the SNF and then had an infection within 75 days
following, or a resident who was admitted to the SNF with the stroke
diagnosis and had an infection within 75 days from their first
assessment. For the latter, this means the resident entered the
facility with the stroke diagnosis and the infection threshold was
set to within 75 days from the first assessment date. An additional
21,709 residents did not have an infection following a stroke.

These two groups were each split into two groups based on
whether residents had a seizure following their stroke. The next two
categories are sub-divisions of the first category based on the timing
of the appearance of the seizure diagnosis. For the stroke survivors
that had an infection within 75 days following their stroke, it was
further evaluated if the resident had a seizure anytime following the
infection or within 14 days following the infection. This value of
14 days was obtained from a study that found that seizures usually
occur within one to 2 weeks following an infection, so 14 days was
chosen based on the 2-week mark (Vezzani et al., 2015). Other
studies have also found that seizures can occur after a stroke over
5 years later (Naess et al., 2004; Myint et al., 2006), so a long-term
value after infection was also assessed for comparison as part of this
risk ratio. For this study, this value was 1 year after the infection. The
long-term follow-up period of 1 year had 110 residents experience a
seizure following an infection, and the short term, 14 day follow up
period, had 74 residents experience a seizure following an infection.
For stroke survivors that did not experience an infection, it was
determined that 349 residents had a seizure any amount of time
following a stroke with no reported infection prior to the seizure.
Figure 1 demonstrates these groups and their breakdown as a
flow chart.

Residents admitted near the end of the dataset were removed if
they did not experience a post-infection seizure and there was not an
adequate number of days to observe the full follow-up period (right
censoring of data). As an example, for 14-day post-infection seizure,
a resident who had only 12 days of follow up in the data, but
experienced an infection then had a seizure during that follow-up
was kept in the data. A resident with only 12 days of follow up who
did not have a seizure before the end of the dataset, however, was
removed due to right censoring of the data. For 14-day follow-up,

135 residents were right censored, and for 1-year follow-up,
867 residents were right censored. Residents were also right
censored following the same method for the 75-day follow-up
period between stroke and infection. This latter group had
6,051 residents with right censoring of their data. These censored
residents were subtracted from risk ratio calculations and were
removed from the predictive models.

The categorized residents and their corresponding prevalence
were used to calculate risk ratios based on the number of unique
residents who experienced a seizure. Using unique residents reduced
the possibility of carrying forward diagnoses in the data between
assessments that could have artificially inflated occurrences.
Therefore, the number of unique residents is a more robust
method compared to the number of occurrences for calculating
the risk ratio here. For a more detailed explanation, please see the
discussion section. The ratios in Table 1 indicate that having an
infection within 75 days after a stroke increases a resident’s risk of
having a seizure within 14 days post infection by 1.20-fold. Having
an infection within 75 days after a stroke increases a resident’s risk of
having a seizure 1 year post infection by 2.42-fold. Risk ratios were
calculated by comparing the population of individuals who
experienced a seizure following an infection to those who
experienced a seizure without first experiencing an infection
(Table 2). The 95% confidence intervals did not contain one for
the risk ratio of the 1-year follow-up period, indicating that the
relative risk ratio was found to be statistically significant. This is
consistent with current literature that indicates that infections
increase the risk of seizures (Langhorne et al., 2000). The 14-day
follow-up period’s 95% confidence interval for the risk ratio did
contain 1, so this risk ratio was not found to be statistically
significant. However, a large proportion of the post-infection
seizures occurred within this time frame and adjustment for
additional features can be informative, so modeling was also
completed for prediction of seizure over the 14-day follow-
up period.

2.2 Data processing and modeling

The MDS data collection instrument includes 23 sections that
contain information such as demographics, diagnoses, independence in

TABLE 1 Risk ratio of seizure in stroke survivors with infections.

In Stroke Survivors Relative Risk Ratio 95% Confidence Interval

Experiencing a seizure within 14 days after an infection 1.1968 [0.9344, 1.5330]

Experiencing a seizure within a year after an infection 2.4168 [1.9604, 2.9795]

TABLE 2 Risk ratio calculations of seizure in stroke survivors with infections.

In Stroke Survivors Relative Risk Ratio 95% Confidence Interval

Experiencing a seizure within 14 days after an infection
74

(74+2787+12+36−135)
349

(349+21360−6051)
e ln(1.5832)±1.96

����������

1
74+ 1

2700+ 1
349+ 1

15309

√

Experiencing a seizure within a year after an infection
110

(110+2787+12−867)
349

(349+21360−6051)
e ln(2.6525)±1.96

����������

1
110+ 1

1932+ 1
349+ 1

15309

√
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performing activities of daily living, mood assessment, therapy, and
medications by class. Each section contains data on all residents, and
most residents hadmultiple entries in the dataset. Thesemultiple entries
were a result of periodic assessments (e.g., 5-day, 14-day, 30-day, 60-
day, or 90-day post admission for Medicare Part A stays; admission,

quarterly, and significant change in status for other stay types) that
varied by resident when information would be updated. The date of the
assessment was noted, and a de-identified person number was used to
associate residents to all their assessments. The data was structured with
the same number of rows appearing across all sections, but each section

FIGURE 2
Demographic breakdown for fourteen-day risk.
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had a variable number of columns. The rows for each section match up
directly by row index, so any row across all sections were the same
assessment for the same resident. The columns were different sets of
features broken up by sections, and within each section columns were
related. For example, the therapy section contains columns for speech,
occupational, physical, and other types of therapy. For this analysis,
149 features were selected from the thousands of features across the
23 sections.

These features included demographics (age, gender, marital
status, race, height, and weight), treatments (physical therapy,
occupational therapy, speech therapy, recreational therapy,
psychological therapy, and medications), physical condition
(daily activities, mobility, balance), and behavior (mood, pain,
and delirium). These were the main feature groups, and all
features were composed of more specific subgroups within
these main groups. For example, in the category of physical
therapy, there were variables on weekly individual minutes,
concurrent minutes, group minutes, and number of days of
therapy per week. The selection of these features followed
other stroke survivor outcomes studies (Kelly-Hayes et al.,
1998; Gittins et al., 2020).

Features with more than 70% missing values were removed
(29 features removed). With 149 features to start, removing these
29 features reduced the total to 120. The remaining missing
values were imputed using a two-step process. First, the resident’s
most recent value from a prior or future assessment was carried
forward or backwards. For example, if age was missing but a
resident’s record from the previous month contained their age to
be 65, the missing record was filled in with 65. For some features,
no records were present for any entries, so as the second step,
these remaining missing values were imputed with the k nearest
neighbors method using five nearest neighbors. Missing values in
diagnosis codes such as stroke, seizure, and infection were
imputed with a zero indicating that event did not occur to
prevent possible misdiagnosis or error carried forward.
Dropping features with 70% missingness and using kth nearest
neighbors with five neighbors is relatively common in healthcare
datasets where missingness is relatively high (Wells et al., 2013;
Salgado et al., 2016; Jäger et al., 2021). The use of 70% is on the

higher end of what is found in the literature but was used as a
matter of practicality. If the missingness cut off is set too low, a
large proportion of data will be removed. Imputation using the
resident’s most recent value from another assessment and
imputation of diagnostics with zeros was author determined.
Imputation using the resident’s other assessment could cause
slight discrepancies, such as when imputing age, the method does
not consider the resident’s birthday (data element not available
for this work), but the imputed value is still likely to be very near
the true value and resident specific.

Following imputation of missing data, the data was balanced
using three methods. These methods were the Synthetic Minority
Oversampling Technique (SMOTE) for up sampling, Edited
Nearest Neighbor (ENN) for down sampling, and SMOTEENN
for up and down sampling. Applying each balancing technique
resulted in three sets of balanced data that then underwent three
feature selection methods: Least Absolute Shrinkage and Selection
Operator (LASSO), Recursive Feature Elimination (RFE), and
Principal Component Analysis (PCA). These methods were
selected from other studies that aimed to predict seizures post-
stroke (Bunney et al., 2022; Looti et al., 2023; Lekoubou et al.,
2024). These studies did not consider infections post-stroke;
however, incorporation of post-stroke infections is not
expected to significantly impact the results of feature selection
methods. A balancing and feature selection technique was then
chosen to apply to four different modeling methods: Logistic
Regression, Random Forest, XGBoost, and Neural Network.
Logistic regression was chosen for its distinction as one of the
most fundamental modeling methods due to its linearity
assumption, low computational intensity, and parametric
interpretability. XGBoost and Random Forest were chosen due
to their non-linear nature and ability to guard against underfitting
and overfitting respectively. Neural Network was chosen because
it is also non-linear and is not a tree-based model making for more
interesting model comparisons and it has a strong ability to
handle more complex relationships.

Hyper parameters for Logistic Regression (penalty: L1, L2 and C:
0.01, 0.1, 1, 10), XGBoost (learning rate: 0.1, 0.01, 0.001; and
maximum depth: 1, 5, 10, 20), Random Forest (maximum depth:

TABLE 3 Model performance metrics for fourteen-day risk prediction.

Parameter Logistic Regression XGBoost Neural Network Random Forest

AUC 0.8380 0.9999 0.9988 0.9999

Accuracy 0.7654 0.9999 0.9991 0.9998

Recall 0.7838 0.9999 0.9999 0.9997

True Positive Rate (TPR) 0.7838 0.9999 0.9999 0.9997

True Negative Rate (TNR) 0.7468 1.0000 0.9981 1.0000

Sensitivity 0.7838 0.9999 0.9999 0.9997

Specificity 0.7468 1.0000 0.9981 1.0000

Positive Predictive Values (PPV) 0.7571 1.0000 0.9981 1.0000

Negative Predictive Values (NPV) 0.7743 0.9999 0.9999 0.9997

Precision 0.7571 1.0000 0.9981 1.0000
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1, 5, 10, 20; and n estimators: 200, 1,000, 10,000), and Neural
Network (maximum iterations: 100, 200; activation layer: logistic,
tanh; and number of hidden layers: 2, 8, 64, 128) were tuned using

GridSearchCV. This method used all combinations of
hyperparameters within each model then chooses the one with
the best specified metric, which in this case was ROC and AUC.

TABLE 4 K fold cross validation scores for fourteen-day risk prediction.

Cross Validation Scores Logistic Regression XGBoost Neural Network Random Forest

Score 1 0.7687 0.9997 0.9971 0.9993

Score 2 0.7796 0.9998 0.9956 0.9998

Score 3 0.7623 0.9997 0.9978 0.9998

Score 4 0.7707 0.9998 0.9970 0.9998

Score 5 0.7745 0.9996 0.9986 0.9994

Average CV Score 0.7721 0.9997 0.9972 0.9996

FIGURE 3
Shap values for top features to explain contribution to the model.

Frontiers in Physiology frontiersin.org07

Stanik et al. 10.3389/fphys.2024.1399374

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1399374


For example, the Logistic Regression method tested a total of six
different models and chose the hyperparameters that yielded the
greatest AUC of the six. For Logistic Regression, the selected
hyperparameters were a penalty of L2 and a C of 0.1. The
XGBoost model yielded 0.1 for the learning rate and 10 for
maximum depth. Random Forest resulted in 10 for maximum
depth and 1,000 for n estimators. Lastly, Neural Network chose
100 for maximum iterations, tanh for the activation layer, and 64 for
the number of hidden layers.

Model performance was evaluated using prediction metrics such
as Receiver Operator Curve Area Under the Curve (AUC), accuracy,
recall, true positive rate, true negative rate, sensitivity, specificity,
positive predictive values, negative predictive values, and precision.
Data was split 80% and 20% for the training and testing set. Within
the training set, 5-fold validation was used for tuning
hyperparameters. The testing set was used to evaluate the model
performance and interpretation. Model interpretation was evaluated
with SHapley Additive exPlanations (SHAP).

3 Results

3.1 Demographics

Figure 2 shows the demographic breakdown of residents who
suffered a seizure within 14 days post infection. From these
demographics, older residents were more prevalent. The figure
also shows that post-infection seizures were more prevalent in
men, despite the MDS dataset containing primarily female
residents. For the other demographic features, the trend
follows those of the overall MDS dataset, so they are not as
significant.

3.2 Model

The selected models used SMOTEENN for data balancing
and all four models (Logistic Regression, XGBoost, Random

FIGURE 4
Direction of SHAP values for top features.
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Forest, and Neural Network) were assessed for prediction quality
and feature interpretation. The data balancing method was
chosen based on the breakdown of the classes. For ENN, the
distribution of no seizures after infection to seizures following
infection was 99% and 1%, which was likely the result of highly
imbalanced data that interrupts the methodology of ENN and did
not allow for down sampling. For SMOTE, the distribution was
49% and 51%, and for SMOTEENN the distribution was 50% and
50%. Because SMOTEENN yielded the most equal distribution,
this data balancing method was selected.

For feature selection, PCA was adjusted to a range of
component numbers and used the same set of features as the
other methods, but this method was not selected since it did not
allow for the same degree of interpretability. For RFE, results
suggested that no features needed to be removed from the model.
RFE worked by fitting a model with all the features then ranked
each feature depending on the contribution to the model. Features
were then removed based on if they meaningfully contributed to
the scoring metric, which was Area Under the Receiver Operator
Curve (AUC) for this study. Results indicated no features were to
be removed so all features meaningfully contributed to the AUC.
For LASSO, 17 features were suggested to be removed from the
model. The LASSO method worked by assigning a coefficient to
each feature based on its contribution to the model then shrinking
the coefficients using the selected regularization parameter alpha,
in this case alpha was 0.00001. A cut off was set of 0.001, meaning
any features with a coefficient smaller than this value (features
whose coefficient shrunk to zero) would be removed. If no
coefficients were reduced to zero, then no features were
removed. However, we took the conservative approach of siding
with RFE which gauged all features as important keeping all
features in the models.

For modeling methods, Logistic Regression, XGBoost, Neural
Network, and Random Forest all yielded accurate prediction
results (Table 3). Overfitting was assessed through K-fold
cross validation with five folds on the training set, and the
result of the cross validation returned five scores also close in
value and confirmed that these models were not overfit (Table 4).
However, the high accuracy generated by XGBoost, Neural
Network, and Random Forest may have been a result of data
balancing, where up sampling created more distinct entries that
were easier to predict.

3.3 Interpretation

For model interpretation, the features that contributed the most
to the model were those with the greatest absolute value of the SHAP
values. Figure 3 demonstrates the features with the greatest
contribution (absolute SHAP value) whereas Figure 4
demonstrates the direction of that contribution (positive or
negative). It was important to interpret results from all four
models since all models had a strong prediction ability, and
comparison between models could identify similar features.
Across all four models, it can be seen that the amount of therapy
a person receives, their ability to be independent, and their overall
mood contributed the most to predicting seizure following infection
(Figure 3). For therapy, this was in the form of the number of

minutes for speech, occupational, and physical therapy as well as the
distinct calendar days and frequency of the therapy. For
independence, this was in the form of activities for daily living
for walking, mobility, eating, and dressing. Finally, mood was
categorized based on mood severity score and the use of
medications like antidepressants, antianxiety, and antipsychotics.
Other notable features include antibiotic medications, diuretic
medications, therapeutic diet, continence, and recall ability.
Demographics also contributed to the model with age and gender
being the most prominent.

Figure 4 demonstrates the direction of impact for each feature.
Some features present in one model indicate the opposite effect in
another model, or the direction is challenging to distinguish. However,
across all four models it appears that residents who receive more
therapy (speech, occupational, and physical), had lower ADL scores
(more independent), and had a lower mood severity score (more
positive mood), and took mood related medications (antidepressant
or antianxiety) had lower risk of post-infection seizure. Lower age and
male gender were associated with higher risk, but this was not as
consistent across models as other findings.

4 Discussion

The models achieved a prediction accuracy between 76.5% and
99.9% for whether a stroke survivor will experience a seizure after an
infection. It is plausible that data imputation and synthetic data
created by up sampling artificially improved these metrics leading to
an overly optimistic view of model performance. In other words,
with balancing having a focus primarily on up sampling, the number
of entries in the dataset was synthetically increased. These synthetic
entries could have caused the dataset entries to become more
distinct, making it easier to predict post-infection seizures. Up
sampling also caused there to be more data and was thus more
computationally intensive for future steps. However, up sampling is
meant to reduce the bias of the majority class by up sampling the
minority class, so the computational intensity is a tradeoff for
reduced bias. Testing the model on larger, national populations
would help to minimize adverse effects caused by up sampling and
validate the resulting high accuracy. By focusing on all four models
and their interpretation, the goal is to make the results more
generalizable to future nursing home residents. The short-term
contribution of the model is the use of SHAP values which allow
for model interpretation, furthering the understanding of the
relative importance of risk factors. Understanding feature
importance through the SHAP values can guide the development
of strategies to mitigate the effect of seizure risk for high-risk stroke
survivors experiencing an infection.

The three main types of features that contributed the most to
predictions were therapy, independence in locomotion and activities
of daily living, and overall mood. The features best used to interpret
the model are those related to therapy minutes (speech,
occupational, and physical), distinct calendar days of therapy, the
independence score for activities of daily living, mood severity score,
use of antidepressant medications, use of antianxiety medications,
and use of antipsychotic medications. The SHAP values indicated
that stroke survivors who received more therapy, were able to be
more independent, and had a better overall mood were at a lower
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risk of seizure following an infection. These results align with
literature that has suggested that adults with epilepsy who
exercise regularly reduce their risk of seizures (Nakken et al.,
1990; Mario Arida et al., 2010). This is also true of adults with
epilepsy who remain in a better mood and experience less stress to
reduce their seizure risk (Jackson and Turkington, 2005; Sawyer and
Escayg, 2010; McKee and Privitera, 2016). Regarding independence
in stroke survivors, a decrease in independence leads to decreased
mood during the recovery process (Albanese et al., 2020). This could
indicate that as stroke survivors recover and become more
independent, they would improve their mood and subsequently
reduce their seizure risk. Although stroke survivors are not the same
as people with epilepsy, stroke survivors still experience neurological
complications thus have a risk of seizures. Identifying these features
of therapy, independence, and mood allows healthcare providers
and researchers potential levers for those residents at greater risk.

These features can be determined early, within the first
2 weeks of a resident’s admission to the SNF. When a resident
enters a SNF, a therapy plan is set in place including the number
of minutes of therapy they will receive each week. As time goes
on, this plan will be updated to reflect their treatment needs, but
from their admission assessment, physicians can estimate
resident risk based on the number of minutes in the plan.
Additionally, the resident receives scores for their mood
severity and their independence during their first 14-day
assessment. This would mean that residents who begin to
show signs of less positive mood (have a high mood severity
score), are more dependent (higher ADL scores), and receiving
less therapy would be categorized as high risk. Providers could
then identify these patients and determine if additional care is
appropriate. Ultimately, the decision relies on the provider to
take action to improve resident care, but this study helps
contribute to the field of known risk factors. However, as this
study is correlational and the studied population often have
complex multi-morbid conditions, it is difficult to know
whether the occurrence of therapy reduces the risk of seizure
or if individuals with a risk of seizure are less able to receive
therapy, or perhaps both. Disentangling this relationship will
better inform resident care.

Other features that meaningfully contribute are those for
antibiotic medications, antianxiety medications, PRN (pro re
nata) pain medications, diuretic medications, gender, and
therapeutic diet. Antibiotics are a less useful contribution since
the use of antibiotics indicates an infection, which was already pre-
established. Antianxiety, pain, and diuretic medications could once
again be indicative of patient severity, but they could also indicate
the possible presence of acute drug intoxication. Drug intoxication
from antidepressants and pain medications has been found to cause
seizures in patients with epilepsy (Chen et al., 2016), and it is
possible that stroke survivors in SNF could also suffer from the
same outcome. For the demographic factors, gender was previously
discussed with the finding that males had a greater proportion of
post infection seizure, and gender is also shown as a top contributing
feature across models. Therapeutic diet was another feature found to
contribute and represent the resident receiving altered meals to
promote recovery. This feature likely represents a modifiable factor
since lifestyle changes like diet tend to be important for promoting
resident wellbeing.

In a simple reading of the results, if a resident is high risk,
healthcare providers could enroll the resident in additional therapy
time, encourage more independence, and focus on improving mood
to reduce seizure risk. However, it is imperative to note that many
important features may be signals of the severity of the resident’s
condition rather than levers that can be pulled to improve their
condition. For example, the results show that more therapy minutes
are associated with reduced risk of seizure following infection.
However, it may be the case that residents who are physically
able to have therapy have less severe complications following
their stroke. The severity of a resident’s condition following the
stroke may be the influential factor underlying both the number of
therapy minutes and the likelihood of seizure. Nevertheless,
identifying these associations is valuable in furthering the
discussion around improving post-stroke care in SNFs. That the
model establishes associations rather than causal relationships
should be considered as a limitation.

Aside from the resident post-stroke severity limitation, another
limitation of the model is the way in which dates of the strokes,
infections, and seizures are established. For determining the date of
the event occurrence, the assessment date was used (or the date in
which the SNF filled out the MDS data form). This is typically the
practice for diagnosis dates for the MDS (Hua et al., 2021). However,
it is likely that there is a lag between the time the event occurred and
the assessment date. This means that a seizure could have occurred
days prior but was not noted in the MDS until the date of the
assessment. Therefore, the assumption was made that the lag time
for all events to assessment was approximately the same. This would
mean that the exact date of the event occurrence was not accurate,
but the relation of the events to one another would be reasonably
accurate. This assumption can be validated by the events in the MDS
being chronological for individuals, such that the relation of events
to one another is accurate (Mor et al., 2011). Thus, the time
thresholds of 75 days between stroke and infection and 14 days
between infection and seizure would be chronologically accurate
with the exact time difference having some undetermined degree
of error.

Similar to this relation between dates, there is also the possibility
of error carried forward between assessments. For example, it was
seen in the dataset that once a resident experienced a seizure, it often
appeared in later consecutive assessments. This was caused by SNF
staff using previous assessment data instead of reassessing the
resident each time. The reason for this can be a variety of factors
like understaffing, overcrowding, and distraction that cause staff to
try to save time in completing assessments (Bowman, 2013). This
made it challenging to distinguish repeated infections that then led
to seizures in individual residents. As a result, unique residents were
used for modeling, meaning that the residents could only have the
stroke to infection to seizure pathway once. This caused the risk ratio
to potentially indicate a smaller risk than if occurrences were
evaluated. Additionally, this could have compromised some
prediction and interpretation ability of the model. By only
looking at one occurrence for each resident, it is possible that
risk factors that contributed to a second or third occurrence
would have been overlooked. This may also be the reason the
model predicted so accurately if a first occurrence was easier to
predict than subsequent occurrences. Although using unique
residents may underestimate the risk ratio and miss risk factors
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in later occurrences, prevention of false post-infection seizures from
error carried forward is more important. Risk factors can still be
obtained by looking at unique residents, but using false post-
infection seizures could skew results.

Even with the limitations of the model, it still serves as an
effective tool for interpretation. Infections were associated with
an increase in the risk of a seizure in stroke survivors through the
calculation of a risk ratio and in the predictive model. The
interpretability aspect of this model with SHAP allowed for
the main factors that contribute to risk to be identified. These
main factors that contribute to risk can help guide resident care.
Looking into the future, this model and others in this research
space could eventually be established to run in the background to
continuously assess resident risk. Currently, the prediction aspect
is not at the desired level for implementation into care, but with
more iterations, the technology could eventually reach a high
level. Hence these goals would be more suitable for long-term
progress across the entire healthcare research field rather than
individual study improvement. More realistically,
implementation of the models on other datasets to confirm
model performance and evaluate generalizability would be a
more obtainable short-term goal. For an even longer-term goal
bordering science fiction, having risk assessment across all
resident diagnoses and all outcomes would be the greatest
improvement for healthcare. For now, this individual resident
risk and the interpretability of the model can help guide resident
treatment to generate better outcomes for stroke survivors.

5 Conclusion

This machine learning model demonstrated a high degree of
accuracy in predicting the occurrence of a seizure within 14 days
following an infection in the population of stroke survivors at skilled
nursing facilities. The interpretability of the model allowed for
specific therapy, independence, and mood related features to be
identified that are associated with the risk of seizure occurrence. This
interpretability of the model can be used by healthcare providers to
guide treatment decisions to prevent seizures in residents who
suffered an infection.
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